Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Laboratory Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordestgaard, B.G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef]
- Christopoulou, E.; Elisaf, M.; Filippatos, T. Effects of Angiopoietin-Like 3 on Triglyceride Regulation, Glucose Homeostasis, and Diabetes. Dis. Markers 2019, 2019, 6578327. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Guo, D.; Li, S.; Zeng, Y.; Liu, C.; Fu, R.; Huang, M.; Xie, W. Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clin. Chim. Acta 2020, 503, 19–34. [Google Scholar] [CrossRef]
- Quagliarini, F.; Wang, Y.; Kozlitina, J.; Grishin, N.V.; Hyde, R.; Boerwinkle, E.; Valenzuela, D.M.; Murphy, A.J.; Cohen, J.C.; Hobbs, H.H. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA 2012, 109, 19751–19756. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lai, Y.; Han, C.; Liu, A.; Fan, C.; Wang, H.; Zhang, H.; Ding, S.; Teng, W.; Shan, Z. The Effects of Serum ANGPTL8/betatrophin on the Risk of Developing the Metabolic Syndrome—A Prospective Study. Sci. Rep. 2016, 6, 28431. [Google Scholar] [CrossRef]
- Morinaga, J.; Zhao, J.; Endo, M.; Kadomatsu, T.; Miyata, K.; Sugizaki, T.; Okadome, Y.; Tian, Z.; Horiguchi, H.; Miyashita, K.; et al. Association of circulating ANGPTL 3, 4, and 8 levels with medical status in a population undergoing routine medical checkups: A cross-sectional study. PLoS ONE 2018, 13, e0193731. [Google Scholar] [CrossRef]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef]
- Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; et al. ANGPTL3 Deficiency and Protection against Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Ruhanen, H.; Haridas, P.N.; Jauhiainen, M.; Olkkonen, V.M. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158791. [Google Scholar] [CrossRef] [PubMed]
- Krintus, M.; Kozinski, M.; Fabiszak, T.; Kuligowska-Prusinska, M.; Laskowska, E.; Lennartz, L.; Nowak-Los, L.; Kubica, J.; Sypniewska, G. Impact of lipid markers and high-sensitivity C-reactive protein on the value of the 99th percentile upper reference limit for high-sensitivity cardiac troponin I. Clin. Chim. Acta 2016, 462, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Langlois, M.R.; Chapman, M.J.; Cobbaert, C.; Mora, S.; Remaley, A.T.; Ros, E.; Watts, G.; Borén, J.; Baum, H.; Bruckert, E.; et al. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin. Chem. 2018, 64, 1006–1033. [Google Scholar] [CrossRef] [Green Version]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Borén, J.; et al. Fasting Is Not Routinely Required for Determination of a Lipid Profile: Clinical and Laboratory Implications Including Flagging at Desirable Concentration Cutpoints—A Joint Consensus Statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin. Chem. 2016, 62, 930–946. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcés, M.F.; Buell-Acosta, J.D.; Rodríguez-Navarro, H.A.; Pulido-Sánchez, E.; Rincon-Ramírez, J.J.; Moreno-Ordóñez, D.C.; Franco-Vega, R.; Roncancio-Muñoz, J.S.; Burgos-Cardenas, A.J.; Lacunza, E.; et al. Serum angiopoietin-like 3 levels are elevated in obese non diabetic men but are unaffected during an oral glucose tolerance test. Sci. Rep. 2020, 10, 21118. [Google Scholar] [CrossRef] [PubMed]
- Sadeghabadi, Z.A.; Nourbakhsh, M.; Alaee, M.; Nourbakhsh, M.; Ghorbanhosseini, S.S.; Sharifi, R.; Razzaghy-Azar, M. Angiopoietin-Like Proteins 2 and 3 in Children and Adolescents with Obesity and Their Relationship with Hypertension and Metabolic Syndrome. Int. J. Hypertens. 2021, 2021, 6748515. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jiao, X.; Huo, X.; Zhu, M.; Wang, Y.; Fang, X.; Yang, Y.; Yue, W.; Qin, Y. Association between circulating full-length angiopoietin-like protein 8 and non-high-density lipoprotein cholesterol levels in Chinese non-diabetic individuals: A cross-sectional study. Lipids Health Dis. 2018, 17, 161. [Google Scholar] [CrossRef] [Green Version]
- Pająk, A.; Szafraniec, K.; Polak, M.; Polakowska, M.; Kozela, M.; Piotrowski, W.; Kwaśniewska, M.; Podolecka, E.; Kozakiewicz, K.; Tykarski, A.; et al. Changes in the prevalence, management and treatment of hypercholesterolemia and other dyslipidemias over 10 years in Poland. The WOBASZ study. Pol. Arch. Intern. Med. 2016, 126, 642–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Baez, L.S.; Ginsberg, H.N. Hypertriglyceridemia—Causes, Significance, and Approaches to Therapy. Front. Endocrinol. 2020, 11, 616. [Google Scholar] [CrossRef] [PubMed]
- Kubacka, J.; Cembrowska, P.; Sypniewska, G.; Stefanska, A. The Association between Branched-Chain Amino Acids (BCAAs) and Cardiometabolic Risk Factors in Middle-Aged Caucasian Women Stratified According to Glycemic Status. Nutrients 2021, 13, 3307. [Google Scholar] [CrossRef]
- Rodríguez-Mortera, R.; Caccavello, R.; Garay-Sevilla, M.E.; Gugliucci, A. Higher ANGPTL3, apoC-III, and apoB48 dyslipidemia, and lower lipoprotein lipase concentrations are associated with dysfunctional visceral fat in adolescents with obesity. Clin. Chim. Acta 2020, 508, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Jalbert, S.M.; Barrett, P.H.; Dolnikowski, G.; Schaefer, E.J.; Lichtenstein, A.H. Gender-Specific Differences in the Kinetics of Nonfasting TRL, IDL, and LDL Apolipoprotein B-100 in Men and Premenopausal Women. Arter. Thromb. Vasc. Biol. 2008, 28, 1838–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef]
- Castro, M.-J.; Jiménez, J.-M.; López, M.; Cao, M.-J.; Durán, M.; Albertos, I.; García, S.; Ruiz-Tovar, J. Assessment of Risk Factors Associated with Cardiovascular Diseases in Overweight Women. Nutrients 2021, 13, 3658. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Chait, A. A Comprehensive Update on the Chylomicronemia Syndrome. Front. Endocrinol. 2020, 11, 593931. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.B.; Chavez, C.; Santulli, G. Angiopoietin-like proteins as therapeutic targets for cardiovascular disease: Focus on lipid disorders. Expert Opin. Ther. Targets 2020, 24, 79–88. [Google Scholar] [CrossRef] [PubMed]
Variables | Females n = 95 | Males n = 143 | p |
---|---|---|---|
Age (years) | 47.0 ± 11.0 | 44.0 ± 11.0 | 0.052 |
BMI (kg/m2) | 26.0 ± 4.0 | 27.0 ± 4.0 | 0.013 |
HbA1c (mmol/mol) | 37.1 ± 4.5 | 36.7 ± 4.7 | 0.339 |
TC (mmol/L) | 5.70 ± 1.19 | 5.40 ± 0.93 | 0.075 |
HDL-C (mmol/L) | 1.50 ± 0.31 | 1.27 ± 0.28 | <0.001 |
LDL-C (mmol/L) | 3.47 ± 1.03 | 3.42 ± 0.88 | 0.985 |
TG (mmol/L) | 1.63 (0.82–2.19) | 1.65 (1.07–2.35) | 0.047 |
ApoB (g/L) | 1.03 ± 0.29 | 1.05 ± 0.23 | 0.364 |
CRP (mg/L) | 0.94 (0.27–2.90) | 0.61 (0.27–1.61) | 0.067 |
sdLDL-C (mmol/L) | 0.77 (0.55–1.33) | 1.01 (0.73–1.41) | 0.033 |
Non-HDL-C (mmol/L) | 4.19 ± 1.22 | 4.14 ± 0.93 | 0.918 |
Remnant-C (mmol/L) | 0.60 (0.41–0.85) | 0.67 (0.49–0.93) | 0.105 |
ANGPTL3 (ng/mL) | 242 (199.8–300.7) | 193.2 (100.7–250.6) | <0.001 |
ANGPTL8 (ng/mL) | 5.8 (3.74–9.16) | 6.8 (4.14–9.83) | 0.295 |
Variables | ANGPTL3 | ANGPTL8 | ANGPTL3 | ANGPTL8 |
---|---|---|---|---|
Females | Females | Males | Males | |
n = 95 | n = 95 | n = 143 | n = 143 | |
TG | r = 0.378 | r = 0.524 | r = 0.471 | r = 0.091 |
p < 0.001 | p < 0.001 | p < 0.001 | p = 0.282 | |
HDL-C | r = −0.101 | r = −0.121 | r = −0.145 | r = 0.005 |
p = 0.328 | p = 0.243 | p = 0.085 | p = 0.953 | |
apoB | r = 0.304 | r = 0.167 | r = 0.185 | r = −0.076 |
p = 0.003 | p = 0.106 | p = 0.027 | p = 0.367 | |
sdLDL-C | r = 0.261 | r = 0.389 | r = 0.259 | r = 0.060 |
p = 0.011 | p < 0.001 | p = 0.002 | p = 0.475 | |
Non-HDL-C | r = 0.323 | r = 0.198 | r = 0.194 | r = −0.123 |
p < 0.001 | p = 0.054 | p = 0.021 | p = 0.142 | |
Remnant-C | r = 0.259 | r = 0.374 | r = 0.338 | r = 0,038 |
p = 0.011 | p < 0.001 | p = 0.001 | p = 0.660 | |
CRP | r = −0.159 | r = 0.315 | r = 0.196 | r = −0.054 |
p = 0.124 | p = 0.002 | p = 0.019 | p = 0.521 | |
BMI | r = −0.046 | r = 0.248 | r = 0.238 | r = 0.112 |
p = 0.659 | p = 0.015 | p = 0.004 | p = 0.185 | |
Age | r = 0.299 | r = 0.100 | r = −0.042 | r = −0.018 |
p = 0.003 | p = 0.333 | p = 0.616 | r = 0.828 |
Variables | Females BMI < 25 kg/m2 (n = 43) | Females BMI ≥ 30 kg/m2 (n = 21) | p | Males BMI < 25 kg/m2 (n = 37) | Males BMI ≥ 30 kg/m2 (n = 30) | p |
---|---|---|---|---|---|---|
Age (years) | 45 (37–55) | 47 (42–54) | 0.645 | 40 (31–52) | 42 (34–53) | 0.514 |
HbA1c (mmol/mol Hb) | 37.7 (34.9–39.3) | 38.8 (35.5–39.9) | 0.321 | 35.5 (32–38.8) | 37.7 (33.4–41) | 0.057 |
CRP (mg/L) | 0.6 (0.2–2.1) | 2.5 (1.2–3.5) | <0.001 | 0.4 (0.1–0.8) | 1.2 (0.5–2.6) | <0.001 |
TC (mmol/L) | 5.59 (4.69–6.92) | 5.28 (4.84–5.96) | 0.178 | 5.18 (4.58–5.83) | 5.0 (4.59–5.67) | 0.581 |
LDL-C (mmol/L) | 3.42 (2.67–4.58) | 3.11 (2.54–3.68) | 0.261 | 3.13 (2.74–3.86) | 3.24 (2.59–3.81) | 0.925 |
HDL-C (mmol/L) | 1.53 (1.35–1.84) | 1.30 (1.19–1.55) | 0.008 | 1.35 (1.19–1.61) | 1.14 (1.01–1.22) | 0.001 |
TG (mmol/L) | 1.19 (0.79–2.05) | 1.82 (1.19–2.28) | 0.081 | 1.20 (0.94–1.45) | 1.97 (1.54–2.86) | 0.001 |
apoB (g/L) | 1.06 (0.84–1.23) | 0.94 (0.81–1.10) | 0.352 | 0.94 (0.82–1.14) | 1.03 (0.90–1.13) | 0.274 |
Remnant-C (mmol/L) | 0.52 (0.39–0.78) | 0.65 (0.54–0.85) | 0.226 | 0.52 (0.39–0.75) | 0.78 (0.54–0.93) | 0.023 |
sdLDLC (mmol/L) | 0.70 (0.52–1.29) | 0.98 (0.28–1.32) | 0.435 | 0.85 (0.62–1.04) | 1.09 (0.85–1.45) | 0.013 |
non-HDL-C (mmol/L) | 4.17 (3.16–5.52) | 4.07 (3.24–4.51) | 0.491 | 3.63 (3.19–4.43) | 3.89 (3.47–4.56) | 0.426 |
ANGPTL3 (ng/mL) | 246 (214–303) | 238 (194–301) | 0.518 | 118 (64–212) | 207 (140–257) | 0.010 |
ANGPTL8 (ng/mL) | 4.7 (3.4–6.4) | 6.6 (4.8–8.8) | 0.031 | 6.4 (3.6–10.3) | 7.4 (4.7–9.9) | 0.343 |
Females | Males | ||||||
---|---|---|---|---|---|---|---|
Biomarker | AUC (95% CI) | Cutoff | Sensitivity | AUC (95% CI) | Cutoff | Sensitivity | p F vs. M |
ANGPTL8 ng/ml | 0.83 (0.74–0.90) | >5 | 0.85 | 0.54 (0.45–0.62) | >3.4 | 0.91 | 0.001 |
ANGPTL3 ng/mL | 0.71 (0.60–0.80) | >251 | 0.64 | 0.78 (0.71–0.85) | >146 | 0.94 | 0.271 |
sdLDL-C mmol/L | 0.87 (0.79–0.93) | >0.73 | 0.85 | 0.84 (0.77–0.90) | >43 | 0.71 | 0.534 |
Remnant-C mmol/L | 0.87 (0.78–0.93) | >0.60 | 0.81 | 0.92 (0.86–0.96) | >0.67 | 0.88 | 0.255 |
non-HDL-C mmol/L | 0.77 (0.67–0.85) | >3.86 | 0.81 | 0.65 (0.56–0.73) | >3.44 | 0.90 | 0.067 |
ORs (95% CI) Per One Unit Increase | ||||
---|---|---|---|---|
Variables | Females | p | Males | p |
TC | 1.024 (1.010–1.037) | 0.001 | 1.010 (0.999–1.020) | 0.055 |
sdLDL-C | 1.080 (1.059–1.160) | <0.001 | 1.100 (1.078–1.137) | <0.001 |
Remnant-C | 1.240 (1.120–1.360) | <0.001 | 1.285 (1.182–1.397) | <0.001 |
ANGPTL3 | 1.012 (1.005–1.020) | <0.001 | 1.006 (1.002–1.010) | 0.002 |
ANGPTL8 | 1.327 (1.136–1.551) | <0.001 | 1.009 (0.998–1.086) | 0.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murawska, K.; Krintus, M.; Kuligowska-Prusinska, M.; Szternel, L.; Stefanska, A.; Sypniewska, G. Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity. Nutrients 2021, 13, 4339. https://doi.org/10.3390/nu13124339
Murawska K, Krintus M, Kuligowska-Prusinska M, Szternel L, Stefanska A, Sypniewska G. Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity. Nutrients. 2021; 13(12):4339. https://doi.org/10.3390/nu13124339
Chicago/Turabian StyleMurawska, Karolina, Magdalena Krintus, Magdalena Kuligowska-Prusinska, Lukasz Szternel, Anna Stefanska, and Grazyna Sypniewska. 2021. "Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity" Nutrients 13, no. 12: 4339. https://doi.org/10.3390/nu13124339
APA StyleMurawska, K., Krintus, M., Kuligowska-Prusinska, M., Szternel, L., Stefanska, A., & Sypniewska, G. (2021). Relationship between Serum Angiopoietin-like Proteins 3 and 8 and Atherogenic Lipid Biomarkers in Non-Diabetic Adults Depends on Gender and Obesity. Nutrients, 13(12), 4339. https://doi.org/10.3390/nu13124339