Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval and Structure Prediction
2.2. Maintenance and Differentiation of the SH-SY5Y Cell Line
2.3. Cultivation of the Cell Lines with the DF56 and AG25 Peptides and RNA-Seq Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, M.P.; LeVine, H. Alzheimer’s Disease and the Amyloid-β Peptide. J. Alzheimer’s Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.-H.; Multhaup, G.; Beyreuther, K.; Müller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987, 325, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Q.; Zhang, Y.; Xu, H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem. 2012, 120, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick, D.; Soreghan, B.; Kwon, M.; Kosmoski, J.; Knauer, M.; Henschen, A.; Yates, J.; Cotman, C.; Glabe, C. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J. Biol. Chem. 1992, 267, 546–554. [Google Scholar] [CrossRef]
- Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron 1994, 13, 45–53. [Google Scholar] [CrossRef]
- Jarrett, J.T.; Berger, E.P.; Lansbury, P.T. The carboxy terminus of the .beta. amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993, 32, 4693–4697. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Míguez, A.; Fdez-Riverola, F.; Lourenço, A.; Sánchez, B. In silico prediction reveals the existence of potential bioactive neuropeptides produced by the human gut microbiota. Food Res. Int. 2019, 119, 221–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019, 572, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Park, Y.J.; Gonzales-Portillo, B.; Saft, M.; Cozene, B.; Sadanandan, N.; Borlongan, C.V. Gut dysbiosis in stroke and its implications on Alzheimer’s disease-like cognitive dysfunction. CNS Neurosci. Ther. 2021, 27, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Moro-García, M.A.; Blanco-Míguez, A.; Fdez-Riverola, F.; Lourenço, A.; Alonso-Arias, R.; Sánchez, B. In silico screening of the human gut metaproteome identifies Th17-promoting peptides encrypted in proteins of commensal bacteria. Front. Microbiol. 2017, 8, 1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Míguez, A.; Guitiérrez-Jácome, A.; Fdez-Riverola, F.; Lourenço, A.; Sánchez, B. MAHMI database: A comprehensive MetaHit-based resource for the study of the mechanism of action of the human microbiota. Database 2017, 2017, baw157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przytycka, T.; Aurora, R.; Rose, G.D. A protein taxonomy based on secondary structure. Nat. Struct. Biol. 1999, 6, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Cherny, I.; Rockah, L.; Levy-Nissenbaum, O.; Gophna, U.; Ron, E.Z.; Gazit, E. The Formation of Escherichia coli Curli Amyloid Fibrils is Mediated by Prion-like Peptide Repeats. J. Mol. Biol. 2005, 352, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Gershon, M.D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K.D.; Frisoni, G.; Neher, J.J.; Fåk, F.; Jucker, M.; Lasser, T.; et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 2017, 7, 41802. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.; Takechi, R.; Hackett, M.J.; Francis, R.; Bynevelt, M.; Celliers, L.M.; Nesbit, M.; Mamsa, S.; Arfuso, F.; Das, S.; et al. Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype. PLoS Biol. 2021, 19, e3001358. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Fernández, R.; Ruiz, L.; Blanco-Míguez, A.; Margolles, A.; Sánchez, B. Precision modification of the human gut microbiota targeting surface-associated proteins. Sci. Rep. 2021, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
MAHMI Peptide | BLAST | Secondary Structure | Tertiary Structure | Aβ42-Like Similitude | |||
---|---|---|---|---|---|---|---|
Identity | eValue | Coverage | MAX | AVG | |||
163091118 | 51.85% | 3 × 10−6 | 33.33% | 75.00% | 54.03% | 36.01% | 50.82% |
193677039 | 48.00% | 3 × 10−6 | 40.48% | 75.68% | 38.00% | 34.12% | 51.22% |
54306258 | 48.00% | 3 × 10−6 | 40.48% | 75.68% | 39.13% | 34.44% | 51.31% |
255055534 | 37.14% | 6 × 10−6 | 50.00% | 72.83% | 43.09% | 41.57% | 51.45% |
241666057 | 41.18% | 7 × 10−6 | 54.76% | 82.05% | 33.51% | 25.95% | 53.15% |
95198855 | 50.00% | 5 × 10−7 | 38.10% | 79.07% | 44.91% | 42.43% | 54.90% |
71365372 | 51.72% | 2 × 10−6 | 50.00% | 86.84% | 32.89% | 25.98% | 56.38% |
237389767 | 35.90% | 7 × 10−6 | 50.00% | 79.17% | 61.26% | 55.01% | 57.82% |
194126392 | 40.00% | 4 × 10−6 | 42.86% | 87.84% | 48.28% | 43.16% | 59.00% |
47713732 | 42.86% | 4 × 10−6 | 50.00% | 91.67% | 36.32% | 33.23% | 59.50% |
25392817 | 54.55% | 5 × 10−6 | 19.05% | 89.71% | 57.46% | 51.02% | 60.21% |
127534682 (AG25) | 43.75% | 3 × 10−6 | 52.38% | 88.89% | 54.08% | 48.46% | 62.29% |
237222364 (DF56) | 45.71% | 1 × 10−6 | 50.00% | 92.71% | 54.42% | 48.58% | 64.21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Míguez, A.; Tamés, H.; Ruas-Madiedo, P.; Sánchez, B. Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients 2021, 13, 3868. https://doi.org/10.3390/nu13113868
Blanco-Míguez A, Tamés H, Ruas-Madiedo P, Sánchez B. Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients. 2021; 13(11):3868. https://doi.org/10.3390/nu13113868
Chicago/Turabian StyleBlanco-Míguez, Aitor, Hector Tamés, Patricia Ruas-Madiedo, and Borja Sánchez. 2021. "Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line" Nutrients 13, no. 11: 3868. https://doi.org/10.3390/nu13113868
APA StyleBlanco-Míguez, A., Tamés, H., Ruas-Madiedo, P., & Sánchez, B. (2021). Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients, 13(11), 3868. https://doi.org/10.3390/nu13113868