Body Mass Index, Weight Loss, and Mortality Risk in Advanced-Stage Non-Small Cell Lung Cancer Patients: A Focus on EGFR Mutation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Testing of EGFR Mutation Status
2.3. Evaluation of Disease Status
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Clinical Characteristics between NSCLC Patients with Wild Type and Mutant EGFR
3.3. Clinical Characteristics of Underweight, Normal-Weight, and Overweight Patients
3.4. Influence of Baseline BMI on Outcomes of NSCLC Patients with or without EGFR Mutation
3.5. Influence of Baseline BMI on Outcomes of NSCLC Patients with Wild-Type EGFR Status
3.6. Influence of Baseline BMI on Outcomes of NSCLC Patients with EGFR Mutation
3.7. Influence of Weight Loss on Outcomes of NSCLC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef]
- Renehan, A.G.; Soerjomataram, I.; Leitzmann, M.F. Interpreting the epidemiological evidence linking obesity and cancer: A framework for population-attributable risk estimations in Europe. Eur. J. Cancer 2010, 46, 2581–2592. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5.24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Matsunaga, T.; Suzuki, K.; Imashimizu, K.; Banno, T.; Takamochi, K.; Oh, S. Body Mass Index as a Prognostic Factor in Resected Lung Cancer: Obesity or Underweight, Which Is the Risk Factor? Thorac. Cardiovasc. Surg. 2015, 63, 551–557. [Google Scholar] [CrossRef]
- Dahlberg, S.E.; Schiller, J.H.; Bonomi, P.B.; Sandler, A.B.; Brahmer, J.R.; Ramalingam, S.S.; Johnson, D.H. Body mass index and its association with clinical outcomes for advanced non-small-cell lung cancer patients enrolled on Eastern Cooperative Oncology Group clinical trials. J. Thorac. Oncol. 2013, 8, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Pecuchet, N.; Wermert, D.; Pricopi, C.; Le Pimpec-Barthes, F.; Riquet, M.; Fabre, E. Obesity and lung cancer: Incidence and repercussions on epidemiology, pathology and treatments. Rev. Pneumol. Clin. 2015, 71, 37–43. [Google Scholar] [CrossRef]
- Leung, C.C.; Lam, T.H.; Yew, W.W.; Chan, W.M.; Law, W.S.; Tam, C.M. Lower lung cancer mortality in obesity. Int. J. Epidemiol. 2011, 40, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico, T.A.; et al. NCCN Guidelines insights: Non-Small Cell Lung Cancer, Version 2.2021. J. Natl. Compr. Cancer Netw. 2021, 19, 254–266. [Google Scholar] [CrossRef]
- Chen, G.; Feng, J.; Zhou, C.; Wu, Y.L.; Liu, X.Q.; Wang, C.; Zhang, S.; Wang, J.; Zhou, S.; Ren, S.; et al. Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase III, randomised, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). Ann. Oncol. 2013, 24, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Thongprasert, S.; Duffield, E.; Saijo, N.; Wu, Y.L.; Yang, J.C.; Chu, D.T.; Liao, M.; Chen, Y.M.; Kuo, H.P.; Negoro, S.; et al. Health-related quality-of-life in a randomized phase III first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients from Asia with advanced NSCLC (IPASS). J. Thorac. Oncology 2011, 6, 1872–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.M.; Lai, C.H.; Chang, H.C.; Chao, T.Y.; Tseng, C.C.; Fang, W.F.; Wang, C.C.; Chung, Y.H.; Wang, Y.H.; Su, M.C.; et al. The impact of clinical parameters on progression-free survival of non-small cell lung cancer patients harboring EGFR-mutations receiving first-line EGFR-tyrosine kinase inhibitors. Lung Cancer 2016, 93, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Sun, X.; Zhai, X.; Guo, J.; Liu, Y.; Ying, J.; Wang, Z. Body mass index and exon 19 mutation as factors predicting the therapeutic efficacy of gefitinib in patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer. Thorac. Cancer 2016, 7, 61–65. [Google Scholar] [CrossRef]
- Boker, B.; Luders, H.; Grohe, C. Prognostic relevance of body mass index and rash for patients with metastatic non-small-cell lung cancer under therapy with erlotinib. Pneumologie 2012, 66, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, H.; Kuwako, T.; Kaira, K.; Masuda, T.; Miura, Y.; Seki, K.; Sakurai, R.; Utsugi, M.; Shimizu, K.; Sunaga, N.; et al. Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 2017, 79, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Consultation, W.H.O.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Deurenberg-Yap, M.; Schmidt, G.; van Staveren, W.A.; Deurenberg, P. The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg, P.; Yap, M.; van Staveren, W.A. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Thivat, E.; Therondel, S.; Lapirot, O.; Abrial, C.; Gimbergues, P.; Gadea, E.; Planchat, E.; Kwiatkowski, F.; Mouret-Reynier, M.A.; Chollet, P.; et al. Weight change during chemotherapy changes the prognosis in non metastatic breast cancer for the worse. BMC cancer 2010, 10, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.M.; Lai, C.H.; Chang, H.C.; Chao, T.Y.; Tseng, C.C.; Fang, W.F.; Wang, C.C.; Chung, Y.H.; Wang, Y.H.; Su, M.C.; et al. Baseline and trend of lymphocyte-to-monocyte ratio as prognostic factors in epidermal growth factor receptor mutant non-small cell lung cancer patients treated with first-line epidermal growth factor receptor tyrosine kinase inhibitors. PLoS ONE 2015, 10, e0136252. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Xue, C.; Hong, S.; Li, N.; Feng, W.; Jia, J.; Peng, J.; Lin, D.; Cao, X.; Wang, S.; Zhang, W.; et al. Randomized, Multicenter Study of gefitinib dose-escalation in advanced non-small-cell lung cancer patients achieved stable disease after one-month gefitinib treatment. Sci. Rep. 2015, 5, 10648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girnun, G.D.; Naseri, E.; Vafai, S.B.; Qu, L.; Szwaya, J.D.; Bronson, R.; Alberta, J.A.; Spiegelman, B.M. Synergy between PPARgamma ligands and platinum-based drugs in cancer. Cancer Cell 2007, 11, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Shackelford, D.B.; Abt, E.; Gerken, L.; Vasquez, D.S.; Seki, A.; Leblanc, M.; Wei, L.; Fishbein, M.C.; Czernin, J.; Mischel, P.S.; et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013, 23, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Gu, C.; Gu, H.; Hu, H.; Han, Y.; Li, Q. Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 2011, 58, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Shen, L.J.; Guo, X.; Guo, X.M.; Qian, C.N.; Wu, P.H. Critical weight loss predicts poor prognosis in nasopharyngeal carcinoma. BMC Cancer 2016, 16, 169. [Google Scholar] [CrossRef] [Green Version]
- Adenis, A.; Tresch, E.; Dewas, S.; Romano, O.; Messager, M.; Amela, E.; Clisant, S.; Kramar, A.; Mariette, C.; Mirabel, X. Clinical complete responders to definite chemoradiation or radiation therapy for oesophageal cancer: Predictors of outcome. BMC Cancer 2013, 13, 413. [Google Scholar] [CrossRef] [Green Version]
- Tougeron, D.; Hamidou, H.; Scotte, M.; Di Fiore, F.; Antonietti, M.; Paillot, B.; Michel, P. Esophageal cancer in the elderly: An analysis of the factors associated with treatment decisions and outcomes. BMC Cancer 2010, 10, 510. [Google Scholar] [CrossRef] [Green Version]
- Morel, H.; Raynard, B.; d’Arlhac, M.; Hauss, P.A.; Lecuyer, E.; Oliviero, G.; Marty, C.; Gury, J.P.; Asselain, B.; Grivaux, M.; et al. Prediagnosis weight loss, a stronger factor than BMI, to predict survival in patients with lung cancer. Lung Cancer 2018, 126, 55–63. [Google Scholar] [CrossRef]
- Kim, Y.J.; Song, C.; Eom, K.Y.; Kim, I.A.; Kim, J.S. Combined Chemoradiotherapy-induced Weight Loss Decreases Survival in Locally Advanced Non-small Cell Lung Cancer Patients. In Vivo 2019, 33, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhao, J.; Hu, J.; Huang, F.; Han, J.; He, Y.; Cao, X. Impact of weight loss at presentation on survival in epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) sensitive mutant advanced non-small cell lung cancer (NSCLC) treated with first-line EGFR-TKI. J. Cancer 2018, 9, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Han, L.; Yu, P.; Ma, C.; Wu, X.; Moore, J.E.; Xu, J. Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microb. Ecol. 2014, 67, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Delzenne, N.M. Muscle wasting: The gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 2013, 45, 2186–2190. [Google Scholar] [CrossRef]
- Op den Kamp, C.M.; Langen, R.C.; Minnaard, R.; Kelders, M.C.; Snepvangers, F.J.; Hesselink, M.K.; Dingemans, A.C.; Schols, A.M. Pre-cachexia in patients with stages I-III non-small cell lung cancer: Systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system. Lung Cancer 2012, 76, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Shen, A.; Jin, Y.; Qiang, W. The management strategies of cancer-associated anorexia: A critical appraisal of systematic reviews. BMC Complement Altern. Med. 2018, 18, 236. [Google Scholar] [CrossRef]
- Mattox, T.W. Cancer Cachexia: Cause, Diagnosis, and Treatment. Nutr. Clin. Pract. 2017, 32, 599–606. [Google Scholar] [CrossRef]
- Baldwin, C.; Spiro, A.; Ahern, R.; Emery, P.W. Oral nutritional interventions in malnourished patients with cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2012, 104, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, T.J.; Smith, J.T.; Schuster, M.; Dragnev, K.H.; Rigas, J.R. A humanized anti-IL-6 antibody (ALD518) in non-small cell lung cancer. Expert Opin. Biol. Ther. 2011, 11, 1663–1668. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Kulp, S.K.; Lai, I.L.; Hsu, E.C.; He, W.A.; Frankhouser, D.E.; Yan, P.S.; Mo, X.; Bloomston, M.; Lesinski, G.B.; et al. Preclinical Investigation of the novel histone deacetylase inhibitor ar-42 in the treatment of cancer-induced cachexia. J. Natl. Cancer Inst. 2015, 107, djv274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liva, S.G.; Tseng, Y.C.; Dauki, A.M.; Sovic, M.G.; Vu, T.; Henderson, S.E.; Kuo, Y.C.; Benedict, J.A.; Zhang, X.; Remaily, B.C.; et al. Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Mol. Med. 2020, 12, e9910. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, K.A.; Norgard, M.A.; Zhu, X.; Levasseur, P.R.; Sivagnanam, S.; Liudahl, S.M.; Burfeind, K.G.; Olson, B.; Pelz, K.R.; Angeles Ramos, D.M.; et al. The TLR7/8 agonist R848 remodels tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 4682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Asakawa, A.; Amitani, H.; Nakamura, N.; Inui, A. Cachexia and herbal medicine: Perspective. Curr. Pharm. Des. 2012, 18, 4865–4888. [Google Scholar] [CrossRef]
- Suzuki, H.; Asakawa, A.; Amitani, H.; Fujitsuka, N.; Nakamura, N.; Inui, A. Cancer cachexia pathophysiology and translational aspect of herbal medicine. Jpn. J. Clin. Oncol. 2013, 43, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Uchino, J.; Yokoyama, T.; Naito, T.; Kondo, M.; Yamada, K.; Kitajima, H.; Yoshimori, K.; Sato, K.; Saito, H.; et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 2018, 124, 606–616. [Google Scholar] [CrossRef]
- Budzynski, J.; Tojek, K.; Czerniak, B.; Banaszkiewicz, Z. Scores of nutritional risk and parameters of nutritional status assessment as predictors of in-hospital mortality and readmissions in the general hospital population. Clin. Nutr. 2016, 35, 1464–1471. [Google Scholar] [CrossRef]
- Mondello, P.; Lacquaniti, A.; Mondello, S.; Bolignano, D.; Pitini, V.; Aloisi, C.; Buemi, M. Emerging markers of cachexia predict survival in cancer patients. BMC Cancer 2014, 14, 828. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, O.; Michel Ortega, R.M.; Villanueva-Rodriguez, G.; Serna-Thome, M.G.; Flores-Estrada, D.; Diaz-Romero, C.; Rodriguez, C.M.; Martinez, L.; Sanchez-Lara, K. Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: A prospective study. BMC Cancer 2010, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, N.; Uchino, J.; Hirai, S.; Katayama, Y.; Yoshimura, A.; Okura, N.; Tanimura, K.; Harita, S.; Imabayashi, T.; Chihara, Y.; et al. Association of Sarcopenia with and Efficacy of Anti-PD-1/PD-L1 Therapy in Non-Small-Cell Lung Cancer. J. Clin. Med. 2019, 8, 450. [Google Scholar] [CrossRef] [Green Version]
All Patients (n = 513) | EGFR Wild Type (n = 231) | EGFR Mutant (n = 282) | p Value | |
---|---|---|---|---|
Age (mean ± SD) | 63.7 ± 12.3 | 63.0 ± 12.2 | 64.2 ± 12.3 | 0.249 |
BMI (mean ± SD) | 23.0 ± 3.6 | 22.6 ± 3.6 | 23.3 ± 3.7 | 0.022 |
Sex | <0.001 | |||
Male | 256 (49.9) | 135 (58.4) | 121 (42.9) | |
Female | 257 (50.1) | 96 (41.6) | 161 (57.1) | |
DM | 55 (10.7) | 43 (18.6) | 12 (4.3) | <0.001 |
COPD | 41 (8.0) | 27 (11.7) | 14 (5.0) | 0.005 |
Smoking history | 0.001 | |||
Never | 319 (62.2) | 125 (54.1) | 194 (68.8) | |
Former/current | 194 (37.8) | 106 (45.9) | 88 (31.2) | |
Performance status | 0.499 | |||
ECOG 0–2 | 471 (91.8) | 210 (90.9) | 261 (92.6) | |
ECOG 3–4 | 42 (8.2) | 21 (9.1) | 21 (7.4) | |
Stage | 0.584 | |||
IIB | 60 (11.7) | 29 (12.6) | 31 (11.0) | |
IV | 453 (88.3) | 202 (87.4) | 251 (89.0) | |
Tumor type | <0.001 | |||
Adenocarcinoma | 435 (84.8) | 176 (76.2) | 259 (91.8) | |
Non-adenocarcinoma | 78 (15.2) | 55 (23.8) | 23 (8.2) | |
Brain metastases | 116 (22.6) | 53 (22.9) | 63 (22.3) | 0.871 |
Bone metastases | 226 (44.1) | 107 (46.3) | 119 (42.2) | 0.349 |
Liver metastases | 70 (13.6) | 35 (15.2) | 35 (12.4) | 0.368 |
Pleura metastases | 185 (36.1) | 76 (32.9) | 109 (38.7) | 0.177 |
No. of distal metastasis | 1.5 ± 1.1 | 1.6 ± 1.1 | 1.4 ± 1.0 | 0.041 |
All Patients (n = 513) | EGFR Wild Type (n = 231) | EGFR Mutant (n = 282) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All Patients (n = 513) | BMI < 18.5 (n = 35) | BMI 18.5–24 (n = 281) | BMI > 24 (n = 197) | p Value | BMI < 18.5 (n = 24) | BMI 18.5–24 (n = 123) | BMI > 24 (n = 84) | p Value | BMI < 18.5 (n = 11) | BMI 18.5–24 (n = 158) | BMI > 24 (n = 113) | p Value | |
Age (mean ± SD) | 63.7 ± 12.3 | 68.3 ± 14.5 | 62.8 ± 12.6 | 64.1 ± 11.2 | 0.056 | 68.7 ± 15.1 | 61.1 ± 12.4 | 64.2 ± 10.3 | 0.009 | 67.4 ± 13.7 | 64.2 ± 12.6 | 64.1 ± 11.8 | 0.695 |
Sex | 0.648 | 0.672 | 0.112 | ||||||||||
Male | 256 (49.9) | 18 (51.4) | 135 (48.0) | 103 (52.3) | 14 (58.3) | 75 (61.0) | 46 (54.8) | 4 (36.4) | 60 (38.0) | 57 (50.4) | |||
Female | 257 (50.1) | 17 (48.6) | 146 (52.0) | 94 (47.7) | 10 (41.7) | 48 (39.0) | 38 (45.2) | 7 (63.6) | 98 (62.0) | 56 (49.6) | |||
COPD | 41 (8.0) | 6 (17.1) | 15 (5.3) | 20 (10.2) | 0.019 | 4 (16.7) | 11 (8.9) | 12 (14.3) | 0.364 | 2 (18.2) | 4 (2.5) | 8 (7.1) | 0.028 |
DM | 55 (10.7) | 6 (17.1) | 22 (7.8) | 27 (13.7) | 0.055 | 6 (25.0) | 16 (13.0) | 21 (25.0) | 0.065 | 0 (0) | 6 (3.8) | 6 (5.3) | 0.645 |
Performance status | 0.140 | 0.407 | 0.030 | ||||||||||
ECOG 0–2 | 471 (91.8) | 30 (85.7) | 255 (90.7) | 186 (94.4) | 22 (91.7) | 109 (88.6) | 79 (94.0) | 8 (72.7) | 146(92.4) | 107 (94.7) | |||
ECOG 3–4 | 42 (8.2) | 5 (14.3) | 26 (9.3) | 11 (5.6) | 2 (8.3) | 14 (11.4) | 5 (6.0) | 3 (27.3) | 12(7.6) | 6 (5.3) | |||
Smoking history | 0.081 | 0.919 | 0.028 | ||||||||||
Never | 319 (62.2) | 20 (57.1) | 187 (66.5) | 112 (56.9) | 13 (54.2) | 68 (55.3) | 44 (52.4) | 7 (63.6) | 119(75.3) | 68 (60.2) | |||
Former/current | 194 (37.8) | 15 (42.9) | 94 (33.5) | 85 (43.1) | 11 (45.8) | 55 (44.7) | 40 (47.6) | 4 (36.4) | 39(24.7) | 45 (39.8) | |||
Stage | 0.404 | 0.729 | 0.090 | ||||||||||
IIB | 60 (11.7) | 5 (14.3) | 28 (10.0) | 27 (13.7) | 2 (8.3) | 15 (12.2) | 12 (14.3) | 3 (27.3) | 13(8.2) | 15 (13.3) | |||
IV | 453 (88.3) | 30 (85.7) | 253 (90.0) | 170 (86.3) | 22 (91.7) | 108 (87.8) | 72 (85.7) | 8 (72.7) | 145(91.8) | 98 (86.7) | |||
Tumor type | 0.552 | 0.304 | 0. | ||||||||||
Adenocarcinoma | 435 (84.8) | 27 (77.1) | 237 (84.3) | 171 (86.8) | 16 (66.7) | 92 (74.8) | 68 (81.0) | 11 (100.0) | 145(91.8) | 103 (91.2) | |||
Non-adenocarcinoma | 78 (15.2) | 8 (22.9) | 44 (15.7) | 26 (13.2) | 8 (33.3) | 31 (25.2) | 16 (19.0) | 0 (0) | 13(8.2) | 10 (8.8) | |||
EGFR Mutation | 0.071 | ||||||||||||
Yes | 282 (55.0) | 11 (31.4) | 158 (56.2) | 113 (57.4) | |||||||||
No | 231 (44.0) | 24 (68.6) | 123 (43.8) | 84 (42.6) | |||||||||
EGFR Mutation type | 0.985 | ||||||||||||
Common | 10 (90.9) | 141 (89.2) | 101 (89.4) | ||||||||||
Uncommon | 1 (9.1) | 17 (10.8) | 12 (10.6) | ||||||||||
Brain metastases | 116 (22.6) | 7 (35.0) | 50 (28.6) | 61 (20.3) | 0.391 | 5 (20.8) | 33 (26.8) | 15 (17.9) | 0.310 | 2 (18.2) | 37 (23.4) | 24 (21.2) | 0.863 |
Bone metastases | 226 (44.1) | 13 (65.0) | 91 (52.0) | 117 (39.0) | 0.174 | 13(54.2) | 61 (49.6) | 33 (39.3) | 0.247 | 5 (45.5) | 70 (44.3) | 44 (38.9) | 0.661 |
Liver metastases | 70 (13.6) | 4 (20.0) | 29 (16.6) | 36 (12.0) | 0.525 | 4(16.7) | 13 (10.6) | 18 (21.4) | 0.099 | 3 (27.3) | 24 (15.2) | 8 (7.1) | 0.043 |
Pleura metastases | 185 (36.1) | 11 (55.0) | 58 (33.1) | 108 (36.0) | 0.467 | 13(54.2) | 34(27.6) | 29 (34.5) | 0.038 | 3 (27.3) | 65 (41.1) | 41 (36.3) | 0.527 |
No. of distal metastasis | 1.5 ± 1.1 | 1.9 ± 1.2 | 1.5 ± 1.0 | 1.5 ± 1.1 | 0.064 | 2.0 ± 1.2 | 1.6 ± 1.1 | 1.6 ± 1.2 | 0.274 | 1.7 ± 1.4 | 1.5 ± 0.9 | 1.4 ± 1.0 | 0.292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-M.; Lai, C.-H.; Lin, C.-Y.; Tsai, Y.-H.; Chang, Y.-C.; Chen, H.-C.; Tseng, C.-C.; Chang, H.-C.; Huang, K.-T.; Chen, Y.-C.; et al. Body Mass Index, Weight Loss, and Mortality Risk in Advanced-Stage Non-Small Cell Lung Cancer Patients: A Focus on EGFR Mutation. Nutrients 2021, 13, 3761. https://doi.org/10.3390/nu13113761
Chen Y-M, Lai C-H, Lin C-Y, Tsai Y-H, Chang Y-C, Chen H-C, Tseng C-C, Chang H-C, Huang K-T, Chen Y-C, et al. Body Mass Index, Weight Loss, and Mortality Risk in Advanced-Stage Non-Small Cell Lung Cancer Patients: A Focus on EGFR Mutation. Nutrients. 2021; 13(11):3761. https://doi.org/10.3390/nu13113761
Chicago/Turabian StyleChen, Yu-Mu, Chien-Hao Lai, Chiung-Yu Lin, Yi-Hsuan Tsai, Ya-Chun Chang, Hung-Chen Chen, Chia-Cheng Tseng, Huang-Chih Chang, Kuo-Tung Huang, Yung-Che Chen, and et al. 2021. "Body Mass Index, Weight Loss, and Mortality Risk in Advanced-Stage Non-Small Cell Lung Cancer Patients: A Focus on EGFR Mutation" Nutrients 13, no. 11: 3761. https://doi.org/10.3390/nu13113761
APA StyleChen, Y. -M., Lai, C. -H., Lin, C. -Y., Tsai, Y. -H., Chang, Y. -C., Chen, H. -C., Tseng, C. -C., Chang, H. -C., Huang, K. -T., Chen, Y. -C., Fang, W. -F., Wang, C. -C., Chao, T. -Y., & Lin, M. -C. (2021). Body Mass Index, Weight Loss, and Mortality Risk in Advanced-Stage Non-Small Cell Lung Cancer Patients: A Focus on EGFR Mutation. Nutrients, 13(11), 3761. https://doi.org/10.3390/nu13113761