A Comparison of Diet Quality in a Sample of Rural and Urban Australian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Recruitment
2.2. Measures
2.3. Dietary Assessment
2.4. Anthropometric Characteristics
2.5. Sociodemographic Characteristics
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraemer, K.; Cordaro, J.; Fanzo, J.; Gibney, M.; Kennedy, E.; Labrique, A.; Steffen, J.; Eggersdorfer, M. Diet and non-communicable diseases: An urgent need for new paradigms. In Good Nutrition: Perspectives for the 21st Century; Basel: New York, NY, USA, 2016; pp. 105–118. ISBN 978-3-318-05964-9. [Google Scholar]
- Australian Institute of Health and Welfare. Australian Burden of Disease Study 2018: Key Findings. Available online: https://www.aihw.gov.au/getmedia/d2a1886d-c673-44aa-9eb6-857e9696fd83/aihw-bod-30.pdf.aspx?inline=true (accessed on 28 September 2021).
- Murray, C.J.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Willey, J.; Wakefield, M.; Silver, H.J. Exploring the Diets of Adults with Obesity and Type II Diabetes from Nine Diverse Countries: Dietary Intakes, Patterns, and Quality. Nutrients 2020, 12, 2027. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, M.H.; Reed, K.A.; Rahavi, E.B.; Dooher, C.C. Communication strategies to help reduce the prevalence of non-communicable diseases: Proceedings from the inaugural IFIC Foundation Global Diet and Physical Activity Communications Summit. Nutr. Rev. 2012, 70, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Alston, L.; Partridge, S.R. Limited dietary interventions in rural Australian communities: A systematic review. Nutr. Diet 2021, 78, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare. Australia’s Health 2018. Available online: https://www.aihw.gov.au/reports/australias-health/australias-health-2018/contents/table-of-contents (accessed on 11 April 2021).
- Australian Institute of Health and Welfare. Australian Burden of Disease Study—Impact and Causes of Illness and Death in Australia 2015. Available online: https://www.aihw.gov.au/getmedia/c076f42f-61ea-4348-9c0a-d996353e838f/aihw-bod-22.pdf.aspx?inline=true (accessed on 4 April 2021).
- Australian Institute of Health and Welfare. Rural and Remote Health. Available online: https://www.aihw.gov.au/reports/rural-remote-australians/rural-remote-health/contents/health-status-and-outcomes (accessed on 2 February 2021).
- Barclay, L.; Phillips, A.; Lyle, D. Rural and remote health research: Does the investment match the need? AJRH 2018, 26, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Brooke, F. Food Security and Health in Rural and Remote Australia. Available online: https://apo.org.au/sites/default/files/resource-files/2016-11/apo-nid70483.pdf (accessed on 2 February 2021).
- Burns, C.M.; Gibbon, P.; Boak, R.; Baudinette, S.; Dunbar, J.A. Food cost and availability in a rural setting in Australia. Rural Remote Health 2004, 4, 311. [Google Scholar] [CrossRef]
- Burgis-Kasthala, S.; Slimings, C.; Smith, M.; Elmitt, N.; Moore, M. Social and community networks influence dietary attitudes in regional New South Wales, Australia. Rural Remote Health 2019, 19, 5328. [Google Scholar] [CrossRef] [Green Version]
- Whelan, J.; Millar, L.; Bell, C.; Russell, C.; Grainger, F.; Allender, S.; Love, P. You can’t find healthy food in the bush: Poor accessibility, availability and adequacy of food in rural Australia. Int. J. Environ. Res. Public Health 2018, 15, 2316. [Google Scholar] [CrossRef] [Green Version]
- Alston, L.; Jacobs, J.; Allender, S.; Nichols, M. A comparison of the modelled impacts on CVD mortality if attainment of public health recommendations was achieved in metropolitan and rural Australia. Public Health Nutr. 2020, 23, 339–347. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Steffen, L.M. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am. J. Clin. Nutr. 2003, 78, 508s–513s. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, E.M.; Hu, F.B. Dietary patterns: From nutritional epidemiologic analysis to national guidelines. AJCN 2015, 101, 899–900. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, M.L.P.; Pérez-Rodríguez, F.; Hueda, M. Diet quality indices for nutrition assessment: Types and applications. In Functional Food-Improve Health through Adequate Food; IntechOpen: London, UK, 2017; pp. 283–308. [Google Scholar] [CrossRef] [Green Version]
- Alkerwi, A. Diet quality concept. Nutrition 2014, 30, 613–618. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.; Flood, V.; Rochtchina, E.; Gopinath, B.; Allman-Farinelli, M.; Bauman, A.; Mitchell, P. Adherence to dietary guidelines and 15-year risk of all-cause mortality. Br. J. Nutr. 2013, 109, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D. α-Priori versus α-posterior methods in dietary pattern analysis: A review in nutrition epidemiology. Nutr. Bull. 2008, 33, 311–315. [Google Scholar] [CrossRef]
- University of Newcastle. Healthy Eating Quiz. Available online: https://healthyeatingquiz.com.au/ (accessed on 5 May 2021).
- Collins, C.E.; Burrows, T.L.; Rollo, M.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The comparative validity and reproducibility of a diet quality index for adults: The Australian recommended food score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Australian Dietary Guidelines—Providing the Scientific Evidence for Healthier Australian Diets. Available online: https://www.nhmrc.gov.au/adg (accessed on 29 April 2021).
- Ashton, L.; Williams, R.; Wood, L.; Schumacher, T.; Burrows, T.; Rollo, M.; Pezdirc, K.; Callister, R.; Collins, C. Comparison of australian recommended food score (ARFS) and plasma carotenoid concentrations: A validation study in adults. Nutrients 2017, 9, 888. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.L.; Rollo, M.E.; Schumacher, T.; Collins, C.E. Diet quality scores of australian adults who have completed the healthy eating quiz. Nutrients 2017, 9, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljadani, H.M.; Sibbritt, D.; Patterson, A.; Collins, C. The Australian Recommended Food Score did not predict weight gain in middle-aged Australian women during six years of follow-up. Aust. N. Z. J. Public Health 2013, 37, 322–328. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 29 April 2021).
- Australian Institute of Health and Welfare. Rural, Regional and Remote Health—A Guide to Remoteness Classifications. Available online: https://www.ruralhealth.org.au/sites/default/files/other-bodies/other-bodies-04-03-01.pdf (accessed on 3 March 2021).
- McGrail, M.R.; Humphreys, J.S. Geographical classifications to guide rural health policy in Australia. Aust. N. Z. Health Policy 2009, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dupont, W.D.; Plummer, W.D., Jr. Power and sample size calculations: A review and computer program. Control. Clin. Trials 1990, 11, 116–128. [Google Scholar] [CrossRef]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutr. J. 2019, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- National Rural Health Alliance. Food Security and Health in Rural and Remote Australia. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/16-053.pdf (accessed on 5 May 2021).
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. A revised Australian dietary guideline index and its association with key sociodemographic factors, health behaviors and body mass index in peri-retirement aged adults. Nutrients 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Arabshahi, S.; Lahmann, P.H.; Williams, G.M.; Marks, G.C.; van der Pols, J.C. Longitudinal change in diet quality in australian adults varies by demographic, socio-economic, and lifestyle characteristics. J. Nutr. 2011, 141, 1871–1879. [Google Scholar] [CrossRef] [Green Version]
- Grech, A.; Sui, Z.; Siu, H.Y.; Zheng, M.; Allman-Farinelli, M.; Rangan, A. Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013). Healthcare 2017, 5, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, J.N.; Forder, P.M.; Haslam, R.L.; Hure, A.J.; Loxton, D.J.; Patterson, A.J.; Collins, C.E. Change in Diet Quality over 12 Years in the 1946–1951 Cohort of the Australian Longitudinal Study on Women’s Health. Nutrients 2020, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- McNaughton, S.A.; Ball, K.; Crawford, D.; Mishra, G.D. An index of diet and eating patterns is a valid measure of diet quality in an Australian population. J. Nutr. 2008, 138, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Zarrin, R.; Ibiebele, T.I.; Marks, G.C. Development and validity assessment of a diet quality index for Australians. Asia Pac. J. Clin. Nutr. 2013, 22, 177–187. [Google Scholar] [PubMed]
- Backholer, K.; Spencer, E.; Gearon, E.; Magliano, D.J.; McNaughton, S.A.; Shaw, J.E.; Peeters, A. The association between socio-economic position and diet quality in Australian adults. Public Health Nutr. 2016, 19, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrie, G.A.; Baird, D.; Golley, R.K.; Noakes, M. The CSIRO healthy diet score: An online survey to estimate compliance with the Australian dietary guidelines. Nutrients 2017, 9, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bivoltsis, A.; Trapp, G.S.A.; Knuiman, M.; Hooper, P.; Ambrosini, G.L. Can a simple dietary index derived from a sub-set of questionnaire items assess diet quality in a sample of australian adults? Nutrients 2018, 10, 486. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare. Poor Diet. Available online: https://www.aihw.gov.au/getmedia/f30d2eb2-b6e7-43cc-aba4-74802ad78f6a/Poor-diet.pdf.aspx?inline=true (accessed on 18 May 2021).
- Nichols, T.; Craike, M.; Thevios, I.; Calder, R. Nutrition Policy in Australia: Adopting a Harm Minimisation Approach. Available online: https://www.vu.edu.au/sites/default/files/nutrition-policy-australia-harm-minimsation-approach-policy-evidence-brief.pdf (accessed on 18 May 2021).
- Arabshahi, S.; van der Pols, J.C.; Williams, G.M.; Marks, G.C.; Lahmann, P.H. Diet quality and change in anthropometric measures: 15-year longitudinal study in Australian adults. Br. J. Nutr. 2012, 107, 1376–1385. [Google Scholar] [CrossRef] [Green Version]
- Imamura, F.; Micha, R.; Khatibzadeh, S.; Fahimi, S.; Shi, P.; Powles, J.; Mozaffarian, D.; Global Burden of Diseases, N.; Chronic Diseases Expert, G. Dietary quality among men and women in 187 countries in 1990 and 2010: A systematic assessment. Lancet Glob. Health 2015, 3, e132–e142. [Google Scholar] [CrossRef] [Green Version]
- Alston, L.; Walker, T.; Kent, K. Characterizing Dietary Intakes in Rural Australian Adults: A Systematic Literature Review. Nutrients 2020, 12, 3515. [Google Scholar] [CrossRef]
- Martin, J.C.; Moran, L.J.; Teede, H.J.; Ranasinha, S.; Lombard, C.B.; Harrison, C.L. Exploring diet quality between urban and rural dwelling women of reproductive age. Nutrients 2017, 9, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, W.; McNaughton, S.; Crawford, D.; Ball, K. Does food planning mediate the association between living arrangements and fruit and vegetable consumption among women aged 40 years and older? Appetite 2010, 54, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.; Ball, K.; Crawford, D. Why do some socioeconomically disadvantaged women eat better than others? An investigation of the personal, social and environmental correlates of fruit and vegetable consumption. Appetite 2010, 55, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.B. Household factors associated with older Australian’s purchasing a varied diet: Results from household expenditure data. Nutr. Diet 2006, 63, 28–35. [Google Scholar] [CrossRef]
- Ball, K.; Mishra, G.D.; Thane, C.W.; Hodge, A. How well do Australian women comply with dietary guidelines? Public Health Nutr. 2004, 7, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, K.L.; Collins, P.F. Relationship between living alone and food and nutrient intake. Nutr. Rev. 2015, 73, 594–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunford, E.K.; Ni Mhurchu, C.; Huang, L.; Vandevijvere, S.; Swinburn, B.; Pravst, I.; Tolentino-Mayo, L.; Reyes, M.; L’Abbé, M.; Neal, B.C. A comparison of the healthiness of packaged foods and beverages from 12 countries using the Health Star Rating nutrient profiling system, 2013–2018. Obes. Rev. 2019, 20, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef] [Green Version]
- Higgs, S.; Ruddock, H. Social influences on eating. In Handbook of Eating and Drinking: Interdisciplinary Perspectives; Springer: Berlin/Heidelberg, Germany, 2020; pp. 277–291. [Google Scholar]
- Elstgeest, L.E.M.; Mishra, G.D.; Dobson, A.J. Transitions in Living Arrangements Are Associated with Changes in Dietary Patterns in Young Women. J. Nutr. 2012, 142, 1561–1567. [Google Scholar] [CrossRef] [Green Version]
- Roos, E.; Lahelma, E.; Virtanen, M.; Prättälä, R.; Pietinen, P. Gender, socioeconomic status and family status as determinants of food behaviour. Soc. Sci. Med. 1998, 46, 1519–1529. [Google Scholar] [CrossRef]
- Sotos-Prieto, M.; Bhupathiraju, S.N.; Mattei, J.; Fung, T.T.; Li, Y.; Pan, A.; Willett, W.C.; Rimm, E.B.; Hu, F.B. Association of changes in diet quality with total and cause-specific mortality. N. Engl. J. Med. 2017, 377, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, S.M.; Jonnalagadda, S.S.; Pisegna, J.L.; Kelly, O.J.; Krok-Schoen, J.L.; Taylor, C.A. Poorer Diet Quality Observed Among US Adults with a Greater Number of Clinical Chronic Disease Risk Factors. J. PrimCare Community Health 2020, 11, 2150132720945898. [Google Scholar] [CrossRef] [PubMed]
Male | Female | Total | |||||
---|---|---|---|---|---|---|---|
n = 117 | n = 130 | n = 247 | |||||
Characteristics | Levels | n (100%) | n (100%) | n (100%) | |||
Age (years) | 18–30 | 20 | (17.1%) | 24 | (18.5%) | 44 | (17.8%) |
31–50 | 16 | (13.7%) | 24 | (18.5%) | 40 | (16.2%) | |
51–70 | 57 | (48.7%) | 68 | (52.3%) | 125 | (50.6%) | |
>71 | 24 | (20.5%) | 14 | (10.8%) | 38 | (15.4%) | |
Rurality | Major cities | 27 | (23.1%) | 30 | (23.1%) | 57 | (23.1%) |
Regional/remote | 90 | (76.9%) | 100 | (76.9%) | 190 | (77.9%) | |
Education | ≤Year 12 | 53 1 | (45.7%) 1 | 59 2 | (45.7%) 2 | 112 3 | (45.7%) 3 |
Cert a/Dip b | 30 1 | (25.9%) 1 | 35 2 | (27.1%) 2 | 65 3 | (26.5%) 3 | |
University | 33 1 | (28.4%) 1 | 35 2 | (27.1%) 2 | 68 3 | (27.8%) 3 | |
HH c inc d (pa) e | No income | 9 | (7.7%) | 7 | (5.4%) | 16 | (6.5%) |
Pension | 5 | (4.3%) | 5 | (3.8%) | 10 | (4.0%) | |
AUD 1–51,999 | 32 | (27.4%) | 43 | (33.1%) | 75 | (30.4%) | |
AUD 52,000–103,999 | 28 | (23.9%) | 27 | (20.8%) | 55 | (22.3%) | |
AUD > 104,000 | 22 | (18.8%) | 17 | (13.1%) | 39 | (15.8%) | |
Do not know f | 21 | (17.9%) | 31 | (23.8%) | 52 | (21.1%) | |
Living arrgmt g | Live alone | 15 | (12.8%) | 23 4 | (17.8%) 4 | 38 5 | (15.4%) 5 |
PR h/Spouse only | 69 | (59.0%) | 59 4 | (45.7%) 4 | 128 5 | (52.0%) 5 | |
Single/PR h (CH i) | 18 | (15.4%) | 254 | (19.4%) 4 | 43 5 | (17.5%) 5 | |
Parent/other | 15 | (12.8%) | 224 | (17.1%) 4 | 37 5 | (15.0%) 5 | |
Smoking status | Yes | 44 | (37.6%) | 28 | (21.5%) | 72 | (29.1%) |
No | 73 | (62.4%) | 102 | (78.5%) | 175 | (70.9%) |
Female | Male | Total | ||||
---|---|---|---|---|---|---|
n = 130 | n = 117 | n = 247 | ||||
Characteristics | Median | (IQR) | Median | (IQR) | Median | (IQR) * |
Height (cm) | 163 * | (6.5) * | 176.8 * | (6.6) * | 169.5 * | (9.5) * |
Weight (kg) | 70.2 | (22.6) | 88.9 | (18.7) | 79.7 | (24.3) |
Waist circumference (cm) | 84.9 | (19.9) | 98.9 | (19.3) | 92.0 | (22.2) |
BMI (kg/m2) | n | (100%) | n | (100%) | n | (100%) |
Normal | 22 1 | (18.8%) 1 | 50 | (39.1%) | 72 2 | (29.4%) 2 |
Overweight | 56 1 | (47.9%) 1 | 41 | (32.0%) | 97 2 | (39.6%) 2 |
Obese | 39 1 | (33.3%) 1 | 37 | (28.9%) | 76 2 | (31.0%) 2 |
Number and proportions of chronic health conditions | ||||||
0 | 43 | (33.1%) | 48 3 | (41.7%) 3 | 91 4 | (36.8%) 4 |
1 | 45 | (34.6%) | 35 3 | (30.4%) 3 | 80 4 | (32.4%) 4 |
2 | 22 | (16.9%) | 17 3 | (14.8%) 3 | 39 4 | (15.8%) 4 |
3 | 14 | (10.8%) | 5 3 | 5(4.3%) 3 | 19 4 | (7.7%) 4 |
4 | 4 | (3.1%) | 9 3 | 9(7.7%) 3 | 13 4 | (5.3%) 4 |
5 | 2 | (1.5%) | 1 3 | 1(0.9%)3 | 3 4 | (1.2%) 4 |
Individual diagnosed Chronic health conditions | ||||||
Circulatory conditions | 36 | (27.6%) | 31 5 | (26.0%) 5 | 67 6 | (27.3%) 6 |
Chronic kidney or renal disease | 1 | (0.8%) | 2 5 | (1.7%) 5 | 3 6 | (1.2%) 6 |
Diabetes (type 1, type 2 or gestational) | 9 | (6.9%) | 8 5 | (7.0%) 5 | 17 6 | (6.9%) 6 |
Overweight or obesity | 27 | (20.8%) | 25 5 | (21.7%) 5 | 52 6 | (21.2%) 6 |
Cancer (any) | 6 | (4.6%) | 10 5 | (8.7%) 5 | 16 6 | (6.5%) 6 |
Chronic mental health conditions a | 24 | (18.5%) | 10 5 | (8.7%) 5 | 34 6 | (13.9%) 6 |
Musculoskeletal conditions b | 32 | (24.6%) | 26 5 | (22.6%) 5 | 58 6 | (23.7%) 6 |
Respiratory conditions c | 22 | (16.9%) | 14 5 | (12.2%) 5 | 36 6 | (14.7%) 6 |
None of the above | 49 | (33.1%) | 43 5 | (42.6%) 5 | 92 6 | (37.6%) 6 |
TOTAL | Male | Female | |||||
---|---|---|---|---|---|---|---|
ARFS Subscales | Reference Range | Mean | (SD) | Mean | (SD) | Mean | (SD) |
(n = 247) | (n = 117) | (n = 130) | |||||
Total | 0–73 | 34.5 | (9.0) | 33.4 | (8.9) | 35.5 | (9.2) |
Vegetables | 0–21 | 13.5 | (4.2) | 13 | (4.2) | 13.9 | (4.1) |
Fruit | 0–12 | 5.5 | (2.7) | 5.3 | (2.7) | 5.7 | (2.7) |
Meat | 0–7 | 3.1 | (1.5) | 3.2 | (1.5) | 3.0 | (1.4) |
Meat alternatives | 0–6 | 2.2 | (1.3) | 2.0 | (1.2) | 2.3 | (1.3) |
Grains | 0–13 | 5.0 | (2.2) | 4.9 | (2.2) | 5.1 | (2.1) |
Dairy | 0–11 | 3.9 | (1.8) | 3.7 | (1.7) | 4.1 | (1.9) |
Extras | 0–1 | 0.8 | (0.8) | 0.9 | (0.8) | 0.8 | (0.7) |
Water | 0–2 | 0.6 | (0.5) | 0.6 | (0.5) | 0.7 | (0.5) |
Multivariate | (R2 0.077, p ≤ 0.001) | ||||
---|---|---|---|---|---|
Characteristics | Levels | β Coefficient | SE a | 95% CI b | p |
Rurality | Major cities (n = 57) | Reference Category | - | - | |
Regional/remote (n = 190) | −0.4 | 1.4 | (−3.0, 2.3) | 0.790 | |
Age (years) | 18–30 (n = 44) | Reference Category | - | - | |
31–50 (n = 40) | 5.4 | 2.6 | (0.3, 10.4) | 0.037 * | |
51–70 (n = 125) | 4.4 | 2.1 | (0.3, 8.5) | 0.035 * | |
71 > (n = 38) | 6.5 | 2.5 | (1.6, 11.4) | 0.010 * | |
Living arrgmt c | Alone (n = 38) | Reference Category | - | - | |
PR d/Spouse only (n = 128) | 5.2 | 1.6 | (2.0, 8.4) | <0.002 * | |
Single/PR d (CH) e (n = 43) | 5.6 | 2.1 | (1.4, 9.8) | 0.008 * | |
Parents/other (n = 37) | 5.8 | 2.4 | (1.1, 10.5) | 0.016 * | |
Number of chronic health conditions | Continuous variable (n = 245) | −1.4 | 0.5 | (−2.3, −0.4) | 0.004 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pullen, R.; Kent, K.; Sharman, M.J.; Schumacher, T.L.; Brown, L.J. A Comparison of Diet Quality in a Sample of Rural and Urban Australian Adults. Nutrients 2021, 13, 4130. https://doi.org/10.3390/nu13114130
Pullen R, Kent K, Sharman MJ, Schumacher TL, Brown LJ. A Comparison of Diet Quality in a Sample of Rural and Urban Australian Adults. Nutrients. 2021; 13(11):4130. https://doi.org/10.3390/nu13114130
Chicago/Turabian StylePullen, Rebekah, Katherine Kent, Matthew J. Sharman, Tracy L. Schumacher, and Leanne J. Brown. 2021. "A Comparison of Diet Quality in a Sample of Rural and Urban Australian Adults" Nutrients 13, no. 11: 4130. https://doi.org/10.3390/nu13114130
APA StylePullen, R., Kent, K., Sharman, M. J., Schumacher, T. L., & Brown, L. J. (2021). A Comparison of Diet Quality in a Sample of Rural and Urban Australian Adults. Nutrients, 13(11), 4130. https://doi.org/10.3390/nu13114130