Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Participants
2.2. Variable Measurements
2.3. Network Analysis
2.4. Association Analysis
3. Results
3.1. Dietary Score Measurements
3.2. Characteristics of Study Participants
3.3. Network Structure
3.4. Network Inference
3.5. Network Stability
3.6. Sensitivity Analysis
3.7. Association among Demographics, Dietary Score, and Comorbidities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- Khan, S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, S.; Zhou, T.; Zhang, P.; Li, H.-B. Alcoholic beverage consumption and chronic diseases. Int. J. Environ. Res. Public Health 2016, 13, 522. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.R.; Kalhan, R.; Mannino, D. Epidemiology of chronic obstructive pulmonary disease: Prevalence, morbidity, mortality, and risk factors. Semin. Respir. Crit. Care Med. 2015, 36, 457–469. [Google Scholar] [CrossRef]
- Postma, D.S.; Bush, A.; van den Berge, M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet 2014, 385, 899–909. [Google Scholar] [CrossRef]
- Yun, W.-J.; Rhee, J.-A.; Kim, S.A.; Kweon, S.-S.; Lee, Y.-H.; Ryu, S.-Y.; Park, S.-W.; Kim, D.H.; Shin, M.-H. Household and area income levels are associated with smoking status in the Korean adult population. BMC Public Health 2015, 15, 39. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.; Rahkonen, O.; Karvonen, S.; Lahelma, E. Socioeconomic status and smoking: Analysing inequalities with multiple indicators. Eur. J. Public Health 2005, 15, 262–269. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Mateos, D.; Angullo, E.; Tur, J.A. Dietary fat intake and metabolic syndrome in older adults. Nutrients 2019, 11, 1901. [Google Scholar] [CrossRef] [Green Version]
- Kaluza, J.; Larsson, S.; Linden, A.; Wolk, A. Consumption of unprocessed and processed red meat and the risk of chronic obstructive pulmonary disease: A prospective cohort study of men. Am. J. Epidemiol. 2016, 184, 829–836. [Google Scholar] [CrossRef]
- Chiuve, S.E.; Fung, T.T.; Rimm, E.B.; Hu, F.B.; McCullough, M.L.; Wang, M.; Stampfer, M.J.; Willett, W.C. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 2012, 142, 1009–1018. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Iqbal, K.; Schwedhelm, C.; Boeing, H. Food groups and intermediate disease markers: A systematic review and network meta-analysis of randomized trials. Am. J. Clin. Nutr. 2018, 108, 576–586. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet. New Engl. J. Med. 2013, 368, 1279–1290. [Google Scholar] [CrossRef] [Green Version]
- Bender, R. Introduction to the use of regression models in epidemiology. Methods Mol. Biol. 2009, 471, 179–195. [Google Scholar] [CrossRef]
- Lewis, F.I.; Ward, M.P. Improving epidemiologic data analyses through multivariate regression modelling. Emerg. Themes Epidemiol. 2013, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Choi, J.; Choi, J.-Y. Network analysis in systems epidemiology. J. Prev. Med. Public Health 2021, 54, 259–564. [Google Scholar] [CrossRef]
- de Maturana, E.L.; Pineda, S.; Brand, A.; Van Steen, K.; Malats, N. Toward the integration of Omics data in epidemiological studies: Still a “long and winding road”. Genet. Epidemiol. 2016, 40, 558–569. [Google Scholar] [CrossRef]
- Contreras, A.; Nieto, I.; Valiente, C.; Espinosa, R.; Vazquez, C. The study of psychopathology from the network analysis perspective: A systematic review. Psychother. Psychosom. 2019, 88, 71–83. [Google Scholar] [CrossRef]
- Iqbal, K.; Buijsse, B.; Wirth, J.; Schulze, M.B.; Floegel, A.; Boeing, H. Gaussian graphical models identify networks of dietary intake in a German adult population. J. Nutr. 2016, 146, 646–652. [Google Scholar] [CrossRef]
- Solmi, M.; Koyanagi, A.; Thompson, T.; Fornaro, M.; Correll, C.U.; Veronese, N. Network analysis of the relationship between depressive symptoms, demographics, nutrition, quality of life and medical condition factors in the Osteoarthritis Initiative database cohort of elderly North-American adults with or at risk for osteoarthritis. Epidemiol. Psychiatr. Sci. 2019, 29, e14. [Google Scholar] [CrossRef]
- Kim, J. Cancer screenee cohort study of the National Cancer Center in South Korea. Epidemiol. Health 2014, 36, e2014013. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.J.; Lee, S.H. Development and validation of a quantitative food frequency questionnaire to assess nutritional status in Korean adults. Nutr. Res. Pract. 2012, 6, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Lee, W.-Y.; Kim, S.S.; Kang, J.-H.; Kang, J.-H.; Kim, K.K.; Kim, B.-Y.; Kim, Y.-H.; Kim, W.-J.; Kim, E.M.; et al. 2018 Korean Society for the study of obesity guideline for the management of obesity in Korea. J. Obes. Metab. Syndr. 2019, 28, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Kim, Y.-H.; Han, K.; Jung, J.-H.; Park, Y.-G.; Lee, S.-S.; Kwon, H.-S.; Lee, W.-Y.; Yoo, S.J. Prevalence of obesity and incidence of obesity-related comorbidities in Koreans based on National Health Insurance Service health checkup data 2006–2015. J. Obes. Metab. Syndr. 2018, 27, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negre, C.F.A.; Morzan, U.N.; Hendrickson, H.P.; Pal, R.; Lisi, G.P.; Loria, J.P.; Rivalta, I.; Ho, J.; Batista, V.S. Eigenvector centrality for characterization of protein allosteric pathways. Proc. Natl. Acad. Sci. USA 2018, 115, E12201–E12208. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef]
- Bae, J.-M.; Yang, Y.-J.; Li, Z.-M.; Ahn, Y.-O. Low cholesterol is associated with mortality from cardiovascular diseases: A dynamic cohort study in Korean adults. J. Korean Med. Sci. 2012, 27, 58–63. [Google Scholar] [CrossRef] [Green Version]
- WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. Available online: https://apps.who.int/iris/handle/10665/43588 (accessed on 19 December 2020).
- Florkowski, C.M.; Chew-Harris, J.S. Methods of estimating GFR—different equations including CKD-EPI. Clin. Biochem. Rev. 2011, 32, 75–79. [Google Scholar]
- Haslbeck, J.M.B.; Waldorp, L.J. Package ‘mgm’: Estimation of k-order time-varying mixed graphical models. Version 1.2-7. 2019. [Google Scholar]
- Chen, J.; Chen, Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008, 95, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.; Hastie, T.; Tibshirani, R. Package ‘glasso’: Graphical lasso: Estimation of Gaussian graphical models. Version 1.10. 2018. [Google Scholar]
- Haslbeck, J.M.B.; Waldorp, L.J. Mgm: Structure estimation for time-varying mixed graphical models in high-dimensional data. arXiv 2016, arXiv:1510.06871. [Google Scholar] [CrossRef]
- Costantini, G.; Epskamp, S.; Borsboom, D.; Perugini, M.; Mõttus, R.; Waldorp, L.J.; Cramer, A. State of the aRt personality research: A tutorial on network analysis of personality data in R. J. Res. Pers. 2015, 54, 13–29. [Google Scholar] [CrossRef]
- Epskamp, S.; Borsboom, D.; Fried, E. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epskamp, S.; Fried, E.I. Package ‘bootnet’: Bootstrap methods for various network estimation routines. Version 1.2.4. 2019. [Google Scholar]
- Peters, S.; Huxley, R.; Woodward, M. Do smoking habits differ between women and men in contemporary Western populations? Evidence from half a million people in the UK Biobank study. BMJ Open 2014, 4, e005663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.; Jin, X.; Jun, L.; Qiu, S.; Zheng, Q.; Pan, M. The relationship between smoking and stroke: A meta-analysis. Medicine 2019, 98, e14872. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, L.M.; Taylor, G.; Huxley, R.; Mitchell, P.; Woodward, M.; Peters, S. Smoking as a risk factor for lung cancer in women and men: A systematic review and meta-analysis. BMJ Open 2018, 8, e021611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.J.; Yu, D.; Wen, W.; Shu, X.-O.; Saito, E.; Rahman, S.; Gupta, P.C.; He, J.; Tsugane, S.; Xiang, Y.-B.; et al. Tobacco Smoking and Mortality in Asia: A pooled meta-analysis. JAMA Netw. Open 2019, 2, e191474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitsma, M.B.; Fullman, N.; Marie, N.; Salama, J.S.; Abajobir, A.; Abate, K.H.; Abbafati, C.; Abera, S.F.; Abraham, B.; Abyu, G.Y.; et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: A systematic analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.; Lee, J.A.; Cho, H.-J. Characteristics of hardcore smokers in South Korea from 2007 to 2013. BMC Public Health 2017, 17, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myung, S.-K.; Seo, H.G.; Park, E.-C.; Lim, M.K.; Kim, Y. An Observational study of the Korean Proactive Quitline Service for smoking cessation and relapse prevention. Public Health Rep. 2011, 126, 583–590. [Google Scholar] [CrossRef]
- KOSIS. Summary of Economically Active Population by Gender. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1DA7001S&vw_cd=MT_ETITLE&list_id=&scrId=&seqNo=&language=en&obj_var_id=&itm_id=&conn_path=A6&path=%252Feng%252F (accessed on 19 December 2020).
- Yoo, K.-B.; Park, E.-C.; Jang, S.-Y.; Kwon, J.A.; Kim, S.J.; Cho, K.-H.; Choi, J.-W.; Kim, J.-H.; Park, S. Association between employment status change and depression in Korean adults. BMJ Open 2016, 6, e008570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Suh, B.-S.; Lee, W.-C.; Jeong, H.-S.; Son, K.-H.; Nam, M.-W.; Kim, H.-C. The association between long working hours and marital status change: Middle-aged and educated Korean in 2014–2015. Ann. Occup. Environ. Med. 2019, 31, e3. [Google Scholar] [CrossRef] [PubMed]
- Raymo, J.M.; Park, H.; Xie, Y.; Yeung, W.-J.J. Marriage and family in East Asia: Continuity and change. Annu. Rev. Sociol. 2015, 41, 471–492. [Google Scholar] [CrossRef] [PubMed]
- Childs, B.G.; Durik, M.; Baker, D.J.; Van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [Green Version]
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef]
- Kwon, S.M.; Hong, S.M.; Lee, Y.-K.; Min, S.; Yoon, A.G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Haslbeck, J.M.B.; Waldorp, L.J. Mgm: Estimating time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 2019, 93, 1–64. [Google Scholar] [CrossRef]
- Burggraf, C.; Teuber, R.; Brosig, S.; Meier, T. Review of a priori dietary quality indices in relation to their construction criteria. Nutr. Rev. 2018, 76, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Schwingshackl, L.; Floegel, A.; Schwedhelm, C.; Stelmach-Mardas, M.; Wittenbecher, C.; Galbete, C.; Knüppel, S.; Schulze, M.B.; Boeing, H. Gaussian graphical models identified food intake networks and risk of type 2 diabetes, CVD, and cancer in the EPIC-Potsdam study. Eur. J. Nutr. 2018, 58, 1673–1686. [Google Scholar] [CrossRef]
Factor | Normal (n = 2385) | Elevated (n = 2925) | Hypertension (n = 2113) | p-Value * |
---|---|---|---|---|
Age (years) | 50.1 ± 7.5 | 52.2 ± 7.9 | 56.3 ± 7.8 | <0.001 |
<50 | 1163 (48.8%) | 1118 (38.2%) | 430 (20.4%) | <0.001 |
50–54 | 592 (24.8%) | 733 (25.1%) | 447 (21.2%) | |
55–59 | 352 (14.8%) | 513 (17.5%) | 447 (21.2%) | |
≥60 | 278 (11.7%) | 561 (19.2%) | 789 (37.3%) | |
Sex | ||||
Male | 1852 (77.7%) | 1873 (64.0%) | 1101 (52.1%) | <0.001 |
Female | 533 (22.3%) | 1052 (36.0%) | 1012 (47.9%) | |
Marital status | ||||
Married, cohabitant | 2032 (85.2%) | 2510 (85.8%) | 1813 (85.8%) | 0.78 |
Others | 353 (14.8%) | 415 (14.2%) | 300 (14.2%) | |
Education | ||||
<High school | 217 (9.1%) | 367 (12.5%) | 373 (17.7%) | <0.001 |
High school graduate | 863 (36.2%) | 1098 (37.5%) | 784 (37.1%) | |
≥College | 1305 (54.7%) | 1460 (49.9%) | 956 (45.2%) | |
Employment status | ||||
Employed | 2261 (94.8%) | 2695 (92.1%) | 1847 (87.4%) | <0.001 |
Unemployed | 124 (5.2%) | 230 (7.9%) | 266 (12.6%) | |
Monthly income (KRW) | ||||
<2 millions | 423 (17.7%) | 604 (20.6%) | 565 (26.7%) | <0.001 |
2–4 millions | 895 (37.5%) | 1153 (39.4%) | 864 (40.9%) | |
≥4 millions | 1067 (44.7%) | 1168 (39.9%) | 684 (32.4%) | |
Smoking | ||||
Never | 1786 (74.9%) | 1997 (68.3%) | 1210 (57.3%) | <0.001 |
Past | 340 (14.3%) | 604 (20.6%) | 647 (30.6%) | |
Current | 259 (10.9%) | 324 (11.1%) | 256 (12.1%) | |
Drinking | ||||
Never | 966 (40.5%) | 1178 (40.3%) | 775 (36.7%) | 0.004 |
Past | 202 (8.5%) | 201 (6.9%) | 190 (9.0%) | |
Current | 1217 (51.0%) | 1546 (52.9%) | 1148 (54.3%) | |
Regular exercise | ||||
Yes | 1075 (45.1%) | 1352 (46.2%) | 878 (41.6%) | 0.004 |
No | 1310 (54.9%) | 1573 (53.8%) | 1235 (58.4%) | |
Body mass index (kg/m2) | ||||
<23 | 1094 (45.9%) | 1335 (45.6%) | 962 (45.5%) | 0.80 |
23–24.9 | 650 (27.3%) | 763 (26.1%) | 565 (26.7%) | |
≥25 | 641 (26.9%) | 827 (28.3%) | 586 (27.7%) | |
Food group (g/day) | ||||
Cereals and grains | 537.2 ± 212.4 | 578.1 ± 218.1 | 591.2 ± 214.3 | <0.001 |
Potatoes and starches | 41.8 ± 41.3 | 44.8 ± 45.0 | 43.9 ± 44.5 | 0.05 |
Sugars and sweets | 4.7 ± 5.1 | 4.9 ± 5.1 | 4.6 ± 5.2 | 0.08 |
Legumes | 55.5 ± 66.5 | 60.2 ± 65.8 | 60.6 ± 67.2 | 0.01 |
Seeds and nuts | 5.7 ± 8.1 | 5.6 ± 9.8 | 5.8 ± 11.3 | 0.70 |
Vegetables | 289.3 ± 188.1 | 315.8 ± 213.4 | 312.5 ± 202.1 | <0.001 |
Mushrooms | 8.7 ± 13.4 | 9.4 ± 13.9 | 9.4 ± 15.4 | 0.17 |
Fruits | 226.2 ± 246.6 | 227.2 ± 262.5 | 211.3 ± 252.6 | 0.06 |
Meat and poultry | 58.9 ± 52.8 | 60.7 ± 51.5 | 57.4 ± 53.0 | 0.08 |
Eggs | 19.0 ± 19.4 | 18.4 ± 18.6 | 17.1 ± 18.1 | 0.002 |
Fishes and shellfishes | 36.3 ± 32.7 | 39.4 ± 34.4 | 39.5 ± 33.0 | 0.001 |
Seaweeds | 2.1 ± 2.2 | 2.3 ± 2.3 | 2.2 ± 2.4 | 0.02 |
Milks and dairy | 108.1 ± 132.6 | 110.3 ± 134.0 | 105.5 ± 137.6 | 0.46 |
Oils and fats | 3.5 ± 3.6 | 3.8 ± 3.8 | 3.5 ± 3.6 | 0.01 |
Beverages | 66.9 ± 97.5 | 75.2 ± 115.5 | 71.2 ± 108.4 | 0.02 |
Seasonings | 16.5 ± 13.9 | 17.5 ± 15.6 | 17.3 ± 14.5 | 0.03 |
Dietary score | 558.0 ± 288.8 | 598.7 ± 321.9 | 588.9 ± 309.7 | <0.001 |
Low (light eating) | 884 (37.1%) | 923 (31.6%) | 667 (31.6%) | <0.001 |
Medium (normal eating) | 779 (32.7%) | 976 (33.4%) | 719 (34.0%) | |
High (heavy eating) | 722 (30.3%) | 1026 (35.1%) | 727 (34.4%) |
Factor | Low (n = 1672) | Normal (n = 2280) | Borderline (n = 2576) | High (n = 895) | p-Value * |
---|---|---|---|---|---|
Age (years) | 52.4 ± 8.2 | 52.0 ± 8.8 | 53.0 ± 7.7 | 53.9 ± 7.0 | <0.001 |
<50 | 665 (39.8%) | 977 (42.9%) | 843 (32.7%) | 226 (25.3%) | <0.001 |
50–54 | 366 (21.9%) | 456 (20.0%) | 679 (26.4%) | 271 (30.3%) | |
55–59 | 276 (16.5%) | 324 (14.2%) | 512 (19.9%) | 200 (22.3%) | |
≥60 | 365 (21.8%) | 523 (22.9%) | 542 (21.0%) | 198 (22.1%) | |
Sex | |||||
Male | 1030 (61.6%) | 1424 (62.5%) | 1718 (66.7%) | 654 (73.1%) | <0.001 |
Female | 642 (38.4%) | 856 (37.5%) | 858 (33.3%) | 241 (26.9%) | |
Marital status | |||||
Married, cohabitant | 1442 (86.2%) | 1967 (86.3%) | 2194 (85.2%) | 752 (84.0%) | 0.31 |
Others | 230 (13.8%) | 313 (13.7%) | 382 (14.8%) | 143 (16.0%) | |
Education | |||||
<High school | 235 (14.1%) | 272 (11.9%) | 326 (12.7%) | 124 (13.9%) | 0.002 |
High school graduate | 593 (35.5%) | 837 (36.7%) | 935 (36.3%) | 380 (42.5%) | |
≥College | 844 (50.5%) | 1171 (51.4%) | 1315 (51.0%) | 391 (43.7%) | |
Employment status | |||||
Employed | 1504 (90.0%) | 2087 (91.5%) | 2381 (92.4%) | 831 (92.8%) | 0.02 |
Unemployed | 168 (10.0%) | 193 (8.5%) | 195 (7.6%) | 64 (7.2%) | |
Monthly income (KRW) | |||||
<2 millions | 333 (19.9%) | 498 (21.8%) | 558 (21.7%) | 203 (22.7%) | 0.08 |
2–4 millions | 643 (38.5%) | 898 (39.4%) | 995 (38.6%) | 376 (42.0%) | |
4 millions | 696 (41.6%) | 884 (38.8%) | 1023 (39.7%) | 316 (35.3%) | |
Smoking | |||||
Never | 1088 (65.1%) | 1488 (65.3%) | 1781 (69.1%) | 636 (71.1%) | <0.001 |
Past | 387 (23.1%) | 544 (23.9%) | 512 (19.9%) | 148 (16.5%) | |
Current | 197 (11.8%) | 248 (10.9%) | 283 (11.0%) | 111 (12.4%) | |
Drinking | |||||
Never | 638 (38.2%) | 865 (37.9%) | 1038 (40.3%) | 378 (42.2%) | 0.01 |
Past | 127 (7.6%) | 220 (9.6%) | 189 (7.3%) | 57 (6.4%) | |
Current | 907 (54.2%) | 1195 (52.4%) | 1349 (52.4%) | 460 (51.4%) | |
Regular exercise | |||||
Yes | 725 (43.4%) | 1017 (44.6%) | 1159 (45.0%) | 404 (45.1%) | 0.73 |
No | 947 (56.6%) | 1263 (55.4%) | 1417 (55.0%) | 491 (54.9%) | |
Body mass index (kg/m2) | |||||
<23 | 775 (46.4%) | 1039 (45.6%) | 1190 (46.2%) | 387 (43.2%) | 0.46 |
23–24.9 | 433 (25.9%) | 614 (26.9%) | 666 (25.9%) | 265 (29.6%) | |
≥25 | 464 (27.8%) | 627 (27.5%) | 720 (28.0%) | 243 (27.2%) | |
Food group (g/day) | |||||
Cereals and grains | 588.1 ± 219.6 | 577.2 ± 217.6 | 559.5 ± 212.1 | 537.6 ± 214.3 | <0.001 |
Potatoes and starches | 44.7 ± 44.7 | 44.8 ± 44.0 | 41.7 ± 41.8 | 44.2 ± 46.1 | 0.05 |
Sugars and sweets | 4.8 ± 5.3 | 4.7 ± 5.1 | 4.8 ± 5.1 | 4.8 ± 5.0 | 0.76 |
Legumes | 58.9 ± 63.0 | 58.1 ± 63.2 | 58.0 ± 67.6 | 62.8 ± 76.9 | 0.28 |
Seeds and nuts | 5.3 ± 7.7 | 5.7 ± 10.7 | 5.5 ± 9.1 | 6.6 ± 12.4 | 0.01 |
Vegetables | 309.3 ± 209.2 | 306.5 ± 196.3 | 303.8 ± 198.8 | 307.7 ± 216.9 | 0.85 |
Mushrooms | 9.0 ± 14.0 | 9.3 ± 14.0 | 8.9 ± 13.1 | 9.9 ± 17.6 | 0.31 |
Fruits | 219.6 ± 254.1 | 212.8 ± 251.6 | 228.3 ± 249.7 | 234.4 ± 276.8 | 0.08 |
Meat and poultry | 59.6 ± 56.0 | 58.9 ± 50.6 | 58.7 ± 50.6 | 60.6 ± 54.7 | 0.80 |
Eggs | 17.9 ± 18.5 | 17.5 ± 17.7 | 18.4 ± 18.3 | 20.6 ± 22.6 | <0.001 |
Fishes and shellfishes | 39.2 ± 35.3 | 37.5 ± 30.4 | 38.6 ± 33.3 | 39.0 ± 37.9 | 0.44 |
Seaweeds | 2.2 ± 2.5 | 2.2 ± 2.2 | 2.1 ± 2.2 | 2.4 ± 2.6 | 0.07 |
Milks and dairy | 107.3 ± 136.7 | 101.5 ± 128.9 | 112.4 ± 140.2 | 115.2 ± 127.7 | 0.01 |
Oils and fats | 3.7 ± 3.8 | 3.5 ± 3.6 | 3.6 ± 3.6 | 3.7 ± 3.9 | 0.50 |
Beverages | 70.3 ± 103.2 | 73.9 ± 110.8 | 71.7 ± 110.0 | 66.5 ± 103.5 | 0.36 |
Seasonings | 17.2 ± 15.5 | 17.0 ± 14.3 | 17.0 ± 14.5 | 17.6 ± 15.3 | 0.72 |
Dietary score | 588.0 ± 320.7 | 580.3 ± 299.2 | 579.7 ± 303.0 | 589.0 ± 324.7 | 0.74 |
Low (light eating) | 536 (32.1%) | 751 (32.9%) | 875 (34.0%) | 312 (34.9%) | 0.35 |
Medium (normal eating) | 554 (33.1%) | 789 (34.6%) | 855 (33.2%) | 276 (30.8%) | |
High (heavy eating) | 582 (34.8%) | 740 (32.5%) | 846 (32.8%) | 307 (34.3%) |
Factor | Normal (n = 6671) | Prediabetes and Diabetes (n = 752) | p-Value * |
---|---|---|---|
Age (years) | 52.2 ± 8.0 | 57.0 ± 7.7 | <0.001 |
<50 | 2576 (38.6%) | 135 (18.0%) | <0.001 |
50–54 | 1622 (24.3%) | 150 (19.9%) | |
55–59 | 1157 (17.3%) | 155 (20.6%) | |
≥60 | 1316 (19.7%) | 312 (41.5%) | |
Sex | |||
Male | 4513 (67.7%) | 313 (41.6%) | <0.001 |
Female | 2158 (32.3%) | 439 (58.4%) | |
Marital status | |||
Married, cohabitant | 5708 (85.6%) | 647 (86.0%) | 0.77 |
Others | 963 (14.4%) | 105 (14.0%) | |
Education | |||
<High school | 843 (12.6%) | 114 (15.2%) | 0.12 |
High school graduate | 2482 (37.2%) | 263 (35.0%) | |
≥College | 3346 (50.2%) | 375 (49.9%) | |
Employment status | |||
Employed | 6179 (92.6%) | 624 (83.0%) | <0.001 |
Unemployed | 492 (7.4%) | 128 (17.0%) | |
Monthly income (KRW) | |||
<2 millions | 1380 (20.7%) | 212 (28.2%) | <0.001 |
2–4 millions | 2618 (39.2%) | 294 (39.1%) | |
≥4 millions | 2673 (40.1%) | 246 (32.7%) | |
Smoking | |||
Never | 4641 (69.6%) | 352 (46.8%) | <0.001 |
Past | 1319 (19.8%) | 272 (36.2%) | |
Current | 711 (10.7%) | 128 (17.0%) | |
Drinking | |||
Never | 2687 (40.3%) | 232 (30.9%) | <0.001 |
Past | 513 (7.7%) | 80 (10.6%) | |
Current | 3471 (52.0%) | 440 (58.5%) | |
Regular exercise | |||
Yes | 2996 (44.9%) | 309 (41.1%) | 0.05 |
No | 3675 (55.1%) | 443 (58.9%) | |
Body mass index (kg/m2) | |||
<23 | 3039 (45.6%) | 352 (46.8%) | 0.63 |
23–24.9 | 1775 (26.6%) | 203 (27.0%) | |
≥25 | 1857 (27.8%) | 197 (26.2%) | |
Food group (g/day) | |||
Cereals and grains | 565.9 ± 214.8 | 594.0 ± 228.1 | 0.001 |
Potatoes and starches | 43.5 ± 43.3 | 44.5 ± 47.1 | 0.56 |
Sugars and sweets | 4.8 ± 5.2 | 4.1 ± 4.6 | <0.001 |
Legumes | 58.3 ± 66.6 | 63.5 ± 64.8 | 0.04 |
Seeds and nuts | 5.7 ± 9.8 | 5.7 ± 9.6 | 0.86 |
Vegetables | 304.8 ± 202.2 | 320.1 ± 206.0 | 0.05 |
Mushrooms | 9.2 ± 14.4 | 8.7 ± 11.8 | 0.25 |
Fruits | 226.8 ± 257.9 | 182.4 ± 220.8 | <0.001 |
Meat and poultry | 59.1 ± 51.9 | 60.2 ± 56.7 | 0.60 |
Eggs | 18.5 ± 18.9 | 16.4 ± 17.5 | 0.003 |
Fishes and shellfishes | 38.1 ± 33.1 | 41.3 ± 36.6 | 0.02 |
Seaweeds | 2.2 ± 2.3 | 2.3 ± 2.4 | 0.41 |
Milks and dairy | 109.1 ± 135.5 | 100.3 ± 126.0 | 0.07 |
Oils and fats | 3.7 ± 3.7 | 3.3 ± 3.4 | 0.02 |
Beverages | 71.5 ± 107.9 | 70.9 ± 108.7 | 0.88 |
Seasonings | 17.0 ± 14.7 | 18.5 ± 15.6 | 0.01 |
Dietary score | 581.8 ± 308.8 | 592.3 ± 307.1 | 0.38 |
Low (light eating) | 2218 (33.2%) | 256 (34.0%) | 0.05 |
Medium (normal eating) | 2252 (33.8%) | 222 (29.5%) | |
High (heavy eating) | 2201 (33.0%) | 274 (36.4%) |
Factor | Normal (n = 1729) | Mildly Impairment (n = 5372) | Moderately Impairment (n = 322) | p-Value * |
---|---|---|---|---|
Age (years) | 51.4 ± 7.4 | 52.6 ± 8.1 | 60.5 ± 8.0 | <0.001 |
<50 | 700 (40.5%) | 1973 (36.7%) | 38 (11.8%) | <0.001 |
50–54 | 440 (25.4%) | 1294 (24.1%) | 38 (11.8%) | |
55–59 | 332 (19.2%) | 953 (17.7%) | 27 (8.4%) | |
≥60 | 257 (14.9%) | 1152 (21.4%) | 219 (68.0%) | |
Sex | ||||
Male | 1159 (67.0%) | 3449 (64.2%) | 218 (67.7%) | 0.06 |
Female | 570 (33.0%) | 1923 (35.8%) | 104 (32.3%) | |
Marital status | ||||
Married, cohabitant | 1476 (85.4%) | 4607 (85.8%) | 272 (84.5%) | 0.77 |
Others | 253 (14.6%) | 765 (14.2%) | 50 (15.5%) | |
Education | ||||
<High school | 187 (10.8%) | 709 (13.2%) | 61 (18.9%) | 0.001 |
High school graduate | 638 (36.9%) | 1994 (37.1%) | 113 (35.1%) | |
≥College | 904 (52.3%) | 2669 (49.7%) | 148 (46.0%) | |
Employment status | ||||
Employed | 1634 (94.5%) | 4911 (91.4%) | 258 (80.1%) | <0.001 |
Unemployed | 95 (5.5%) | 461 (8.6%) | 64 (19.9%) | |
Monthly income (KRW) | ||||
<2 millions | 304 (17.6%) | 1181 (22.0%) | 107 (33.2%) | <0.001 |
2–4 millions | 669 (38.7%) | 2119 (39.4%) | 124 (38.5%) | |
≥4 millions | 756 (43.7%) | 2072 (38.6%) | 91 (28.3%) | |
Smoking | ||||
Never | 1176 (68.0%) | 3591 (66.8%) | 226 (70.2%) | 0.001 |
Past | 337 (19.5%) | 1174 (21.9%) | 80 (24.8%) | |
Current | 216 (12.5%) | 607 (11.3%) | 16 (5.0%) | |
Drinking | ||||
Never | 620 (35.9%) | 2132 (39.7%) | 167 (51.9%) | <0.001 |
Past | 132 (7.6%) | 424 (7.9%) | 37 (11.5%) | |
Current | 977 (56.5%) | 2816 (52.4%) | 118 (36.6%) | |
Regular exercise | ||||
Yes | 858 (49.6%) | 2338 (43.5%) | 109 (33.9%) | <0.001 |
No | 871 (50.4%) | 3034 (56.5%) | 213 (66.1%) | |
Body mass index (kg/m2) | ||||
<23 | 783 (45.3%) | 2444 (45.5%) | 164 (50.9%) | 0.34 |
23–24.9 | 458 (26.5%) | 1447 (26.9%) | 73 (22.7%) | |
≥25 | 488 (28.2%) | 1481 (27.6%) | 85 (26.4%) | |
Food group (g/day) | 550.3 ± 222.1 | 575.1 ± 214.3 | 561.7 ± 212.5 | <0.001 |
Cereals and grains | 40.7 ± 41.9 | 44.0 ± 43.8 | 52.2 ± 50.4 | <0.001 |
Potatoes and starches | 4.4 ± 5.1 | 4.9 ± 5.2 | 4.2 ± 4.0 | <0.001 |
Sugars and sweets | 58.1 ± 72.4 | 58.5 ± 62.2 | 67.1 ± 95.2 | 0.07 |
Legumes | 5.8 ± 8.6 | 5.6 ± 10.1 | 6.2 ± 10.2 | 0.56 |
Seeds and nuts | 289.9 ± 182.4 | 310.6 ± 207.6 | 323.9 ± 216.7 | <0.001 |
Vegetables | 9.2 ± 13.8 | 9.1 ± 13.7 | 10.5 ± 21.9 | 0.20 |
Mushrooms | 215.2 ± 253.7 | 224.3 ± 254.8 | 227.4 ± 258.7 | 0.41 |
Fruits | 64.1 ± 57.8 | 58.2 ± 51.1 | 49.1 ± 39.6 | <0.001 |
Meat and poultry | 20.3 ± 20.1 | 17.7 ± 18.3 | 16.8 ± 18.2 | <0.001 |
Eggs | 35.0 ± 28.8 | 39.5 ± 34.6 | 39.1 ± 36.5 | <0.001 |
Fishes and shellfishes | 1.9 ± 1.9 | 2.2 ± 2.3 | 2.7 ± 3.5 | <0.001 |
Seaweeds | 102.0 ± 131.2 | 109.8 ± 134.6 | 115.3 ± 150.4 | 0.07 |
Milks and dairy | 3.4 ± 3.7 | 3.7 ± 3.7 | 3.1 ± 3.2 | <0.001 |
Oils and fats | 59.8 ± 94.5 | 75.5 ± 111.7 | 65.7 ± 108.2 | <0.001 |
Beverages | 16.5 ± 14.5 | 17.2 ± 14.8 | 18.8 ± 15.6 | 0.02 |
Seasonings | 557.0 ± 284.8 | 589.7 ± 314.1 | 608.5 ± 330.1 | <0.001 |
Dietary score | ||||
Low (light eating) | 646 (37.4%) | 1729 (32.2%) | 99 (30.7%) | 0.001 |
Medium (normal eating) | 561 (32.4%) | 1807 (33.6%) | 106 (32.9%) | |
High (heavy eating) | 522 (30.2%) | 1836 (34.2%) | 117 (36.3%) |
Factor | Blood Pressure (mmHg) | Total Cholesterol (mmol/L) | Fasting Glucose (mmol/L) | Glomerular Filtration Rate (mL/min/1.73 m2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elevated | Hypertension | Low | Borderline | High | Prediabetes and Diabetes | Mildly | Moderately | |||||||||
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (years) | ||||||||||||||||
<50 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
50–54 | 1.19 (1.03–1.36) | 0.02 | 1.82 (1.53–2.16) | <0.001 | 0.86 (0.73–1.03) | 0.10 | 1.58 (1.33–1.86) | <0.001 | 2.41 (1.93–3.02) | <0.001 | 1.71 (1.33–2.18) | <0.001 | 0.96 (0.84–1.11) | 0.61 | 1.53 (0.95–2.44) | 0.08 |
55–59 | 1.29 (1.09–1.53) | 0.003 | 2.74 (2.26–3.31) | <0.001 | 0.82 (0.67–1.00) | 0.05 | 1.65 (1.37–2.00) | <0.001 | 2.54 (1.98–3.26) | <0.001 | 2.33 (1.81–3.00) | <0.001 | 0.87 (0.74–1.03) | 0.10 | 1.38 (0.81–2.33) | 0.23 |
≥60 | 1.70 (1.41–2.04) | <0.001 | 5.86 (4.80–7.16) | <0.001 | 1.03 (0.84–1.25) | 0.80 | 1.42 (1.17–1.72) | <0.001 | 2.17 (1.67–2.82) | <0.001 | 3.93 (3.08–5.00) | <0.001 | 1.21 (1.01–1.45) | 0.04 | 12.5 (8.28–19.0) | <0.001 |
Sex | ||||||||||||||||
Male | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Female | 2.52 (2.08–3.04) | <0.001 | 2.94 (2.38–3.63) | <0.001 | 0.96 (0.79–1.19) | 0.73 | 0.78 (0.64–0.96) | 0.02 | 0.43 (0.32–0.57) | <0.001 | 1.79 (1.39–2.31) | <0.001 | 1.19 (0.99–1.43) | 0.06 | 0.52 (0.33–0.82) | 0.01 |
Marital status | ||||||||||||||||
Married, cohabitant | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Others | 1.03 (0.87–1.22) | 0.73 | 1.00 (0.83–1.2) | 0.96 | 0.95 (0.78–1.15) | 0.58 | 1.03 (0.85–1.24) | 0.76 | 1.02 (0.80–1.29) | 0.89 | 1.05 (0.83–1.33) | 0.66 | 0.91 (0.77–1.07) | 0.24 | 0.75 (0.52–1.07) | 0.11 |
Education | ||||||||||||||||
<High school | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
High school graduate | 0.90 (0.73–1.09) | 0.28 | 0.82 (0.67–1.02) | 0.07 | 1.26 (1.02–1.56) | 0.03 | 1.26 (1.03–1.55) | 0.03 | 1.42 (1.09–1.84) | 0.01 | 1.11 (0.87–1.42) | 0.40 | 0.92 (0.76–1.11) | 0.39 | 1.01 (0.70–1.47) | 0.95 |
≥College | 0.74 (0.61–0.91) | 0.003 | 0.62 (0.50–0.77) | <0.001 | 1.28 (1.03–1.58) | 0.02 | 1.42 (1.16–1.75) | 0.001 | 1.31 (1.00–1.72) | 0.05 | 1.08 (0.85–1.39) | 0.52 | 0.87 (0.72–1.06) | 0.16 | 1.07 (0.73–1.56) | 0.73 |
Employment status | ||||||||||||||||
Employed | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Unemployed | 0.99 (0.77–1.27) | 0.92 | 0.83 (0.64–1.07) | 0.15 | 0.75 (0.58–0.95) | 0.02 | 0.73 (0.58–0.93) | 0.01 | 0.75 (0.54–1.05) | 0.09 | 1.04 (0.81–1.32) | 0.77 | 1.28 (1.00–1.63) | 0.05 | 1.79 (1.20–2.66) | 0.004 |
Monthly income (KRW) | ||||||||||||||||
<2 millions | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
2–4 millions | 0.97 (0.82–1.14) | 0.72 | 0.92 (0.77–1.09) | 0.34 | 0.88 (0.73–1.05) | 0.16 | 0.91 (0.76–1.08) | 0.27 | 1.01 (0.81–1.27) | 0.91 | 0.84 (0.68–1.02) | 0.08 | 0.85 (0.72–1.00) | 0.05 | 0.80 (0.58–1.10) | 0.16 |
≥ 4 millions | 0.92 (0.77–1.09) | 0.32 | 0.80 (0.66–0.96) | 0.02 | 0.77 (0.64–0.94) | 0.01 | 0.83 (0.69–1.01) | 0.06 | 0.81 (0.63–1.04) | 0.10 | 0.83 (0.66–1.04) | 0.11 | 0.76 (0.64–0.90) | 0.002 | 0.75 (0.53–1.08) | 0.12 |
Smoking | ||||||||||||||||
Never | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Past | 0.85 (0.69–1.04) | 0.12 | 1.16 (0.93–1.46) | 0.18 | 1.07 (0.86–1.33) | 0.54 | 0.92 (0.74–1.15) | 0.48 | 1.12 (0.83–1.52) | 0.46 | 1.40 (1.09–1.81) | 0.01 | 1.02 (0.84–1.24) | 0.81 | 1.37 (0.87–2.16) | 0.18 |
Current | 0.60 (0.48–0.76) | <0.001 | 0.75 (0.58–0.97) | 0.03 | 0.95 (0.74–1.23) | 0.72 | 1.02 (0.80–1.31) | 0.87 | 1.72 (1.24–2.40) | 0.001 | 1.63 (1.22–2.18) | 0.001 | 0.90 (0.72–1.11) | 0.33 | 0.79 (0.42–1.48) | 0.46 |
Drinking | ||||||||||||||||
Never | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Past | 0.69 (0.55–0.87) | 0.001 | 0.84 (0.65–1.08) | 0.17 | 1.27 (0.99–1.64) | 0.06 | 1.07 (0.83–1.39) | 0.59 | 1.05 (0.74–1.49) | 0.79 | 1.21 (0.89–1.63) | 0.22 | 0.86 (0.69–1.07) | 0.18 | 1.22 (0.77–1.94) | 0.39 |
Current | 0.97 (0.85–1.10) | 0.59 | 1.11 (0.95–1.28) | 0.19 | 0.98 (0.84–1.14) | 0.80 | 1.07 (0.92–1.24) | 0.37 | 1.18 (0.97–1.43) | 0.09 | 1.17 (0.96–1.42) | 0.13 | 0.82 (0.72–0.93) | 0.003 | 0.71 (0.52–0.96) | 0.03 |
Regular exercise | ||||||||||||||||
Yes | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
No | 0.88 (0.79–0.98) | 0.03 | 0.95 (0.83–1.08) | 0.41 | 0.97 (0.86–1.11) | 0.70 | 0.94 (0.82–1.06) | 0.31 | 0.93 (0.79–1.1) | 0.40 | 1.00 (0.85–1.17) | 0.98 | 1.24 (1.11–1.38) | <0.001 | 1.41 (1.09–1.84) | 0.01 |
Body mass index (kg/m2) | ||||||||||||||||
<23 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
23–24.9 | 0.97 (0.85–1.12) | 0.72 | 1.04 (0.89–1.21) | 0.63 | 1.05 (0.90–1.23) | 0.50 | 1.00 (0.86–1.16) | 0.99 | 1.22 (1.00–1.49) | 0.05 | 1.02 (0.85–1.23) | 0.83 | 1.02 (0.89–1.17) | 0.76 | 0.80 (0.58–1.09) | 0.15 |
≥25 | 1.06 (0.93–1.21) | 0.37 | 1.07 (0.92–1.24) | 0.38 | 1.01 (0.87–1.17) | 0.91 | 1.01 (0.87–1.18) | 0.86 | 1.05 (0.86–1.28) | 0.66 | 0.93 (0.77–1.13) | 0.47 | 0.97 (0.85–1.11) | 0.66 | 0.83 (0.62–1.12) | 0.22 |
Dietary score | ||||||||||||||||
Low (light eating) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Medium (normal eating) | 1.23 (1.07–1.40) | 0.003 | 1.26 (1.08–1.47) | 0.003 | 1.02 (0.87–1.19) | 0.79 | 0.94 (0.81–1.09) | 0.42 | 0.85 (0.69–1.04) | 0.11 | 0.84 (0.69–1.02) | 0.09 | 1.21 (1.06–1.38) | 0.01 | 1.20 (0.88–1.63) | 0.25 |
High (heavy eating) | 1.40 (1.22–1.60) | <0.001 | 1.36 (1.16–1.58) | <.001 | 0.91 (0.78–1.07) | 0.25 | 0.87 (0.75–1.02) | 0.08 | 0.86 (0.71–1.06) | 0.15 | 1.10 (0.91–1.33) | 0.32 | 1.29 (1.13–1.48) | <0.001 | 1.29 (0.95–1.75) | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, T.; Lee, J.; Kim, J. Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions. Nutrients 2021, 13, 3563. https://doi.org/10.3390/nu13103563
Hoang T, Lee J, Kim J. Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions. Nutrients. 2021; 13(10):3563. https://doi.org/10.3390/nu13103563
Chicago/Turabian StyleHoang, Tung, Jeonghee Lee, and Jeongseon Kim. 2021. "Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions" Nutrients 13, no. 10: 3563. https://doi.org/10.3390/nu13103563
APA StyleHoang, T., Lee, J., & Kim, J. (2021). Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions. Nutrients, 13(10), 3563. https://doi.org/10.3390/nu13103563