Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sample Collection and Preservation
2.3. HMO Analysis×
2.4. Method Validation
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics
3.2. HMO Levels over Lactational Stages
3.3. HMO Levels in High and Low 2′-FL Level Groups
3.4. Correlations between Individual HMOs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreas, N.J.; Kampmann, B. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Picciano, M.F. Nutrient composition of human milk. Pediatr. Clin. N. Am. 2001, 48, 53–67. [Google Scholar] [CrossRef]
- Romieu, I.; Werneck, G. Breastfeeding and asthma among Brazilian children. J. Asthma 2000, 37, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Lodge, C.J.; Tan, D.J. Breastfeeding and asthma and allergies: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 38–53. [Google Scholar] [CrossRef]
- Kull, I.; Böhme, M. Breast-feeding reduces the risk for childhood eczema. J. Allergy Clin. Immunol. 2005, 116, 657–661. [Google Scholar] [CrossRef]
- Gillman, M.W.; Rifas-Shiman, S.L. Risk of overweight among adolescents who were breastfed as infants. JAMA 2001, 285, 2461–2467. [Google Scholar] [CrossRef] [Green Version]
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [Green Version]
- Coppa, G.V.; Pierani, P. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr. Suppl. 1999, 88, 89–94. [Google Scholar] [CrossRef]
- Gnoth, M.J.; Kunz, C. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 2000, 130, 3014–3020. [Google Scholar] [CrossRef]
- Marcobal, A.; Barboza, M. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 2011, 10, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Asakuma, S.; Hatakeyama, E. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011, 286, 34583–34592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Moyano, S.; Totten, S.M. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl. Environ. Microbiol. 2013, 79, 6040–6049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.T.; Nanthakumar, N.N. The Human Milk Oligosaccharide 2’-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J. Nutr. 2016, 146, 1980–1990. [Google Scholar] [CrossRef] [PubMed]
- Jantscher-Krenn, E.; Lauwaet, T. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br. J. Nutr. 2012, 108, 1839–1846. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Monaco, M.H. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J. 2014, 8, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Courtade, L.; Han, S. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model. Allergy 2015, 70, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, S. Human colostrum oligosaccharides modulate major immunologic pathways of immature human intestine. Mucosal. Immunol. 2014, 7, 1326–1339. [Google Scholar] [CrossRef]
- Holscher, H.D.; Davis, S.R. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J. Nutr. 2014, 144, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Brand-Miller, J. Concentration and distribution of sialic acid in human milk and infant formulas. Am. J. Clin. Nutr. 2001, 74, 510–515. [Google Scholar] [CrossRef]
- Wang, B.; Yu, B. Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 2007, 85, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Sela, D.A.; Li, Y. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 2011, 286, 11909–11918. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Grimm, R. Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 2011, 10, 856–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Tao, N. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 2010, 9, 4138–4151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijman, R.M.; Liu, Y. Characterization and Quantification of Oligosaccharides in Human Milk and Infant Formula. J. Agric. Food Chem. 2018, 66, 6851–6859. [Google Scholar] [CrossRef] [PubMed]
- Elwakiel, M.; Hageman, J.A. Human Milk Oligosaccharides in Colostrum and Mature Milk of Chinese Mothers: Lewis Positive Secretor Subgroups. J. Agric. Food Chem. 2018, 66, 7036–7043. [Google Scholar] [CrossRef] [PubMed]
- Thurl, S.; Munzert, M. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 2010, 104, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.L.; Alves, R. Human Milk Oligosaccharide Profile Variation Throughout Postpartum in Healthy Women in a Brazilian Cohort. Nutrients 2020, 12, 790. [Google Scholar] [CrossRef] [Green Version]
- Kunz, C.; Meyer, C. Influence of Gestational Age, Secretor, and Lewis Blood Group Status on the Oligosaccharide Content of Human Milk. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 789–798. [Google Scholar] [CrossRef]
- Tonon, K.M.; de Morais, M.B.; Abrão, A.C.F.V.; Miranda, A.; Morais, T.B. Maternal and Infant Factors Associated with Human Milk Oligosaccharides Concentrations According to Secretor and Lewis Phenotypes. Nutrients 2019, 11, 1358. [Google Scholar] [CrossRef] [Green Version]
- Totten, S.M.; Zivkovic, A.M. Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J. Proteome Res. 2012, 11, 6124–6133. [Google Scholar] [CrossRef]
- Goehring, K.C.; Kennedy, A.D. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS ONE 2014, 9, e101692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.C.; Lewis, Z.T. Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota. Sci. Rep. 2017, 7, 40466. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Robertson, B. Human Milk Oligosaccharide Concentrations Are Associated with Multiple Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices. J. Nutr. 2018, 148, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- McJarrow, P.; Radwan, H. Human Milk Oligosaccharide, Phospholipid, and Ganglioside Concentrations in Breast Milk from United Arab Emirates Mothers: Results from the MISC Cohort. Nutrients 2019, 11, 2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, S.; De Castro, C.A. Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban Mothers. Nutrients 2016, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- McGuire, M.K.; Meehan, C.L. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017, 105, 1086–1100. [Google Scholar] [CrossRef]
- Chen, L. Determination of Oligosaccharides and Free Sialic acid in Human Milk by Ion Chromatography. J. Chin. Inst. Food Sci. Technol. 2019, 19, 227–234. [Google Scholar]
- Hong, Q.; Ruhaak, L.R. Label-free absolute quantitation of oligosaccharides using multiple reaction monitoring. Anal. Chem. 2014, 86, 2640–2647. [Google Scholar] [CrossRef]
- Ma, L.; Paul, M.J. Lactational changes in the human milk oligosaccharide concentration in chinese and malaysian mothers’ milk. Int. Dairy J. 2018, 87, 1–10. [Google Scholar] [CrossRef]
- Lee, K.E.; Ryu, J.J. 2′-Fucosyllactose Attenuates Particulate Matter-Induced Inflammation via Inhibition of Hypoxia-Inducible Factor in Keratinocytes. Biol. Pharm. Bull. 2019, 42, 1620–1627. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, S. The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016, 65, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, D.; Ruiz-Moyano, S. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci. Rep. 2016, 6, 35045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.T.; Chen, C. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 2013, 23, 1281–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puccio, G.; Alliet, P. Effects of Infant Formula with Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Marriage, B.J.; Buck, R.H. Infants Fed a Lower Calorie Formula with 2′FL Show Growth and 2′FL Uptake Like Breast-Fed Infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Goehring, K.C.; Marriage, B.J. Similar to Those Who Are Breastfed, Infants Fed a Formula Containing 2′-Fucosyllactose Have Lower Inflammatory Cytokines in a Randomized Controlled Trial. J. Nutr. 2016, 146, 2559–2566. [Google Scholar] [CrossRef] [Green Version]
- Bienenstock, J.; Buck, R.H. Fucosylated but not sialylated milk oligosaccharides diminish colon motor contractions. PLoS ONE 2013, 8, e76236. [Google Scholar] [CrossRef] [Green Version]
- Weichert, S.; Jennewein, S. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 2013, 33, 831–838. [Google Scholar] [CrossRef]
- Schnaar, R.L.; Gerardy-Schahn, R. Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 2014, 94, 461–518. [Google Scholar] [CrossRef] [Green Version]
- Gal, B.; Ruano, M.J. Developmental changes in UDP-N-acetylglucosamine 2-epimerase activity of rat and guinea-pig liver. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1997, 118, 13–15. [Google Scholar] [CrossRef]
- Sakai, F.; Ikeuchi, Y. Effects of Feeding Sialyllactose and Galactosylated N-Acetylneuraminic Acid on Swimming Learning Ability and Brain Lipid Composition in Adult Rats. J. Appl. Glyosci. 2006, 53, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Oliveros, E.; Martín, M.J. Human Milk Levels of 2-Fucosyllactose and 6-Sialyllactose are Positively Associated with Infant Neurodevelopment and are Not Impacted by Maternal BMI or Diabetic Status. Nutr. Food Sci. 2021, 4, 24. [Google Scholar]
- Thurl, S.; Munzert, M. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 2017, 75, 920–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhou, X. Comparative major oligosaccharides and lactose between Chinese human and animal milk. Int. Dairy J. 2020, 108, 104727. [Google Scholar] [CrossRef]
- Martín-Sosa, S.; Martín, M.J. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J. Dairy Sci. 2003, 86, 52–59. [Google Scholar] [CrossRef]
Characteristic | Mothers (n) | ||||
---|---|---|---|---|---|
0–5 Days (n = 96) | 10–15 Days (n = 96) | 40–45 Days (n = 104) | 200–240 Days (n = 100) | 300–400 Days (n = 92) | |
Age (years) | 28.7 ± 3.1 | 28.4 ± 3.1 | 28.6 ± 3.0 | 30 ± 4 | 30 ± 4 |
Gestational age (weeks) | 39.4 ± 1.1 | 39.4 ± 1.2 | 39.4 ± 1.1 | 39 ± 1 | 39 ± 2 |
Pre-pregnancy BMI (kg/m2) | 20.3 ± 3.6 | 20.4 ± 3.5 | 20.3 ± 3.3 | 20.1 ± 2.2 | 20.2 ± 2.4 |
Pre-delivery BMI (kg/m2) | 25.8 ± 4.0 | 25.9 ± 3.7 | 25.8 ± 3.7 | 25.1 ± 2.8 | 25.3 ± 2.9 |
Gestational weight gain (kg) | 14.2 ± 4.6 | 14.3 ± 4.3 | 14.1 ± 4.8 | 12.8 ± 4.9 | 12.9 ± 5.0 |
Vaginal delivery | 74 (77%) | 76 (79%) | 84 (81%) | 77 (77%) | 69 (75%) |
Primipara | 58 (60%) | 66 (68%) | 74 (71%) | 58 (58%) | 63 (67%) |
HMOs | Days Postpartum | ||||
---|---|---|---|---|---|
0–5 Days (n = 96) | 10–15 Days (n = 96) | 40–45 Days (n = 104) | 200–240 Days (n = 100) | 300–400 Days (n = 92) | |
2′-FL | 2891 a (1715, 4343) | 2160 a,b (1672, 2816) | 2063 b (1376, 2685) | 1033 c (600, 1520) | 1013 c (598, 1478) |
3-FL | 272 c (155, 561) | 193 c (128, 381) | 480 b (330, 801) | 1421 a (887, 1921) | 1128 a (826, 1477) |
LNT | 744 b (373, 1442) | 1478 a (1077, 2038) | 748 b (487, 1025) | 314 c (204, 465) | 361 c (241, 527) |
LNnT | 255 a (188, 404) | 183 b (126, 260) | 117 c (69, 182) | 44 d (23, 81) | 44 d (19, 75) |
3′-SL | 241 a (201, 308) | 141 b (124, 162) | 111 c (96, 133) | 117 c (97, 135) | 136 b (114, 162) |
6′-SL | 409 b (307, 517) | 602 a (522, 770) | 300 c (218, 370) | 39 d (24, 55) | 23 d (15, 40) |
Total HMOs | 5120 a (4224, 6326) | 4995 a (4397, 5417) | 3913 b (3482, 4475) | 3084 c (2752, 3377) | 2891 c (2649, 3157) |
HMOs | High 2′-FL Level Group | Low 2′-FL Level Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0–5 Days (n = 75) | 10–15 Days (n = 78) | 40–45 Days (n = 84) | 200–240 Days (n = 77) | 300–400 Days (n = 73) | 0–5 Days (n = 21) | 10–15 Days (n = 18) | 40–45 Days (n = 20) | 200–240 Days (n = 23) | 300–400 Days (n = 19) | |
2′-FL | 3263 a (2553, 5109) | 2446 b (1952, 2911) | 2313 b (1811, 2930) | 1238 c (941, 1671) | 1152 c (893, 1604) | 64 x (47, 86) | 39 x (37, 46) | 14 y (6, 18) | 15 y (3, 20) | 11 y (8, 13) |
3-FL | 198 c (135, 321) | 170 c (122, 2423) | 397 b (295, 587) | 1148 a (823, 1550) | 1037 a (781, 1296) | 944 y (682, 1270) | 758 y (681, 962) | 1641 x (1224, 1902) | 2336 x (1898, 2717) | 1911 x (1533, 2395) |
LNT | 538 b (263, 1059) | 1393 a (984, 1380) | 617 b (451, 901) | 287 c (193, 394) | 328 c (229, 457) | 2021 x,y (1164, 2366) | 2299 x (1812, 2677) | 1104 y (818, 1305) | 443 z (316, 628) | 595 y,z (374, 783) |
LNnT | 272 a (199, 407) | 209 b (142, 1380) | 142 c (87, 197) | 53 d (27, 103) | 56 d (24, 84) | 211 x (154, 265) | 115 x,y (75, 159) | 49 y (30, 85) | 19 y (13, 36) | 19 y (11, 28) |
3′-SL | 246 a (207, 314) | 140 b (123, 214) | 112 c (96, 130) | 119 c (99, 138) | 136 b, c (111, 160) | 216 x (197, 251) | 141 y (126, 170) | 111 y,z (95, 134) | 103 z (90, 125) | 143 y (128, 164) |
6′-SL | 404 b (303, 501) | 611 a (521, 609) | 300 b (218, 373) | 36 c (22, 53) | 23 c (15, 40) | 431 x,y (318, 558) | 568 x (529, 722) | 299 y (3228, 358) | 44 z (35, 59) | 22 z (16, 29) |
Total HMOs | 5439 a (4882, 6766) | 5128 a (4735, 5125) | 4179 b (3707, 4541) | 3095 c (2757, 3340) | 2932 c (2684, 3156) | 3678 x,y (3429, 4206) | 3912 x (3639, 4396) | 3270 y (2991, 3464) | 2938 y (2759, 3398) | 2817 y (2487, 3195) |
2′-FL | 3-FL | LNT | LNnT | 3′-SL | 6′-SL | Literatures | |
---|---|---|---|---|---|---|---|
Our study (0–400 days postpartum) | 1013–2891 | 193–1421 | 314–1478 | 44–255 | 111–241 | 23–602 | |
Other Chinese study (5–240 days postpartum) | 1400–2500 | 250–1100 | 190–790 | 49–170 | 75–110 | 42–350 | [35] |
Other countries’ studies (0–365 days postpartum) | 710–3750 | 132–1588 | 250–2393 | 50–1420 | 80–342 | 39–718 | [24,26,27,34,38,39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Cai, X.; Wang, J.; Mao, Y.; Zou, Y.; Tian, F.; Peng, B.; Hu, J.; Zhao, Y.; Wang, S. Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum. Nutrients 2021, 13, 4017. https://doi.org/10.3390/nu13114017
Liu S, Cai X, Wang J, Mao Y, Zou Y, Tian F, Peng B, Hu J, Zhao Y, Wang S. Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum. Nutrients. 2021; 13(11):4017. https://doi.org/10.3390/nu13114017
Chicago/Turabian StyleLiu, Shuang, Xiaokun Cai, Jin Wang, Yingyi Mao, Yan Zou, Fang Tian, Bo Peng, Jiaqiang Hu, Yanrong Zhao, and Shuo Wang. 2021. "Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum" Nutrients 13, no. 11: 4017. https://doi.org/10.3390/nu13114017
APA StyleLiu, S., Cai, X., Wang, J., Mao, Y., Zou, Y., Tian, F., Peng, B., Hu, J., Zhao, Y., & Wang, S. (2021). Six Oligosaccharides’ Variation in Breast Milk: A Study in South China from 0 to 400 Days Postpartum. Nutrients, 13(11), 4017. https://doi.org/10.3390/nu13114017