Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education
Abstract
:1. Introduction
2. Assumptions Made for This Review
3. Scientifically Supported, Sustainable Diet Education Recommendations
3.1. Shift towards a More Plant-Based Diet
- Upstream activities, including the production of feed crops for livestock, and the energy costs associated with constructing farm buildings and running equipment powered by fossil fuels;
- Animal production activities, including nitrous oxide formation from animal waste, methane production from ruminant enteric fermentation, and the energy costs of maintaining livestock (e.g., heating and cooling);
- Downstream activities, including energy costs associated with the transport, slaughter, processing, and packaging of livestock and related food products.
- Meat from insects such as locusts (called insect meat) [63].
3.2. Mitigate Food Waste
3.3. Limit Consumption of Ultra-Processed Foods
3.4. Engage in Local Food Systems
3.5. Choose Sustainable Seafood
4. Discussion
4.1. Summary and Rationale for Specific Recommendations Offered
4.2. Integrating Sustainable Diet Information in Nutrition Education
Author Contributions
Funding
Conflicts of Interest
References
- OurWorldInData. Sustainability through Data: Global Trends in Environmental Change. Available online: https://slides.ourworldindata.org/environmental-change/#/title-slide (accessed on 11 November 2021).
- World Commission on Environment and Development. Our common future—Call for action. Environmental Conservation 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Tagtow, A.; Robien, K.; Bergquist, E.; Bruening, M.; Dierks, L.; Hartman, B.E.; Robinson-O’Brien, R.; Steinitz, T.; Tahsin, B.; Underwood, T.; et al. Academy of nutrition and dietetics: Standards of professional performance for registered dietitian nutritionists (competent, proficient, and expert) in sustainable, resilient, and healthy food and water systems. J. Acad. Nutr. Diet. 2014, 114, 475–488 e424. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H. Sustainable Food Systems: Concept and Framework; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; p. 35. [Google Scholar]
- Development Initiatives Poverty Research Ltd. Executive Summary. In 2018 Global Nutrition Report: Shining a light to spur action on nutrition; Development Initiatives Poverty Research Ltd: Bristol, UK, 2018. [Google Scholar]
- Ehrlich, P.R.; Harte, J. Opinion: To feed the world in 2050 will require a global revolution. Proc. Natl. Acad. Sci. USA 2015, 112, 14743–14744. [Google Scholar] [CrossRef] [Green Version]
- United Nations Department of Economic and Social Affairs. World Population Prospects 2019. Available online: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900 (accessed on 7 September 2021).
- The Intergovernmental Panel on Climate Change. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Bioversity International. Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action. Available online: http://www.fao.org/3/i3004e/i3004e.pdf (accessed on 11 July 2021).
- Fardet, A.; Rock, E. How to protect both health and food system sustainability? A holistic ‘global health’-based approach via the 3V rule proposal. Public Health Nutr. 2020, 23, 3028–3044. [Google Scholar] [CrossRef]
- Macdiarmid, J.I. Is a healthy diet an environmentally sustainable diet? Proc. Nutr. Soc. 2013, 72, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Dernini, S.; Berry, E.M.; Serra-Majem, L.; La Vecchia, C.; Capone, R.; Medina, F.X.; Aranceta-Bartrina, J.; Belahsen, R.; Burlingame, B.; Calabrese, G.; et al. Med Diet 4.0: The Mediterranean diet with four sustainable benefits. Public Health Nutr. 2017, 20, 1322–1330. [Google Scholar] [CrossRef]
- Steenson, S.; Buttriss, J.L. The challenges of defining a healthy and ‘sustainable’ diet. Nutr. Bull. 2020, 45, 206–222. [Google Scholar] [CrossRef]
- Clonan, A.; Holdsworth, M. The challenges of eating a healthy and sustainable diet. Am. J. Clin. Nutr. 2012, 96, 459–460. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.E.; Hamm, M.W.; Hu, F.B.; Abrams, S.A.; Griffin, T.S. Alignment of healthy dietary patterns and environmental sustainability: A systematic review. Adv. Nutr. 2016, 7, 1005–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltzer, H.M.; Brantsaeter, A.L.; Trolle, E.; Eneroth, H.; Fogelholm, M.; Ydersbond, T.A.; Birgisdottir, B.E. Environmental sustainability perspectives of the nordic diet. Nutrients 2019, 11, 2248. [Google Scholar] [CrossRef] [Green Version]
- Fink, L.; Ploeger, A.; Strassner, C. Participative processes as a chance for developing ideas to bridge the intention-behavior gap concerning sustainable diets. Sustainability 2018, 10, 4434. [Google Scholar] [CrossRef] [Green Version]
- Gorgitano, M.T.; Sodano, V. Promoting sustainable food consumption: The case of nutrition education programs in public schools. In Proceedings of the 1st AIEAA Conference—Towards A Sustainable Bio-Economy: Economic Issues and Policy Challenges, Trento, Italy, 4–5 June 2012; p. 13. [Google Scholar]
- Elliott, C.; Hyde, L.; McDonnell, L.; Monroe, M.; Rashash, D.; Sheftall, W.; Simon-Brown, V.; Worthley, T.; Crosby, G.; Tupas, L. Sustainable living education: A call to all extension. J. Ext. 2008, 46, 2COM1. [Google Scholar]
- Reguant-Closa, A.; Roesch, A.; Lansche, J.; Nemecek, T.; Lohman, T.G.; Meyer, N.L. The environmental impact of the athlete’s plate nutrition education tool. Nutrients 2020, 12, 2484. [Google Scholar] [CrossRef]
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the society for nutrition education and behavior: The importance of including environmental sustainability in dietary guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, J. Nutrition education in the Anthropocene: Toward public and planetary health. J. Agric. Food Syst. Community Dev. 2020, 1–11. [Google Scholar] [CrossRef]
- Contento, I.R. Nutrition Education: Linking Research, Theory and Practice; Jones & Bartlett: Burlington, MA, USA, 2007. [Google Scholar]
- Society for Nutrition Education and Behavior. About. Available online: https://www.sneb.org/about/ (accessed on 7 September 2021).
- Gussow, J.D.; Clancy, K.L. Dietary guidelines for sustainability. J. Nutr. Educ. 1986, 18, 1–5. [Google Scholar] [CrossRef]
- Sackett, D.L. Evidence-based medicine. Semin. Perinatol. 1997, 21, 3–5. [Google Scholar] [CrossRef]
- Dollahite, J.S.; Fitch, C.; Carroll, J. What does evidence-based mean for nutrition educators? best practices for choosing nutrition education interventions based on the strength of the evidence. J. Nutr. Educ. Behav. 2016, 48, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Auld, G.; Ammerman, A.; Lohse, B.; Serrano, E.; Wardlaw, M.K. Identification of a framework for best practices in nutrition education for low-income audiences. J. Nutr. Educ. Behav. 2020, 52, 546–552. [Google Scholar] [CrossRef]
- Alonso Alvarez, S.; Baltenweck, I.; Iannotti, L.; Dominguez-Salas, P. First Ever Global Scientific Eating Plan Forgets the World’s Poor. Available online: https://theconversation.com/first-ever-global-scientific-eating-plan-forgets-the-worlds-poor-112238 (accessed on 25 June 2021).
- Verkerk, R. EAT-Lancet–is there such a thing as ‘one-size-fits-all’ sustainability? J. Holist. Healthc. 2019, 16, 15. [Google Scholar]
- Garnett, T. Food sustainability: Problems, perspectives and solutions. Proc. Nutr. Soc. 2013, 72, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Milner, J.; Green, R. Sustainable diets are context specific but are they realistic? Lancet Planet. Health 2018, 2, e425–e426. [Google Scholar] [CrossRef] [Green Version]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R. Writing narrative style literature reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; U.S. Departments of Agriculture and Health & Human Services: Washington, DC, USA, 2015.
- de Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Hedenus, F.; Wirsenius, S.; Johansson, D.J.A. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Chang. 2014, 124, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 476S–482S. [Google Scholar] [CrossRef]
- Hyland, J.J.; Henchion, M.; McCarthy, M.; McCarthy, S.N. The role of meat in strategies to achieve a sustainable diet lower in greenhouse gas emissions: A review. Meat Sci. 2017, 132, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Stoll-Kleemann, S.; O’Riordan, T. The sustainability challenges of our meat and dairy diets. Environ. Sci. Policy Sustain. Dev. 2015, 57, 34–48. [Google Scholar] [CrossRef]
- Chai, B.C.; van der Voort, J.R.; Grofelnik, K.; Eliasdottir, H.G.; Klöss, I.; Perez-Cueto, F.J.A. Which diet has the least environmental impact on our planet? a systematic review of vegan, vegetarian and omnivorous diets. Sustainability 2019, 11, 4110. [Google Scholar] [CrossRef] [Green Version]
- Marlow, H.J.; Hayes, W.K.; Soret, S.; Carter, R.L.; Schwab, E.R.; Sabate, J. Diet and the environment: Does what you eat matter? Am. J. Clin. Nutr. 2009, 89, 1699S–1703S. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Klopffer, W. Life cycle assessment: From the beginning to the current state. Environ. Sci. Pollut. Res. Int. 1997, 4, 223–228. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Environmental Impacts of Food Production, Our World in Data. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 29 June 2021).
- Food and Agriculture Organization of the United Nations. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8, 034015. [Google Scholar] [CrossRef]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Pohjolainen, P.; Vinnari, M.; Jokinen, P. Consumers’ perceived barriers to following a plant-based diet. Br. Food J. 2015, 117, 1150–1167. [Google Scholar] [CrossRef]
- de Boer, J.; Aiking, H. Pursuing a low meat diet to improve both health and sustainability: How can we use the frames that shape our meals? Ecol. Econ. 2017, 142, 238–248. [Google Scholar] [CrossRef]
- Heffernan, O. Sustainability: A meaty issue. Nature 2017, 544, S18–S20. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Fresán, U.; Mejia, M.A.; Craig, W.J.; Jaceldo-Siegl, K.; Sabaté, J. Meat analogs from different protein sources: A comparison of their sustainability and nutritional content. Sustainability 2019, 11, 3231. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Otis, B.O.; McCarthy, G. Can plant-based meat alternatives be part of a healthy and sustainable diet? JAMA 2019, 322, 1547–1548. [Google Scholar] [CrossRef]
- Curtain, F.; Grafenauer, S. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Tuomisto, H.L. The eco-friendly burger: Could cultured meat improve the environmental sustainability of meat products? EMBO Rep. 2019, 20, e47395. [Google Scholar] [CrossRef] [PubMed]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Poortvliet, P.M.; Van der Pas, L.; Mulder, B.C.; Fogliano, V. Healthy, But disgusting: An investigation into consumers’ willingness to try insect meat. J. Econ. Entomol. 2019, 112, 1005–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starostinetskaya, A. Burger king finally launches meatless impossible whopper in Canada. VegNews. 23 March 2021. Available online: https://vegnews.com/2021/3/burger-king-finally-launches-meatless-impossible-whopper-in-canada (accessed on 11 November 2021).
- McDonald’s. McDonald’s® Begins Small McPlant™ Operations Test at Eight U.S. Restaurants. Available online: https://corporate.mcdonalds.com/corpmcd/en-us/our-stories/article/ourstories.mcplant-usrestaurant.html (accessed on 13 November 2021).
- Magkos, F.; Tetens, I.; Bugel, S.G.; Felby, C.; Schacht, S.R.; Hill, J.O.; Ravussin, E.; Astrup, A. A perspective on the transition to plant-based diets: A diet change may attenuate climate change, but can it also attenuate obesity and chronic disease risk? Adv. Nutr. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vought, R.L.; London, W.T. Dietary sources of iodine. Am. J. Clin. Nutr. 1964, 14, 186–192. [Google Scholar] [CrossRef]
- Lassen, A.D.; Christensen, L.M.; Trolle, E. Development of a Danish adapted healthy plant-based diet based on the eat-lancet reference diet. Nutrients 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- Dagevos, H.; Voordouw, J. Sustainability and meat consumption: Is reduction realistic? Sustain. Sci. Pract. Policy 2017, 9, 60–69. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Svenning, J.C. Causing confusion in the debate about the transition toward a more plant-based diet. Proc. Natl. Acad. Sci. USA 2018, 115, E1701–E1702. [Google Scholar] [CrossRef] [Green Version]
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, Health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia Richi, E.; Baumer, B.; Conrad, B.; Darioli, R.; Schmid, A.; Keller, U. Health risks associated with meat consumption: A review of epidemiological studies. Int. J. Vitam. Nutr. Res. 2015, 85, 70–78. [Google Scholar] [CrossRef]
- Salter, A.M. The effects of meat consumption on global health. Rev. Sci. Tech. 2018, 37, 47–55. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Global Food Losses and Food Waste–Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Göbel, C.; Langen, N.; Blumenthal, A.; Teitscheid, P.; Ritter, G. Cutting food waste through cooperation along the food supply chain. Sustainability 2015, 7, 1429–1445. [Google Scholar] [CrossRef] [Green Version]
- Bellemare, M.F.; Çakir, M.; Peterson, H.H.; Novak, L.; Rudi, J. On the measurement of food waste. Am. J. Agric. Econ. 2017, 99, 1148–1158. [Google Scholar] [CrossRef]
- Alamar, M.D.C.; Falagan, N.; Aktas, E.; Terry, L.A. Minimising food waste: A call for multidisciplinary research. J. Sci. Food Agric. 2018, 98, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Spang, E.S.; Moreno, L.C.; Pace, S.A.; Achmon, Y.; Donis-Gonzalez, I.; Gosliner, W.A.; Jablonski-Sheffield, M.P.; Momin, M.A.; Quested, T.E.; Winans, K.S.; et al. Food loss and waste: Measurement, drivers, and solutions. Annu. Rev. Environ. Resour. 2019, 44, 117–156. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2019. In Moving forward on food loss and waste reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- United Nations Environment Programme. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Xue, L.; Liu, G.; Parfitt, J.; Liu, X.; Van Herpen, E.; Stenmarck, A.; O’Connor, C.; Ostergren, K.; Cheng, S. Missing food, Missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 2017, 51, 6618–6633. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A methodology for sustainable management of food waste. Waste Biomass Valorization 2017, 8, 2209–2227. [Google Scholar] [CrossRef] [Green Version]
- Papargyropoulou, E.; Lozano, R.; Steinberger, K.J.; Wright, N.; Ujang, Z.b. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Mourad, M. Recycling, Recovering and preventing “food waste”: Competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 2016, 126, 461–477. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Food Recovery Hierarchy. Available online: https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy (accessed on 21 September 2021).
- Commonwealth of Australia. National Food Waste Strategy: Halving Australia’s Food Waste by 2030. Available online: http://extwprlegs1.fao.org/docs/pdf/aus178781.pdf (accessed on 21 September 2021).
- UK Department for Environment Food and Rural Affairs. Guidance on applying the Waste Hierarchy. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69403/pb13530-waste-hierarchy-guidance.pdf (accessed on 21 September 2021).
- U.S. Department of Agriculture National Institute of Food and Agriculture. The Expanded Food and Nutrition Education Program Policies. Available online: https://nifa.usda.gov/sites/default/files/program/EFNEP-Policy-December-2017-Update.pdf (accessed on 5 September 2021).
- Adedokun, O.A.; Plonski, P.; Aull, M. Food resource management mediates the relationship between participation in a SNAP-Ed nutrition education program and diet quality. J. Nutr. Educ. Behav. 2021, 53, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, L.; Chaidez, V.; Algert, S.; Horowitz, M.; Martin, A.; Mendoza, C.; Neelon, M.; Ginsburg, D.C. Food resource management education with SNAP participation improves food security. J. Nutr. Educ. Behav. 2015, 47, 374–378. [Google Scholar] [CrossRef]
- Schmidt, K.; Matthies, E. Where to start fighting the food waste problem? Identifying most promising entry points for intervention programs to reduce household food waste and overconsumption of food. Resour. Conserv. Recycl. 2018, 139, 1–14. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; de Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-related food waste: Causes and potential for action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Ganglbauer, E.; Fitzpatrick, G.; Comber, R. Negotiating food waste. ACM Trans. Comput. Hum. Interact. 2013, 20, 1–25. [Google Scholar] [CrossRef]
- Silvenius, F.; Grönman, K.; Katajajuuri, J.-M.; Soukka, R.; Koivupuro, H.-K.; Virtanen, Y. The role of household food waste in comparing environmental impacts of packaging alternatives. Packag. Technol. Sci. 2014, 27, 277–292. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; p. 48. [Google Scholar]
- Fardet, A.; Rock, E. Ultra-processed foods: A new holistic paradigm? Trends Food Sci. Technol. 2019, 93, 174–184. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E. Ultra-processed foods and food system sustainability: What are the links? Sustainability 2020, 12, 6280. [Google Scholar] [CrossRef]
- Hendrie, G.A.; Baird, D.; Ridoutt, B.; Hadjikakou, M.; Noakes, M. Overconsumption of energy and excessive discretionary food intake inflates dietary greenhouse gas emissions in Australia. Nutrients 2016, 8, 690. [Google Scholar] [CrossRef] [Green Version]
- Hadjikakou, M. Trimming the excess: Environmental impacts of discretionary food consumption in Australia. Ecol. Econ. 2017, 131, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Nestle, M.; Wing, R.; Birch, L.; DiSogra, L.; Drewnowski, A.; Middleton, S.; Sigman-Grant, M.; Sobal, J.; Winston, M.; Economos, C. Behavioral and social influences on food choice. Nutr. Rev. 1998, 56, S50–S64. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.M.; Reisch, L.A. Behavioural insights and (Un)healthy dietary choices: A review of current evidence. J. Consum. Policy 2018, 42, 3–45. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [Green Version]
- Moubarac, J.C.; Batal, M.; Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14 (Suppl. S2), 21–28. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.; Ricardo, C.Z.; Steele, E.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2018, 21, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Marron-Ponce, J.A.; Sanchez-Pimienta, T.G.; Louzada, M.; Batis, C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalan, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Elizabeth, L.; Machado, P.; Zinocker, M.; Baker, P.; Lawrence, M. Ultra-processed foods and health outcomes: A narrative review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, F.C.; Coelho, E.M.; Egerer, M. Local food: Benefits and failings due to modern agriculture. Sci. Agric. 2018, 75, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.H.; Nishiyama, M. The chisan-chisho movement: Japanese local food movement and its challenges. Agric. Hum. Values 2007, 25, 49–64. [Google Scholar] [CrossRef]
- Bellante, L. Building the local food movement in Chiapas, Mexico: Rationales, benefits, and limitations. Agric. Hum. Values 2016, 34, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Martinez, S.; Hand, M.; Da Pra, M.; Pollack, S.; Ralston, K.; Smith, T.; Vogel, S.; Clark, S.; Lohr, L.; Low, S.; et al. Local food systems: Concepts, impacts, and issues; ERR 97; U.S. Department of Agriculture Economic Research Service: Washington, DC, USA, 2010.
- House of Representatives. H.R. 2419, the Food Conservation, and Energy Act of 2008. 2008. Available online: https://archives-agriculture.house.gov/issue/farm-bill/2008-farm-bill (accessed on 20 November 2021).
- Conseil de Développement du Pays d’Ancenis [COMPA]. Les Circuits Courts Alimentaires de Proximite en Pays d’Ancenis (Food Short Circuits in the Countries of Ancenis). 2015. Available online: https://www.pays-ancenis.com/compa/nos-partenaires/conseil-de-developpement (accessed on 20 November 2021).
- Government of Canada. Local Food Claims Interim Policy. Available online: https://inspection.canada.ca/food-label-requirements/labelling/industry/origin-claims-on-food-labels/local-food-claims/eng/1368135927256/1368136146333 (accessed on 29 September 2021).
- O’Neill, K.J. Situating the ‘alternative’ within the ‘conventional’—Local food experiences from the East Riding of Yorkshire, UK. J. Rural. Stud. 2014, 35, 112–122. [Google Scholar] [CrossRef]
- Brunori, G.; Galli, F.; Barjolle, D.; van Broekhuizen, R.; Colombo, L.; Giampietro, M.; Kirwan, J.; Lang, T.; Mathijs, E.; Maye, D.; et al. Are local food chains more sustainable than global food chains? Considerations for assessment. Sustainability 2016, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, E.; Galli, F.; Menozzi, D.; Maye, D.; Touzard, J.-M.; Marescotti, A.; Six, J.; Brunori, G. Comparing the sustainability of local and global food products in Europe. J. Clean. Prod. 2017, 165, 346–359. [Google Scholar] [CrossRef]
- Majewski, E.; Komerska, A.; Kwiatkowski, J.; Malak-Rawlikowska, A.; Wąs, A.; Sulewski, P.; Gołaś, M.; Pogodzińska, K.; Lecoeur, J.-L.; Tocco, B.; et al. Are short food supply chains more environmentally sustainable than long chains? A life cycle assessment (LCA) of the eco-efficiency of food chains in selected EU countries. Energies 2020, 13, 4853. [Google Scholar] [CrossRef]
- Paxton, A. The Food Miles Report: The Dangers of Long Distance Food Transport; SAFE Alliance: London, UK, 1994. [Google Scholar]
- Coley, D.; Howard, M.; Winter, M. Food miles: Time for a re-think? Br. Food J. 2011, 113, 919–934. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.L.; Matthews, H.S. Food-miles and the relative climate impacts of food choices in the United States. Env. Sci. Technol. 2008, 42, 3508–3513. [Google Scholar] [CrossRef] [Green Version]
- Mundler, P.; Rumpus, L. The energy efficiency of local food systems: A comparison between different modes of distribution. Food Policy 2012, 37, 609–615. [Google Scholar] [CrossRef]
- Plawecki, R.; Pirog, R.; Montri, A.; Hamm, M.W. Comparative carbon footprint assessment of winter lettuce production in two climatic zones for Midwestern market. Renew. Agric. Food Syst. 2013, 29, 310–318. [Google Scholar] [CrossRef]
- Jarzębowski, S.; Bourlakis, M.; Bezat-Jarzębowska, A. Short food supply chains (SFSC) as local and sustainable systems. Sustainability 2020, 12, 4715. [Google Scholar] [CrossRef]
- Hughes, D.W.; Brown, C.; Miller, S.; McConnell, T. Evaluating the economic impact of farmers’ markets using an opportunity cost framework. J. Agric. Appl. Econ. 2007, 40, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Shideler, D.; Bauman, A.; Thilmany, D.; Jablonski, B.B.R. Putting local food dollars to work: The economic benefits of local food dollars to workers, farms and communities. CHOICES 2018, 33, 1–8. [Google Scholar]
- Malagon-Zaldua, E.; Begiristain-Zubillaga, M.; Onederra-Aramendi, A. Measuring the economic impact of farmers’ markets on local economies in the basque country. Agriculture 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.; Miller, S. The impacts of local markets: A review of research on farmers markets and community supported agriculture (CSA). Am. J. Agric. Econ. 2008, 90, 1298–1302. [Google Scholar] [CrossRef]
- Schoolman, E.D. Local food and civic engagement: Do farmers who market local food feel more responsible for their communities? Rural. Sociol. 2020, 85, 806–839. [Google Scholar] [CrossRef]
- Jilcott Pitts, S.B.; Wu, Q.; McGuirt, J.T.; Crawford, T.W.; Keyserling, T.C.; Ammerman, A.S. Associations between access to farmers’ markets and supermarkets, shopping patterns, fruit and vegetable consumption and health indicators among women of reproductive age in eastern North Carolina, U.S.A. Public Health Nutr. 2013, 16, 1944–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, K.L.; Kolodinsky, J.; Wang, W.; Morgan, E.H.; Pitts, S.B.J.; Ammerman, A.S.; Sitaker, M.; Seguin, R.A. Adults and children in low-income households that participate in cost-offset community supported agriculture have high fruit and vegetable consumption. Nutrients 2017, 9, 726. [Google Scholar] [CrossRef]
- Olsho, L.E.; Payne, G.H.; Walker, D.K.; Baronberg, S.; Jernigan, J.; Abrami, A. Impacts of a farmers’ market incentive programme on fruit and vegetable access, purchase and consumption. Public Health Nutr. 2015, 18, 2712–2721. [Google Scholar] [CrossRef] [Green Version]
- Young, C.R.; Aquilante, J.L.; Solomon, S.; Colby, L.; Kawinzi, M.A.; Uy, N.; Mallya, G. Improving fruit and vegetable consumption among low-income customers at farmers markets: Philly food bucks, Philadelphia, Pennsylvania, 2011. Prev. Chronic. Dis. 2013, 10, E166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izumi, B.T.; Higgins, C.E.; Baron, A.; Ness, S.J.; Allan, B.; Barth, E.T.; Smith, T.M.; Pranian, K.; Frank, B. Feasibility of using a community-supported agriculture program to increase access to and intake of vegetables among federally qualified health center patients. J. Nutr. Educ. Behav. 2018, 50, 289–296.e1. [Google Scholar] [CrossRef]
- Allen, J.E.; Rossi, J.; Woods, T.A.; Davis, A.F. Do Community supported agriculture programmes encourage change to food lifestyle behaviours and health outcomes? New evidence from shareholders. Int. J. Agric. Sustain. 2016, 15, 70–82. [Google Scholar] [CrossRef]
- Izumi, B.T.; Martin, A.; Garvin, T.; Higgins Tejera, C.; Ness, S.; Pranian, K.; Lubowicki, L. CSA partnerships for health: Outcome evaluation results from a subsidized community-supported agriculture program to connect safety-net clinic patients with farms to improve dietary behaviors, food security, and overall health. Transl. Behav. Med. 2020, 10, 1277–1285. [Google Scholar] [CrossRef]
- Minaker, L.M.; Raine, K.D.; Fisher, P.; Thompson, M.E.; Van Loon, J.; Frank, L.D. Food Purchasing from farmers’ markets and community-supported agriculture is associated with reduced weight and better diets in a population-based sample. J. Hunger. Environ. Nutr. 2014, 9, 485–497. [Google Scholar] [CrossRef]
- Minaker, L.M.; Olstad, D.L.; Thompson, M.E.; Raine, K.D.; Fisher, P.; Frank, L.D. Associations between frequency of food shopping at different store types and diet and weight outcomes: Findings from the NEWPATH study. Public Health Nutr. 2016, 19, 2268–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendry, L.C.; Stevenson, M.; MacBryde, J.; Ball, P.; Sayed, M.; Liu, L. Local food supply chain resilience to constitutional change: The Brexit effect. Int. J. Oper. Prod. Manag. 2019, 39, 429–453. [Google Scholar] [CrossRef]
- Petropoulou, E.A. The role of short food supply chains in Greece—What opportunities for sustainable, just and democratic food systems at times of crisis? Sociol. Anthropol. 2016, 4, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.W.; Ross, P.P. Examining local food procurement, adaptive capacities and resilience to environmental change in fort providence, northwest territories. Can. Food Stud. La Rev. Can. Des. Études Sur L’alimentation 2020, 7, 20–43. [Google Scholar] [CrossRef]
- Beltrán-Tolosa, L.M.; Navarro-Racines, C.; Pradhan, P.; Cruz-Garcia, G.S.; Solis, R.; Quintero, M. Action needed for staple crops in the Andean-Amazon foothills because of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1103–1127. [Google Scholar] [CrossRef]
- Worstell, J. Ecological resilience of food systems in response to the COVID-19 crisis. J. Agric. Food Syst. Community Dev. 2020, 9, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Nemes, G.; Chiffoleau, Y.; Zollet, S.; Collison, M.; Benedek, Z.; Colantuono, F.; Dulsrud, A.; Fiore, M.; Holtkamp, C.; Kim, T.-Y.; et al. The impact of COVID-19 on alternative and local food systems and the potential for the sustainability transition: Insights from 13 countries. Sustain. Prod. Consum. 2021, 28, 591–599. [Google Scholar] [CrossRef]
- Fei, S.; Ni, J.; Santini, G. Local food systems and COVID-19: An insight from China. Resour. Conserv. Recycl. 2020, 162, 105022. [Google Scholar] [CrossRef] [PubMed]
- Kanter, R.; Boza, S. Strengthening local food systems in times of concomitant global crises: Reflections from chile. Am. J. Public Health 2020, 110, 971–973. [Google Scholar] [CrossRef]
- Lal, R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur. 2020, 12, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ralston, N.V.C. Seafood and health: What you need to know? Adv. Food Nutr. Res. 2021, 97, 275–318. [Google Scholar] [CrossRef]
- Golden, C.D.; Koehn, J.Z.; Shepon, A.; Passarelli, S.; Free, C.M.; Viana, D.F.; Matthey, H.; Eurich, J.G.; Gephart, J.A.; Fluet-Chouinard, E.; et al. Aquatic foods to nourish nations. Nature 2021, 598, 315–320. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. 2020–2025 Dietary Guidelines for Americans. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 23 February 2021).
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Ganapathiraju, P.; Pitcher, T.J.; Mantha, G. Estimates of illegal and unreported seafood imports to Japan. Mar. Policy 2019, 108, 103439. [Google Scholar] [CrossRef]
- Pramod, G.; Nakamura, K.; Pitcher, T.J.; Delagran, L. Estimates of illegal and unreported fish in seafood imports to the USA. Mar. Policy 2014, 48, 102–113. [Google Scholar] [CrossRef]
- Jacquet, J.L.; Pauly, D. Trade secrets: Renaming and mislabeling of seafood. Mar. Policy 2008, 32, 309–318. [Google Scholar] [CrossRef]
- Kirby, D.S.; Ward, P. Standards for the effective management of fisheries bycatch. Mar. Policy 2014, 44, 419–426. [Google Scholar] [CrossRef]
- Pelc, R.A.; Max, L.M.; Norden, W.; Roberts, S.; Silverstein, R.; Wilding, S.R. Further action on bycatch could boost United States fisheries performance. Mar. Policy 2015, 56, 56–60. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Valenti, W.C.; Kimpara, J.M.; Preto, B.L. Measuring aquaculture sustainability. World Aquac. 2011, 42, 26–30. [Google Scholar]
- Dawood, M.A.O.; Koshio, S.; Abdel-Daim, M.M.; Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 2019, 11, 907–924. [Google Scholar] [CrossRef]
- Custódio, M.; Villasante, S.; Calado, R.; Lillebø, A.I. Valuation of ecosystem services to promote sustainable aquaculture practices. Rev. Aquac. 2019, 12, 392–405. [Google Scholar] [CrossRef] [Green Version]
- Reverter, M.; Tapissier-Bontemps, N.; Sarter, S.; Sasal, P.; Caruso, D. Moving towards more sustainable aquaculture practices: A meta-analysis on the potential of plant-enriched diets to improve fish growth, immunity and disease resistance. Rev. Aquac. 2020, 13, 537–555. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Monterey Bay Aquarium. Seafood Watch Consumer Guide 2021. Available online: https://www.seafoodwatch.org/globalassets/sfw/pdf/guides/seafood-watch-national-guide.pdf (accessed on 29 September 2021).
- Tlusty, M.F.; Tyedmers, P.; Bailey, M.; Ziegler, F.; Henriksson, P.J.G.; Béné, C.; Bush, S.; Newton, R.; Asche, F.; Little, D.C.; et al. Reframing the sustainable seafood narrative. Glob. Environ. Chang. 2019, 59, 101991. [Google Scholar] [CrossRef]
- Watson, R.; Zeller, D.; Pauly, D. Primary productivity demands of global fishing fleets. Fish Fish. 2014, 15, 231–241. [Google Scholar] [CrossRef]
- Hallström, E.; Bergman, K.; Mifflin, K.; Parker, R.; Tyedmers, P.; Troell, M.; Ziegler, F. Combined climate and nutritional performance of seafoods. J. Clean. Prod. 2019, 230, 402–411. [Google Scholar] [CrossRef]
- Farmery, A.K.; Hendrie, G.A.; O’Kane, G.; McManus, A.; Green, B.S. Sociodemographic variation in consumption patterns of sustainable and nutritious seafood in Australia. Front. Nutr. 2018, 5, 118. [Google Scholar] [CrossRef]
- He, J. From country-of-origin labelling (COOL) to seafood import monitoring program (SIMP): How far can seafood traceability rules go? Mar. Policy 2018, 96, 163–174. [Google Scholar] [CrossRef]
- Petrossian, G.A. Preventing illegal, unreported and unregulated (IUU) fishing: A situational approach. Biological Conservation 2015, 189, 39–48. [Google Scholar] [CrossRef]
- Fujii, I.; Okochi, Y.; Kawamura, H. Promoting cooperation of monitoring, control, and surveillance of IUU fishing in the Asia-Pacific. Sustainability 2021, 13, 10231. [Google Scholar] [CrossRef]
- Petrossian, G.A.; Marteache, N.; Viollaz, J. Where do “Undocumented” Fish Land? An empirical assessment of port characteristics for IUU fishing. Eur. J. Crim. Policy Res. 2014, 21, 337–351. [Google Scholar] [CrossRef]
- Avadí, A.; Fréon, P. A set of sustainability performance indicators for seafood: Direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol. Indic. 2015, 48, 518–532. [Google Scholar] [CrossRef]
- Farmery, A.K.; Gardner, C.; Jennings, S.; Green, B.S.; Watson, R.A. Assessing the inclusion of seafood in the sustainable diet literature. Fish Fish. 2017, 18, 607–618. [Google Scholar] [CrossRef]
- Shester, G.G.; Micheli, F. Conservation challenges for small-scale fisheries: Bycatch and habitat impacts of traps and gillnets. Biol. Conserv. 2011, 144, 1673–1681. [Google Scholar] [CrossRef]
- Bandara, T. Alternative feed ingredients in aquaculture: Opportunities and challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Farmery, A.K.; O’Kane, G.; McManus, A.; Green, B.S. Consuming sustainable seafood: Guidelines, recommendations and realities. Public Health Nutr. 2018, 21, 1503–1514. [Google Scholar] [CrossRef] [Green Version]
- Lawley, M.; Birch, D.; Craig, J. Managing sustainability in the seafood supply chain: The confused or ambivalent consumer. In A Stakeholder Approach to Managing Food; Routledge: Abingdon, UK, 2016; pp. 316–328. [Google Scholar]
- Alfnes, F.; Chen, X.; Rickertsen, K. Labeling farmed seafood: A review. Aquac. Econ. Manag. 2017, 22, 1–26. [Google Scholar] [CrossRef]
- Boyd, C.E.; McNevin, A.A. Eco-label certification. In Aquaculture, Resource Use, and the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gutierrez, A.; Thornton, T. Can consumers understand sustainability through seafood eco-labels? A U.S. and UK case study. Sustainability 2014, 6, 8195–8217. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D.; Guo, J.; Dore, M.; Chow, C.C. The progressive increase of food waste in America and its environmental impact. PLoS ONE 2009, 4, e7940. [Google Scholar] [CrossRef] [Green Version]
- Forbes, C.B.; Harmon, A.H. Buying into community supported agriculture: Strategies for overcoming income barriers. J. Hunger. Environ. Nutr. 2008, 2, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Atoloye, A.T.; Savoie-Roskos, M.R.; Durward, C.M. Higher fruit and vegetable intake is associated with participation in the double up food bucks (DUFB) program. Nutrients 2021, 13, 2607. [Google Scholar] [CrossRef] [PubMed]
- Steele-Adjognon, M.; Weatherspoon, D. Double up food bucks program effects on SNAP recipients’ fruit and vegetable purchases. BMC Public Health 2017, 17, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.M.; Lund, J.R.; Cai, X.; Reed, P.M.; Zagona, E.A.; Ostfeld, A.; Hall, J.; Characklis, G.W.; Yu, W.; Brekke, L. The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resour. Res. 2015, 51, 6110–6124. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable water management in urban, agricultural, and natural systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, Resilient and sustainable water management: The Safe & SuRe approach. Glob. Chall. 2017, 1, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations and World Health Organization. Sustainable Healthy Diets: Guiding Principles; FAO and WHO: Rome, Italy, 2019. [Google Scholar]
- Vigolo, V.; Sallaku, R.; Testa, F. Drivers and barriers to clean cooking: A systematic literature review from a consumer behavior perspective. Sustainability 2018, 10, 4322. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2017, 140, 753–765. [Google Scholar] [CrossRef]
- Arrieta, E.M.; González, A.D. Energy and carbon footprints of food: Investigating the effect of cooking. Sustain. Prod. Consum. 2019, 19, 44–52. [Google Scholar] [CrossRef]
- Frankowska, A.; Rivera, X.S.; Bridle, S.; Kluczkovski, A.M.R.G.; Tereza da Silva, J.; Martins, C.A.; Rauber, F.; Levy, R.B.; Cook, J.; Reynolds, C. Impacts of home cooking methods and appliances on the GHG emissions of food. Nat. Food 2020, 1, 787–791. [Google Scholar] [CrossRef]
- Muñoz, I.; Milà i Canals, L.; Clift, R. Consider a Spherical Man. J. Ind. Ecol. 2008, 12, 521–538. [Google Scholar] [CrossRef]
- Garnett, T. Cooking Up A Storm: Food, Greenhouse Gas Emissions and Our Changing Climate; Centre for Environmental Strategy, University of Surrey: Guildford, UK, 2008. [Google Scholar]
- van der Kroon, B.; Brouwer, R.; van Beukering, P.J.H. The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis. Renew. Sustain. Energy Rev. 2013, 20, 504–513. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Espinoza Orias, N.; Azapagic, A. Life cycle environmental impacts of convenience food: Comparison of ready and home-made meals. J. Clean. Prod. 2014, 73, 294–309. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, D.-W.; Zhang, Z.; Zhu, Z. Research developments in methods to reduce carbon footprint of cooking operations: A review. Trends Food Sci. Technol. 2015, 44, 49–57. [Google Scholar] [CrossRef]
- Cimini, A.; Cibelli, M.; Taddei, A.R.; Moresi, M. Effect of cooking temperature on cooked pasta quality and sustainability. J. Sci. Food Agric. 2021, 101, 4946–4958. [Google Scholar] [CrossRef]
- Lakshmi, S.; Chakkaravarthi, A.; Subramanian, R.; Singh, V. Energy consumption in microwave cooking of rice and its comparison with other domestic appliances. J. Food Eng. 2007, 78, 715–722. [Google Scholar] [CrossRef]
- Bryan, C.J.; Yeager, D.S.; Hinojosa, C.P.; Chabot, A.; Bergen, H.; Kawamura, M.; Steubing, F. Harnessing adolescent values to motivate healthier eating. Proc. Natl. Acad. Sci. USA 2016, 113, 10830–10835. [Google Scholar] [CrossRef] [Green Version]
- Nevett, J. The Greta effect? Meet the schoolgirl climate warriors. BBC News, 3 May 2019. [Google Scholar]
- Sabherwal, A.; Ballew, M.T.; Linden, S.; Gustafson, A.; Goldberg, M.H.; Maibach, E.W.; Kotcher, J.E.; Swim, J.K.; Rosenthal, S.A.; Leiserowitz, A. The Greta Thunberg effect: Familiarity with Greta Thunberg predicts intentions to engage in climate activism in the United States. J. Appl. Soc. Psychol. 2021, 51, 321–333. [Google Scholar] [CrossRef]
- Desai-Shah, H. The Development and Qualitative Impact Assessment of A Physical Activity and Nutrition Curriculum for Low-Income, High School Adolescents; Rutgers University: New Brunswick, NJ, USA, 2021. (In Press) [Google Scholar]
- Luesse, H.B.; Koch, P.; Contento, I.R. Applying the nutrition education DESIGN procedure to the development of the in defence of food curriculum. Health Educ. J. 2019, 78, 824–838. [Google Scholar] [CrossRef]
Type of Alternative to Conventional Meat | Pros | Cons |
---|---|---|
Plant-based meat | Variety of products (e.g., burgers, sausages, chicken, and seafood mimetics) with increasing market share [61,62] | Ultra-processed [61], high in sodium [61,62], and wide ranges in nutrient profiles among products [62] |
Cultured meat | Identical taste, texture, and nutrient profile to conventional meat [64] | Energy-intensive, expensive production costs, and yet to be scaled to meet mass demand [64] |
Insect meat | Nutritious and low environmental impact [63] | Potential food allergen [65], disgusting/unappetizing to some [66] |
Sustainable Diet Recommendation | Ways to Incorporate Recommendations into Programming |
---|---|
| Demonstrate and provide plant-based recipes, and in addition to their health benefits, use food system sustainability as an additional means of promoting the consumption of fruits, vegetables, whole grains, nuts, seeds, and legumes |
| Provide data regarding the amount of food wasted (approximately 40% in the US [195]), highlight how money can be saved when food waste is reduced, and teach FRM skills such as meal planning, proper food storage, and how to interpret date labels on foods, with a focus on reducing food waste |
| Provide culinary education and encourage cooking homemade meals, promote easy snacks and meals that use less-processed foods, and provide information regarding UPF and their impact on both human health and food system sustainability |
| Provide addresses of local farmers’ markets, farm stands, and community-supported agriculture (CSA); provide lists of local and seasonal foods; and if working with low-income participants, share information on CSA work programs [196] and incentive programs at local farmers’ markets, and if needed, work with vendors to provide incentives for low-income community members (e.g., doubled value of benefit dollars [197,198]) |
| Provide information on seafood sustainability issues such as overfishing, teach how to interpret seafood eco-labels, and provide information on independent seafood consumer guides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastian, G.E.; Buro, D.; Palmer-Keenan, D.M. Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education. Nutrients 2021, 13, 4170. https://doi.org/10.3390/nu13114170
Bastian GE, Buro D, Palmer-Keenan DM. Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education. Nutrients. 2021; 13(11):4170. https://doi.org/10.3390/nu13114170
Chicago/Turabian StyleBastian, Graham E., Danielle Buro, and Debra M. Palmer-Keenan. 2021. "Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education" Nutrients 13, no. 11: 4170. https://doi.org/10.3390/nu13114170
APA StyleBastian, G. E., Buro, D., & Palmer-Keenan, D. M. (2021). Recommendations for Integrating Evidence-Based, Sustainable Diet Information into Nutrition Education. Nutrients, 13(11), 4170. https://doi.org/10.3390/nu13114170