Early-Life Exposure to Famine and Risk of Metabolic Associated Fatty Liver Disease in Chinese Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Anthropometric and Biochemical Measurements
2.3. Definition of Variables
2.4. Definition of Famine Exposure
2.5. Ascertainment of Metabolic Associated Fatty Liver Disease
- (1)
- Waist circumference ≥ 90 cm in men and 80 cm in women
- (2)
- Blood pressure ≥ 130/85 mmHg or specific drug treatment
- (3)
- TG ≥ 1.70 mmol/L or specific drug treatment
- (4)
- HDL-C < 1.0 mmol/L for men and <1.3 mmol/L for women, or specific drug treatment
- (5)
- Prediabetes (FPG levels of 5.6 to 6.9 mmol/L, and/or HbA1c levels of 5.7 to 6.4%).
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Association of Early-Life Famine Exposure with MAFLD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J. International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014e1. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. Toward more accurate nomenclature for fatty liver diseases. Gastroenterology 2019, 157, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Zou, B.; Yeo, Y.H.; Li, J.; Huang, D.Q.; Wu, Y.; Yang, H.; Liu, C.; Kam, L.Y.; Tan, X.X.E.; et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 739–752. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, W.-S.V.; Dufour, J.-F.; Scattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.-H.; Kim, S.U.; Kim, H.C. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: A nationwide cohort study. Clin. Gastroenterol. Hepatol. 2021, 19, 2138–2147e10. [Google Scholar] [CrossRef]
- Yamamura, S.; Eslam, M.; Kawaguchi, T.; Tsutsumi, T.; Nakano, D.; Yoshinaga, S.; Takahashi, H.; Anzai, K.; George, J.; Torimura, T. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020, 40, 3018–3030. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Bateson, P.; Beedle, A.S.; Law, C.M.; Bhutta, Z.A.; Anokhin, K.V.; Bougnères, P.; Chandak, G.R.; Dasgupta, P.; et al. Towards a new developmental synthesis: Adaptive developmental plasticity and human disease. Lancet 2009, 373, 1654–1657. [Google Scholar] [CrossRef]
- Ravelli, A.C.; van der Meulen, J.H.; Michels, R.P.J.; Osmond, C.; Barker, D.J.; Hales, C.N.; Bleker, O.P. Glucose tolerance in adults after prenatal exposure to famine. Lancet 1998, 351, 173–177. [Google Scholar] [CrossRef]
- Lumey, L.H.; Khalangot, M.; Vaiserman, A. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: A retrospective cohort study. Lancet Diabetes Endocrinol. 2015, 3, 787–794. [Google Scholar] [CrossRef]
- Smil, V. China’s great famine: 40 years later. BMJ 1999, 319, 1619–1621. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Chen, Y.; Ning, Z.; Li, Q.; Han, B.; Zhu, C.; Chen, Y.; Xia, F.; Jiang, B.; Wang, B.; et al. Exposure to famine in early life and non-alcoholic fatty liver disease in adulthood. J. Clin. Endocrinol. Metab. 2016, 101, 2218–2225. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Hu, C.; Wang, S.; Zhang, Y.; Du, R.; Zhang, J.; Lin, L.; Wang, T.; Zhao, Z.; Li, M.; et al. Early life famine exposure, adulthood obesity patterns and the risk of nonalcoholic fatty liver disease. Liver Int. 2020, 40, 2694–2705. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cheng, J.; Wan, H.; Wang, Y.; Zhang, W.; Chen, Y.; Chen, C.; Xia, F.; Jensen, M.D.; Wang, N.; et al. Early-life exposure to the Chinese famine, genetic susceptibility and the risk of type 2 diabetes in adulthood. Diabetologia 2021, 64, 1766–1774. [Google Scholar] [CrossRef]
- Liu, D.; Yu, D.-M.; Zhao, L.-Y.; Fang, H.-Y.; Zhang, J.; Wang, J.-Z.; Yang, Z.-Y.; Zhao, W.-H. Exposure to famine during early life and abdominal obesity in adulthood: Findings from the Great Chinese Famine During 1959–1961. Nutrients 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jaddoe, V.W.; Qi, L.; He, Y.; Wang, D.; Lai, J.; Zhang, J.; Fu, P.; Yang, X.; Hu, F.B. Exposure to the Chinese Famine in Early Life and the Risk of Metabolic Syndrome in Adulthood. Diabetes Care 2011, 34, 1014–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Zhao, Q.; Wang, N.; Yu, Y.; Wang, R.; Zhang, Y.; Cui, S.; Zhu, M.; Liu, X.; Jiang, Y.; et al. Association of hypertriglyceridemic waist phenotype with renal function impairment: A cross-sectional study in a population of Chinese adults. Nutr. Metab. 2020, 17, 63. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.; Wang, R.; Zhu, M.; Shao, Y.; Wang, N.; Liu, X.; Zhang, T.; Jiang, F.; Wang, W.; et al. Cohort profile: Protocol and baseline survey for the Shanghai Suburban Adult Cohort and Biobank (SSACB) study. BMJ Open 2020, 10, e035430. [Google Scholar] [CrossRef]
- Zhou, B.-F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. 1), S62–S69. [Google Scholar] [CrossRef] [Green Version]
- Cleeman, J.I.; Grundy, S.M.; Becker, D.; Clark, L. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Chen, J.-P.; Peng, B.; Tang, L.; Sun, R.; Hu, S.; Wen, X.-Y.; Que, P.; Wang, Y.-H. Fetal and infant exposure to the Chinese famine increases the risk of fatty liver disease in Chongqing, China. J. Gastroenterol. Hepatol. 2016, 31, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Erhuma, A.; Salter, A.; Sculley, D.V.; Langley-Evans, S.C.; Bennett, A. Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1702–E1714. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Reynolds, C.; Segovia, S.A.; Gray, C.; Vickers, M.H. Developmental Programming of Nonalcoholic Fatty Liver Disease: The Effect of Early Life Nutrition on Susceptibility and Disease Severity in Later Life. BioMed Res. Int. 2015, 2015, 437107. [Google Scholar] [CrossRef]
- Nielsen, J.H.; Haase, T.N.; Jaksch, C.; Nalla, A.; Søstrup, B.; Nalla, A.A.; Larsen, L.; Rasmussen, M.; Dalgaard, L.; Gaarn, L.W.; et al. Impact of fetal and neonatal environment on beta cell function and development of diabetes. Acta Obstet. Gynecol. Scand. 2014, 93, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Portha, B.; Fournier, A.; Kioon, M.A.; Mezger, V.; Movassat, J. Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 2014, 97, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tobi, E.W.; Slieker, R.C.; Stein, A.D.; Suchiman, H.E.D.; Slagboom, P.E.; Van Zwet, E.W.; Heijmans, B.T.; Lumey, L.H. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int. J. Epidemiol. 2015, 44, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Heijmans, B.T.; Tobi, E.; Stein, A.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Keating, S.T.; El-Osta, A. Epigenetics and metabolism. Circ. Res. 2015, 116, 715–736. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, X.; Shi, T.; Qu, G.; Zhao, T.; Xuan, K.; Sun, Y. Association of famine exposure with the risk of type 2 diabetes: A meta-analysis. Clin. Nutr. 2020, 39, 1717–1723. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.; Li, Q.; Han, B.; Chen, Y.; Zhu, C.; Chen, Y.; Lin, D.; Wang, B.; Jensen, M.D.; et al. The famine exposure in early life and metabolic syndrome in adulthood. Clin. Nutr. 2017, 36, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef]
- Jaruvongvanich, V.; Sanguankeo, A.; Riangwiwat, T.; Upala, S. Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Ann. Hepatol. 2017, 16, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-Y.; Barrett-Connor, E.; Wedick, N.M.; Wingard, D.L. Endogenous Sex Hormones and the Development of Type 2 Diabetes in Older Men and Women: The Rancho Bernardo Study. Diabetes Care 2002, 25, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muka, T.; Nano, J.; Jaspers, L.; Meun, C.; Bramer, W.M.; Hofman, A.; Dehghan, A.; Kavousi, M.; Laven, J.S.; Franco, O.H. Associations of steroid sex hormones and sex hormone–binding globulin with the risk of type 2 diabetes in women: A population-based cohort study and meta-analysis. Diabetes 2017, 66, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Tobi, E.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.; Slagboom, P.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053. [Google Scholar] [CrossRef] [PubMed]
- Nascimbeni, F.; Pais, R.; Bellentani, S.; Day, C.P.; Ratziu, V.; Loria, P.; Lonardo, A. From NAFLD in clinical practice to answers from guidelines. J. Hepatol. 2013, 59, 859–871. [Google Scholar] [CrossRef] [Green Version]
Famine Exposure | ||||
---|---|---|---|---|
Nonexposed | Fetal-Exposed | Childhood-Exposed | Adolescence-Exposed | |
No. of participants (%) | 5499 (20.5) | 3773 (14.1) | 12,526 (46.7) | 5023 (18.7) |
Age at baseline (years) | 51.5 ± 1.5 | 55.3 ± 1.3 | 62. 6 ± 2.9 | 70.5 ± 1.8 |
Male (%) | 1904 (34.6) | 1344 (35.6) | 5395 (43.1) | 2351 (46.8) |
High school and above (%) | 516 (9.4) | 931 (24.7) | 1014 (8.1) | 194 (3.9) |
Married (%) | 5300 (96.4) | 3629 (96.2) | 11,695 (93.4) | 4335 (86.3) |
Current smoker (%) | 1101 (20.0) | 776 (20.6) | 2647 (21.1) | 910 (18.1) |
Current drinker (%) | 615 (11.2) | 413 (11.0) | 1840 (14.7) | 716 (14.3) |
Moderate and vigorous physical activity (%) | 1203 (21.9) | 859 (22.8) | 3138 (25.1) | 1121 (22.3) |
Family history of diabetes (%) | 786 (14.3) | 563 (14.9) | 1212 (9.7) | 365 (7.3) |
Family history of hypertension (%) | 2684 (48.8) | 1831 (48.5) | 4792 (38.3) | 1455 (29.0) |
BMI (kg/m2) | 24.5 ± 3.2 | 24.5 ± 3.2 | 24.6 ± 3.20 | 24.9 ± 3.5 |
SBP (mmHg) | 132.2 ± 17.8 | 133.9 ± 18.5 | 137.5 ± 19.0 | 140.8 ± 19.6 |
DBP (mmHg) | 81.3 ± 10.7 | 81.1 ± 10.2 | 81.0 ± 9.9 | 79.7 ± 10.0 |
FBG (mmol/L) | 4.99 ± 1.19 | 5.18 ± 1.52 | 5.25 ± 1.50 | 5.13 ± 1.59 |
ALT (IU/L) | 18 (13–25) | 18 (14–25) | 17 (14–23) | 17 (13–22) |
TC (mmol/L) | 5.00 ± 0.92 | 5.08 ± 0.97 | 5.08 ± 0.97 | 4.97 ± 0.96 |
TG (mmol/L) | 1.43 (1.03–2.05) | 1.45 (1.06–2.07) | 1.40 (1.03–1.96) | 1.30 (0.96–1.81) |
HDL-C (mmol/L) | 1.39 ± 0.34 | 1.39 ± 0.34 | 1.41 ± 0.36 | 1.45 ± 0.38 |
LDL-C (mmol/L) | 2.80 ± 0.83 | 2.87 ± 0.86 | 2.85 ± 0.85 | 2.83 ± 0.86 |
Diabetes (%) | 611 (11.1) | 633 (16.8) | 2312 (18.5) | 963 (19.2) |
Hypertension (%) | 2528 (46.0) | 1955 (51.8) | 7909 (63.1) | 3666 (73.0) |
Dyslipidemia (%) | 1978 (20.4) | 1446 (14.9) | 4573 (47.1) | 1711 (17.6) |
MAFLD (%) | 2243 (40.8) | 1597 (42.3) | 4960 (39.6) | 1708 (34.0) |
MAFLD | Non-MAFLD | |
---|---|---|
No. of participants (%) | 10,508 (39.2) | 16,313 (60.8) |
Age at baseline (years) | 60.4 ± 6.7 | 61.0 ± 6.9 |
Male (%) | 3945 (37.5) | 7049 (43.2) |
High school and above (%) | 1060 (10.1) | 1595 (9.8) |
Married (%) | 9850 (93.7) | 15,109 (92.6) |
Current smoker (%) | 1891 (18.0) | 3543 (21.7) |
Current drinker (%) | 1369 (13.0) | 2215 (13.6) |
Moderate and vigorous physical activity (%) | 2610 (24.8) | 3711 (22.8) |
Family history of diabetes (%) | 1355 (12.9) | 1571 (9.6) |
Family history of hypertension (%) | 4622 (44.0) | 6140 (37.6) |
BMI (kg/m2) | 26.7 ± 2.9 | 23.3 ± 2.8 |
SBP (mmHg) | 140.3 ± 18.5 | 134.1 ± 18.9 |
DBP (mmHg) | 82.7 ± 9.9 | 79.6 ± 10.1 |
FBG (mmol/L) | 5.43 ± 1.70 | 5.00 ± 1.27 |
ALT (IU/L) | 20 (16–28) | 16 (13–21) |
TC (mmol/L) | 5.10 ± 0.99 | 4.96 ± 0.91 |
TG (mmol/L) | 1.73 (1.27–2.42) | 1.22 (0.92–1.64) |
HDL-C (mmol/L) | 1.30 ± 0.31 | 1.48 ± 0.36 |
LDL-C (mmol/L) | 2.86 ± 0.89 | 2.83 ± 0.82 |
Diabetes (%) | 2732 (26.0) | 1787 (11.0) |
Hypertension (%) | 7503 (71.4) | 8555 (52.4) |
Dyslipidemia (%) | 5360 (51.0) | 4348 (26.7) |
Famine Exposure | ||||
---|---|---|---|---|
Nonexposed | Fetal-Exposed | Childhood-Exposed | Adolescence-Exposed | |
Whole cohort | ||||
Case/total (n) | 2243/5499 | 1597/3773 | 4960/12526 | 1708/5023 |
Age-adjusted | 1.00 (ref) | 1.11 (1.01–1.22) | 1.08 (0.94–1.23) | 0.93 (0.75–1.15) |
Multivariable-adjusted a p | 1.00 (ref) | 1.10 (1.00–1.21) 0.049 | 1.07 (0.93–1.22) 0.362 | 0.91 (0.73–1.14) 0.409 |
Men | ||||
Case/total (n) | 871/1904 | 539/1344 | 1843/5395 | 692/2351 |
Age-adjusted | 1.00 (ref) | 0.89 (0.76–1.04) | 0.86 (0.69–1.07) | 0.87 (0.62–1.23) |
Multivariable-adjusted p | 1.00 (ref) | 0.88 (0.75–1.03) 0.122 | 0.85 (0.68–1.06) 0.145 | 0.86 (0.61–1.21) 0.386 |
Women | ||||
Case/total (n) | 1372/3595 | 1058/2429 | 3117/7131 | 1016/2672 |
Age-adjusted | 1.00 (ref) | 1.22 (1.09–1.38) | 1.18 (0.99–1.41) | 0.89 (0.67–1.19) |
Multivariable-adjusted p | 1.00 (ref) | 1.22 (1.08–1.37) 0.001 | 1.16 (0.98–1.38) 0.097 | 0.88 (0.66–1.17) 0.387 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, G.; Wu, Y.; Guan, Y.; Luo, Z.; Zhao, G.; Jiang, Y. Early-Life Exposure to Famine and Risk of Metabolic Associated Fatty Liver Disease in Chinese Adults. Nutrients 2021, 13, 4063. https://doi.org/10.3390/nu13114063
Liu J, Wang G, Wu Y, Guan Y, Luo Z, Zhao G, Jiang Y. Early-Life Exposure to Famine and Risk of Metabolic Associated Fatty Liver Disease in Chinese Adults. Nutrients. 2021; 13(11):4063. https://doi.org/10.3390/nu13114063
Chicago/Turabian StyleLiu, Jing, Guimin Wang, Yiling Wu, Ying Guan, Zhen Luo, Genming Zhao, and Yonggen Jiang. 2021. "Early-Life Exposure to Famine and Risk of Metabolic Associated Fatty Liver Disease in Chinese Adults" Nutrients 13, no. 11: 4063. https://doi.org/10.3390/nu13114063
APA StyleLiu, J., Wang, G., Wu, Y., Guan, Y., Luo, Z., Zhao, G., & Jiang, Y. (2021). Early-Life Exposure to Famine and Risk of Metabolic Associated Fatty Liver Disease in Chinese Adults. Nutrients, 13(11), 4063. https://doi.org/10.3390/nu13114063