The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Justification and Power
2.2. Data Collection
2.3. Menopause Diagnosis
2.4. Anthropometric Parameters
2.5. Assessment of Chronotype
2.6. Assessment of Sleep
2.7. Statistical Analysis
3. Results
3.1. Women’s Characteristics According to Chronotype
3.2. Association of Chronotype with T2DM and CVD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adan, A.; Natale, V. Gender differences in morningness–eveningness preference. Chronobiol. Int. 2002, 19, 709–720. [Google Scholar] [CrossRef]
- Mongrain, V.; Lavoie, S.; Selmaoui, B.; Paquet, J.; Dumont, M. Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness. J. Biol. Rhythm. 2004, 19, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Makarem, N.; Paul, J.; Giardina, E.-G.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 37, 673–685. [Google Scholar] [CrossRef]
- Kayacan, A.G.; Tokay, A. Evaluation of the relationship between chronotype and biochemical findings, nutrition and gastrointestinal symptoms in inflammatory bowel patients. Sleep Med. 2021, 81, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Lotti, S.; Pagliai, G.; Colombini, B.; Sofi, F.; Dinu, M. Chronotype differences in energy intake, cardiometabolic risk parameters, cancer and depression: A systematic review with meta-analysis of observational studies. Adv. Nutr. 2021, nmab115. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Aprano, S.; Framondi, L.; Di Matteo, R.; Riccio, P.A.; Savastano, S.; Colao, A. The opera prevention project. Int. J. Food Sci. Nutr. 2021, 72, 1–3. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Tuccinardi, D.; Nicastro, V.; Barrea, L.; Colao, A.; Savastano, S. Sleep disturbances: One of the culprits of obesity-related cardiovascular risk? Int. J. Obes. Suppl. 2020, 10, 62–72. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A.; On Behalf of the Opera Prevention Project. Chronotype and adherence to the Mediterranean diet in obesity: Results from the opera prevention project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef]
- Newson, L. Menopause and cardiovascular disease. Post Reprod. Health 2018, 24, 44–49. [Google Scholar] [CrossRef]
- Santoro, N.; Epperson, C.N.; Mathews, S.B. Menopausal symptoms and their management. Endocrinol. Metab. Clin. N. Am. 2015, 44, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Rosano, G.M.C.; Vitale, C.; Marazzi, G.; Volterrani, M. Menopause and cardiovascular disease: The evidence. Climacteric 2007, 10, 19–24. [Google Scholar] [CrossRef]
- Joffe, H.; Massler, A.; Sharkey, K.M. Evaluation and management of sleep disturbance during the menopause transition. Semin. Reprod. Med. 2010, 28, 404–421. [Google Scholar] [CrossRef] [Green Version]
- Lumsden, M.A. The NICE Guideline—Menopause: Diagnosis and management. Climacteric 2016, 19, 426–429. [Google Scholar] [CrossRef]
- Hernandez-Morante, J.J.; Gómez-Santos, C.; Margareto, J.; Formiguera, X.; Martínez, C.M.; Gonzalez, R.; Augustin, O.M.; Madrid, J.A.; Ordovas, J.M.; Garaulet, M. Influence of menopause on adipose tissue clock gene genotype and its relationship with metabolic syndrome in morbidly obese women. AGE 2011, 34, 1369–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, A.P. The organizational–activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm. Behav. 2009, 55, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2017, 36, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Tarantino, G.; Di Somma, C.; Muscogiuri, G.; Macchia, P.E.; Falco, A.; Colao, A.; Savastano, S. Adherence to the Mediterranean diet and circulating levels of sirtuin 4 in obese patients: A novel Association. Oxid. Med. Cell. Longev. 2017, 2017, 6101254. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Macchia, P.E.; Di Somma, C.; Falco, A.; Savanelli, M.C.; Colao, A.; Savastano, S. Mediterranean diet and phase angle in a sample of adult population: Results of a pilot study. Nutrients 2017, 9, 151. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; De Alteriis, G.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 2018, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Macchia, P.E.; Tarantino, G.; Di Somma, C.; Pane, E.; Balato, N.; Napolitano, M.; Colao, A.; Savastano, S. Nutrition: A key environmental dietary factor in clinical severity and cardio-metabolic risk in psoriatic male patients evaluated by 7-day food-frequency questionnaire. J. Transl. Med. 2015, 13, 303. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Laudisio, D.; Salzano, C.; Pugliese, G.; De Alteriis, G.; Colao, A.; Savastano, S. Sex differences of vitamin D status across BMI classes: An observational prospective cohort study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Yun, C.-H.; Ahn, J.H.; Suh, S.; Cho, H.J.; Lee, S.K.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Choi, K.M.; et al. Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J. Clin. Endocrinol. Metab. 2015, 100, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Gómez-Santos, C.; Saura, C.B.; Lucas, J.R.; Castell, P.; Madrid, J.A.; Garaulet, M. Menopause status is associated with circadian- and sleep-related alterations. Menopause 2016, 23, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Taillard, J.; Philip, P.; Chastang, J.-F.; Bioulac, B. Validation of Horne and Ostberg morningness-eveningness questionnaire in a middle-aged population of French workers. J. Biol. Rhythm. 2004, 19, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.F.; Czeisler, C.A. Age-related change in the relationship between circadian period, circadian phase, and diurnal preference in humans. Neurosci. Lett. 2002, 318, 117–120. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between clocks: Daily temporal patterns of human chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.M.; Groot, A.S.; Kerkhof, G.A.; Boomsma, D.I.; Vink, J.M. Genetic analysis of morningness and eveningness. Chronobiol. Int. 2001, 18, 809–822. [Google Scholar] [CrossRef] [Green Version]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef] [Green Version]
- Randler, C.; Engelke, J. Gender differences in chronotype diminish with age: A meta-analysis based on morningness/chronotype questionnaires. Chronobiol. Int. 2019, 36, 888–905. [Google Scholar] [CrossRef]
- Turek, F.W.; Penev, P.; Zhang, Y.; van Reeth, O.; Zee, P. Effects of age on the circadian system. Neurosci. Biobehav. Rev. 1995, 19, 53–58. [Google Scholar] [CrossRef]
- Van Someren, E.J.W. Circadian rhythms and sleep in human aging. Chronobiol. Int. 2000, 17, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Matsumoto, K.; Seo, Y.J.; Kang, M.J.; Nagashima, H. Changes of sleep or waking habits by age and sex in Japanese. Percept. Mot. Skills 2002, 94, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Van Cauter, E.; Leproult, R.; Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 2000, 284, 861–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, R.R. Menopausal hot flashes: Mechanisms, endocrinology, treatment. J. Steroid Biochem. Mol. Biol. 2014, 142, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, F.N.; Mitchell, E.S. Sleep symptoms during the menopausal transition and early postmenopause: Observations from the Seattle Midlife Women′s Health Study. Sleep 2010, 33, 539–549. [Google Scholar] [CrossRef]
- Matthews, K.A.; Lee, L.; Kravitz, H.M.; Joffe, H.; Neal-Perry, G.; Swanson, L.M.; Evans, M.A.; Hall, M.H. Influence of the menopausal transition on polysomnographic sleep characteristics: A longitudinal analysis. Sleep 2021, zsab139. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women′s health at midlife: A progress report from the Study of Women′s Health Across the Nation (SWAN). Obstet. Gynecol. Surv. 2020, 75, 172–173. [Google Scholar] [CrossRef]
- Tsuchiyama, Y.; Uchimura, N.; Sakamoto, T.; Maeda, H.; Kotorii, T. Effects of hCRH on sleep and body temperature rhythms. Psychiatry Clin. Neurosci. 1995, 49, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.; Smallwood, R.G.; Avery, D.H.; Pascualy, R.A.; Martin, D.C.; Prinz, P.N. Circadian temperature rhythms in young adult and aged men. Neurobiol. Aging 1986, 7, 97–100. [Google Scholar] [CrossRef]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, M.; Larsen, L.H.; Moe, K.E.; Borson, S.; Schwartz, R.S.; Prinz, P.N. Objective sleep quality of healthy older men and women is differentially disrupted by nighttime periodic blood sampling via indwelling catheter. Sleep 1996, 19, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Vrang, N.; Larsen, P.J.; Mikkelsen, J.D. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing. Brain Res. 1995, 684, 61–69. [Google Scholar] [CrossRef]
- Vryonidou, A.; Paschou, S.A.; Muscogiuri, G.; Orio, F.; Goulis, D. Mechanisms in endocrinology: Metabolic syndrome through the female life cycle. Eur. J. Endocrinol. 2015, 173, R153–R163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, O.M.; Cain, S.W.; O′Connor, S.P.; Porter, J.H.; Duffy, J.F.; Wang, W.; Czeisler, C.A.; Shea, S.A. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4, 129ra43. [Google Scholar] [CrossRef] [Green Version]
- Lucassen, E.A.; Zhao, X.; Rother, K.I.; Mattingly, M.S.; Courville, A.B.; de Jonge, L.; Csako, G.; Cizza, G.; for the Sleep Extension Study Group. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS ONE 2013, 8, e56519. [Google Scholar] [CrossRef] [Green Version]
- Merikanto, I.; Lahti, T.; Puolijoki, H.; Vanhala, M.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Salomaa, V.; Kronholm, E.; Partonen, T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol. Int. 2013, 30, 470–477. [Google Scholar] [CrossRef]
- Reutrakul, S.; Hood, M.; Crowley, S.; Morgan, M.K.; Teodori, M.; Knutson, K.; Van Cauter, E. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 2013, 36, 2523–2529. [Google Scholar] [CrossRef] [Green Version]
- Scheer, F.; Hilton, M.F.; Mantzoros, C.S.; Shea, S. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauter, E.; Polonsky, K.S.; Scheen, A.J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 1997, 18, 716–738. [Google Scholar] [CrossRef] [Green Version]
Parameters | All Women (n = 123) | Pre-Menopausal Women (n = 49) | Post-Menopausal Women (n = 74) | p Value, χ2 |
---|---|---|---|---|
Age (years) | 51.1 ± 16.0 | 34.9 ± 10.6 | 61.8 ± 7.6 | <0.0001 |
BMI (kg/m2) | 31.7 ± 6.3 | 31.9 ± 7.2 | 31.5 ± 5.6 | 0.55 |
BMI categories: | ||||
Normal weight | 15 (12.2%) | 10 (20.4%) | 5 (6.8%) | 0.022, 11.46 |
Overweight | 33 (26.8%) | 7 (14.3%) | 26 (35.1%) | |
Obesity I | 41 (33.3%) | 15 (30.6%) | 26 (35.1%) | |
Obesity II | 22 (17.9%) | 12 (24.5%) | 10 (13.5%) | |
Obesity III | 12 (9.8%) | 5 (10.2%) | 7 (9.5%) | |
Waist circumference (cm) | 99.7 ± 15.5 | 97.1 ± 18.5 | 101.5 ± 12.9 | 0.36 |
WHR | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.01 |
Chronotype: | ||||
Morning | 66 (53.6%) | 21 (42.9%) | 45 (60.8%) | |
Intermediate | 37 (30.1%) | 22 (44.9%) | 15 (20.3%) | 0.014, 8.52 |
Evening | 20 (16.3%) | 6 (12.2%) | 14 (18.9%) | |
Hours of sleeping | 6.1 ± 1.5 | 6.5 ± 1.5 | 5.9 ± 1.6 | 0.08 |
Pittsburgh score-categories: | ||||
Good sleepers | 58 (47.2%) | 25 (51.1%) | 33 (44.6%) | 0.48, 0.49 |
Poor sleepers | 65 (52.8%) | 24 (49.0%) | 41 (55.4%) | |
PREDIMED score | 7 ± 2 | 8 (3–11) | 8 (2–13) | 0.76 |
PREDIMED categories | ||||
Low adherence | 16 (13.0%) | 5 (10.2%) | 11 (14.9%) | 0.18, 3.45 |
Average adherence | 81 (65.8%) | 37 (75.5%) | 44 (59.5%) | |
Highest adherence | 26 (21.2%) | 7 (14.3%) | 19 (25.7%) | |
Physical activity: | ||||
Sedentary | 66 (53.7%) | 28 (57.1%) | 38 (51.4%) | 0.53, 0.39 |
Moderate | 57 (46.3%) | 21 (42.9%) | 36 (48.6%) | |
Smoke: | ||||
Non smokers | 98 (79.7%) | 41 (83.7%) | 57 (77.0%) | 0.37, 0.80 |
Current smokers | 25 (20.3%) | 8 (16.3%) | 17 (23.0%) | |
Dyslipidemia: | ||||
No dyslipidemia | 92 (74.8%) | 46 (93.9%) | 46 (62.2%) | <0.001, 15.7 |
Dyslipidemia | 31 (25.2%) | 3 (6.1%) | 28 (37.8%) | |
Type 2 diabetes mellitus: | ||||
No T2DM | 110 (89.4%) | 46 (93.9%) | 64 (85.5%) | 0.19, 1.70 |
T2DM | 13 (10.6%) | 3 (6.1%) | 10 (13.5%) | |
Cardiovascular disease: | ||||
No CVD | 89 (72.4%) | 41 (83.7%) | 48 (64.9%) | 0.022, 5.21 |
CVD | 34 (27.6%) | 8 (16.3%) | 26 (35.1%) |
Model 1 (without PREDIMED as a Covariate) | |||
Morning chronotype vs. intermediate chronotype | |||
p | OR | 95% CI | |
T2DM | 0.24 | 4.50 | 0.36–56.58 |
CVD | 0.35 | 1.74 | 0.55–5.51 |
Evening chronotype vs. morning chronotype | |||
p | OR | 95% CI | |
T2DM | 0.005 | 17.29 | 2.40–124.47 |
CVD | 0.17 | 2.65 | 0.67–10.53 |
Evening chronotype vs.intermediate chronotype | |||
p | OR | 95% CI | |
T2DM | 0.013 | 30.86 | 2.05–464.32 |
CVD | 0.42 | 1.92 | 0.40–9.28 |
Model 1 (with PREDIMED as a covariate) | |||
Morning chronotype vs. intermediate chronotype | |||
p | OR | 95% CI | |
T2DM | 0.25 | 4.24 | 0.36–49.79 |
CVD | 0.63 | 1.34 | 0.41–4.39 |
Evening chronotype vs. morning chronotype | |||
p | OR | 95% CI | |
T2DM | 0.026 | 13.67 | 1.36–137.34 |
CVD | 0.11 | 3.86 | 0.74–20.34 |
Evening chronotype vs. intermediate chronotype | |||
p | OR | 95% CI | |
T2DM | 0.028 | 20.23 | 1.39–293.99 |
CVD | 0.25 | 3.07 | 0.45–21.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrea, L.; Vetrani, C.; Altieri, B.; Verde, L.; Savastano, S.; Colao, A.; Muscogiuri, G. The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus? Nutrients 2021, 13, 3762. https://doi.org/10.3390/nu13113762
Barrea L, Vetrani C, Altieri B, Verde L, Savastano S, Colao A, Muscogiuri G. The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus? Nutrients. 2021; 13(11):3762. https://doi.org/10.3390/nu13113762
Chicago/Turabian StyleBarrea, Luigi, Claudia Vetrani, Barbara Altieri, Ludovica Verde, Silvia Savastano, Annamaria Colao, and Giovanna Muscogiuri. 2021. "The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus?" Nutrients 13, no. 11: 3762. https://doi.org/10.3390/nu13113762
APA StyleBarrea, L., Vetrani, C., Altieri, B., Verde, L., Savastano, S., Colao, A., & Muscogiuri, G. (2021). The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus? Nutrients, 13(11), 3762. https://doi.org/10.3390/nu13113762