Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Food Frequency Questionnaire
2.2.2. Dietary Inflammatory Index
2.2.3. Blood Sampling and Inflammatory Marker Quantification
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Nutrient Intake
3.3. Dietary Inflammatory Index
3.4. Association between DII Score and Inflammatory Markers
4. Discussion
4.1. Nutrient Intake
4.2. Dietary Inflammatory Index
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arcelus, J.; Mitchell, A.J.; Wales, J.; Nielsen, S. Mortality Rates in Patients with Anorexia Nervosa and Other Eating Disorders. Arch. Gen. Psychiatry 2011, 68, 724. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, F.C.; Ekbom, A.; Brandt, L.; Ekselius, L. Excess mortality, causes of death and prognostic factors in anorexia nervosa. Br. J. Psychiatry 2009, 194, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Berends, T.; Boonstra, N.; van Elburg, A. Relapse in anorexia nervosa. Curr. Opin. Psychiatry 2018, 31, 445–455. [Google Scholar] [CrossRef]
- Steinhausen, H.-C. The Outcome of Anorexia Nervosa in the 20th Century. Am. J. Psychiatry 2002, 159, 1284–1293. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatr. Res. 2018, 103, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Van Binsbergen, C.; Hulshof, K.; Wedel, M.; Odink, J.; Coelingh Bennink, H. Food preferences and aversions and dietary pattern in anorexia nervosa patients. Eur. J. Clin. Nutr. 1988, 42, 671–678. [Google Scholar] [PubMed]
- Misra, M.; Tsai, P.; Anderson, E.J.; Hubbard, J.L.; Gallagher, K.; Soyka, L.A.; Miller, K.K.; Herzog, D.B.; Klibanski, A. Nutrient intake in community-dwelling adolescent girls with anorexia nervosa and in healthy adolescents. Am. J. Clin. Nutr. 2006, 84, 698–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurazzi, C.; Cioffi, I.; De Caprio, C.; De Filippo, E.; Marra, M.; Sammarco, R.; Di Guglielmo, M.L.; Contaldo, F.; Pasanisi, F. Adequacy of nutrient intake in women with restrictive anorexia nervosa. Nutrition 2017, 38, 80–84. [Google Scholar] [CrossRef]
- Pettersson, C.; Svedlund, A.; Wallengren, O.; Swolin-Eide, D.; Paulson Karlsson, G.; Ellegård, L. Dietary intake and nutritional status in adolescents and young adults with anorexia nervosa: A 3-year follow-up study. Clin. Nutr. 2021, 40, 5391–5398. [Google Scholar] [CrossRef]
- Schebendach, J.E.; Mayer, L.E.; Devlin, M.J.; Attia, E.; Contento, I.R.; Wolf, R.L.; Walsh, B.T. Food Choice and Diet Variety in Weight-Restored Patients with Anorexia Nervosa. J. Am. Diet Assoc. 2011, 111, 732–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smidowicz, A.; Regula, J. Effect of nutritional status and dietary patterns on human serum C-reactive protein and interleukin-6 concentrations. Adv. Nutr. 2015, 6, 738–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.D.; Strachan, A.A.; Thies, F.; Aucott, L.S.; Reid, D.M.; Hardcastle, A.C.; Mavroeidi, A.; Simpson, W.G.; Duthie, G.G.; Macdonald, H.M. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br. J. Nutr. 2014, 112, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- King, D.; Egan, B.; Geesey, M. Relation of dietary fat and fiber to elevation of C-reactive protein. Am. J. Cardiol. 2003, 92, 1335–1339. [Google Scholar] [CrossRef]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.C.; Jackson, E.; Stanek, E.J.; Li, W.; Pagoto, S.; Hafner, A.R.; Ockene, I.S. Association between dietary fiber and serum C-reactive protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. J. Am. Med. Assoc. 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrysohoou, C.; Panagiotakos, D.B.; Pitsavos, C.; Das, U.N.; Stefanadis, C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA study. J. Am. Coll. Cardiol. 2004, 44, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef]
- Childs, C.E.; Calder, P.C.; Miles, E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palla, B.; Litt, I.F. Medical Complications of Eating Disorders in Adolescents. Pediatrics 1988, 81, 613–623. [Google Scholar] [PubMed]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, M. Zinc and immune function. Eur. J. Clin. Nutr. 2002, 56, S20–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, A.H.; Prasad, A.S. Zinc and immune function: The biological basis of altered resistance to infection. Am. J. Clin. Nutr. 1998, 68, 447S–463S. [Google Scholar] [CrossRef] [Green Version]
- Tall, A.R.; Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fessler, M.B. The Intracellular Cholesterol Landscape: Dynamic Integrator of the Immune Response. Trends Immunol. 2016, 37, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantzer, R. Cytokine, Sickness Behavior, and Depression. Immunol. Allergy Clin. N. Am. 2009, 29, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Mills, N.T.; Scott, J.G.; Wray, N.R.; Cohen-Woods, S.; Baune, B.T. Research review: The role of cytokines in depression in adolescents: A systematic review. J. Child. Psychol. Psychiatry 2013, 54, 816–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herder, C.; Schmitt, A.; Budden, F.; Reimer, A.; Kulzer, B.; Roden, M.; Haak, T.; Hermanns, N. Association between pro- and anti-inflammatory cytokines and depressive symptoms in patients with diabetes-potential differences by diabetes type and depression scores. Transl. Psychiatry 2017, 7, 1. [Google Scholar] [CrossRef]
- Himmerich, H.; Fulda, S.; Linseisen, J.; Seiler, H.; Wolfram, G.; Himmerich, S.; Gedrich, K.; Kloiber, S.; Lucae, S.; Ising, M.; et al. Depression, comorbidities and the TNF-alpha system. Eur. Psychiatry 2008, 23, 421–429. [Google Scholar] [CrossRef]
- Maes, M.; Anderson, G.; Kubera, M.; Berk, M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin. Ther. Targets 2014, 18, 495–512. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A Meta-Analysis of Cytokines in Major Depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Holden, R.J.; Pakula, I.S. Tumor necrosis factor-alpha: Is there a continuum of liability between stress, anxiety states and anorexia nervosa? Med. Hypotheses 1999, 52, 155–162. [Google Scholar] [CrossRef]
- Tang, Z.; Ye, G.; Chen, X.; Pan, M.; Fu, J.; Fu, T.; Liu, Q.; Gao, Z.; Baldwin, D.S.; Hou, R. Peripheral proinflammatory cytokines in Chinese patients with generalised anxiety disorder. J. Affect. Disord. 2018, 225, 593–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, H.; Gould, R.L.; Abrol, E.; Howard, R. Systematic review and meta-analysis of the association between peripheral inflammatory cytokines and generalised anxiety disorder. BMJ Open 2019, 9, e027925. [Google Scholar] [CrossRef] [Green Version]
- Waheed, A.; Dalton, B.; Wesemann, U.; Ibrahim, M.A.A.; Himmerich, H. A Systematic Review of Interleukin-1β in Post-Traumatic Stress Disorder: Evidence from Human and Animal Studies. J. Interferon Cytokine Res. 2018, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Young, M.R.I. PTSD, a Disorder with an Immunological Component. Front. Immunol. 2016, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Speer, K.; Upton, D.; Semple, S.; McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: A systematic review. J. Inflamm. Res. 2018, 11, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Capuron, L.; Miller, A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 2011, 130, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Dalton, B.; Leppanen, J.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. A longitudinal analysis of cytokines in anorexia nervosa. Brain Behav. Immun. 2019, 85, 88–95. [Google Scholar] [CrossRef]
- Dalton, B.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory markers in anorexia nervosa: An exploratory study. Nutrients 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, I.A.K.; Millischer, V.; Göteson, A.; Hübel, C.; Thornton, L.M.; Bulik, C.M.; Schalling, M.; Landén, M. Aberrant inflammatory profile in acute but not recovered anorexia nervosa. Brain Behav. Immun. 2020, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Keeler, J.L.; Patsalos, O.; Chung, R.; Schmidt, U.; Breen, G.; Treasure, J.; Himmerich, H.; Dalton, B. Reduced MIP-1β as a Trait Marker and Reduced IL-7 and IL-12 as State Markers of Anorexia Nervosa. J. Pers. Med. 2021, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Stice, E.; Fisher, M.; Martinez, E. Eating disorder diagnostic scale: Additional evidence of reliability and validity. Psychol. Assess. 2000, 12, 123–131. [Google Scholar] [CrossRef]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition; (SCID-I/P); New York State Psychiatric Institute: New York, NY, USA, 2002. [Google Scholar]
- Bingham, S.A.; Gill, C.; Welch, A.; Day, K.; Cassidy, A.; Khaw, K.T.; Sneyd, M.J.; Key, T.J.A.; Roe, L.; Day, N.E. Comparison of dietary assessment methods in nutritional epidemiology: Weighed records v. 24h recalls, food frequency questionnaires and estimated diet records. Br. J. Nutr. 1994, 72, 619–642. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Welch, A.A.; McTaggart, A.; Mulligan, A.A.; Runswick, S.A.; Luben, R.; Oakes, S.; Khaw, K.T.; Wareham, N.; Day, N.E. Nutritional methods in the European Prospective Investigation of Cancer in Norfolk. Public Health Nutr. 2001, 4, 847–858. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Day, N.E.; Welch, A.A.; Runswick, S.A.; Luben, R.N.; Mulligan, A.A.; McTaggart, A.; A Bingham, S. Use of biological markers to validate self-reported dietary intake in a random sample of the European Prospective Investigation into Cancer United Kingdom Norfolk cohort. Am. J. Clin. Nutr. 2001, 74, 188–196. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [Green Version]
- Welch, A.A.; Luben, R.; Khaw, K.T.; Bingham, S.A. The CAFE computer program for nutritional analysis of the EPIC-Norfolk food frequency questionnaire and identification of extreme nutrient values. J. Hum. Nutr. Diet. 2005, 18, 99–116. [Google Scholar] [CrossRef]
- Corley, J.; Shivappa, N.; Hébert, J.; Starr, J.; Deary, I. Associations between Dietary Inflammatory Index Scores and Inflammatory Biomarkers among Older Adults in the Lothian Birth Cohort 1936 Study. J. Nutr. Health Aging 2019, 23, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Shivappa, N.; Hébert, J.; Rietzschel, E.; De Buyzere, M.; Langlois, M.; Debruyne, E.; Marcos, A.; Huybrechts, I. Associations between dietary inflammatory index and inflammatory markers in the Asklepios Study. Br. J. Nutr. 2015, 113, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivappa, N.; Hebert, J.; Marcos, A.; Diaz, L.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; Gil, E.M.G.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1600707. [Google Scholar] [CrossRef]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)–Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IMB SPSS Statistics for Macintosh; IBM Corp: Armonk, NY, USA, 2019. [Google Scholar]
- Dalton, B.; Whitmore, V.; Patsalos, O.; Ibrahim, M.A.A.; Schmidt, U.; Himmerich, H. A systematic review of in vitro cytokine production in eating disorders. Mol. Cell. Endocrinol. 2018, 497, 110308. [Google Scholar] [CrossRef] [Green Version]
- Lobera, I.J.; Ríos, P.B. Choice of diet in patients with anorexia nervosa. Nutr. Hosp. 2009, 24, 682–687. [Google Scholar]
- Bardone-Cone, A.M.; Fitzsimmons-Craft, E.E.; Harney, M.B.; Maldonado, C.R.; Lawson, M.A.; Smith, R.; Robinson, D.P. The Inter-Relationships between Vegetarianism and Eating Disorders among Females. J. Acad. Nutr. Diet. 2012, 112, 1247–1252. [Google Scholar] [CrossRef] [Green Version]
- Marzola, E.; Nasser, J.A.; Hashim, S.A.; Shih, P.A.B.; Kaye, W.H. Nutritional rehabilitation in anorexia nervosa: Review of the literature and implications for treatment. BMC Psychiatry. BioMed Cent. 2013, 13, 290. [Google Scholar] [CrossRef] [Green Version]
- Moreiras-Varela, O.; Nunez, C.; Carbajal, A.; Morande, G. Nutritional status and food habits assessed by dietary intake and anthropometrical parameters in anorexia nervosa. Int. J. Vitam. Nutr. Res. 1990, 60, 267–274. [Google Scholar]
- Mayer, L.E.S.; Schebendach, J.; Bodell, L.P.; Shingleton, R.M.; Walsh, B.T. Eating Behavior in Anorexia Nervosa: Before and After Treatment. Int. J. Eat. Disord. 2012, 45, 290. [Google Scholar] [CrossRef] [Green Version]
- Vaz, F.J.; Alcaina, T.; Guisado, J.A. Food aversions in eating disorders. J. Food Sci. Nutr. 1998, 49, 181–186. [Google Scholar] [CrossRef]
- Matzkin, V.B.; Geissler, C.; Coniglio, R.; Selles, J.; Bello, M. Cholesterol concentrations in patients with Anorexia Nervosa and in healthy controls. Int. J. Psychiatr. Nurs. Res. 2006, 11, 1283–1293. [Google Scholar]
- Rigaud, D.; Tallonneau, I.; Vergès, B. Hypercholesterolaemia in anorexia nervosa: Frequency and changes during refeeding. Diabetes Metab. 2009, 35, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.J. Cholesterol Metabolism in Anorexia Nervosa and Hypercholesterolemia. J. Clin. Endocrinol. Metab. 1974, 38, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Weinbrenner, T.; Züger, M.; Jacoby, G.E.; Herpertz, S.; Liedtke, R.; Sudhop, T.; Gouni-Berthold, I.; Axelson, M.; Berthold, H. Lipoprotein metabolism in patients with anorexia nervosa: A case–control study investigating the mechanisms leading to hypercholesterolaemia. Br. J. Nutr. 2004, 91, 959–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellava, J.E.; Hamer, R.M.; Kanodia, A.; Reyes-Rodríguez, M.L.; Bulik, C.M. Diet and physical activity in women recovered from anorexia nervosa: A pilot study. Int. J. Eat. Disord. 2011, 44, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Beumont, P.J.V.; Chambers, T.L.; Rouse, L.; Abraham, S.F. The diet composition and nutritional knowledge of patients with anorexia nervosa. Int. J. Food Sci. Nutr. 1981, 35, 265–273. [Google Scholar] [CrossRef]
- Russell, G.F. The nutritional disorder in anorexia nervosa. J. Psychosom. Res. 1967, 11, 141–149. [Google Scholar] [CrossRef]
- Hadigan, C.M.; Anderson, E.J.; Miller, K.K.; Hubbard, J.L.; Herzog, D.B.; Klibanski, A.; Grinspoon, S.K. Assessment of macronutrient and micronutrient intake in women with anorexia nervosa. Int. J. Eat. Disord. 2000, 28, 284–292. [Google Scholar] [CrossRef]
- Gwirtsman, H.E.; Kaye, W.H.; Curtis, S.R.; Lyter, L.M. Energy intake and dietary macronutrient content in women with anorexia nervosa and volunteers. J. Am. Diet. Assoc. 1989, 89, 54–57. [Google Scholar] [CrossRef]
- Bouquegneau, A.; Dubois, B.E.; Krzesinski, J.M.; Delanaye, P. Anorexia nervosa and the kidney. Am. J. Kidney Dis. 2012, 60, 299–307. [Google Scholar] [CrossRef]
- Harrington, B.C.; Jimerson, M.; Haxton, C.; Jimerson, D.C. Initial Evaluation, Diagnosis, and Treatment of Anorexia Nervosa and Bulimia Nervosa. Am. Fam. Physician 2015, 91, 46–52. [Google Scholar]
- Catone, G.; Pisano, S.; Muzzo, G.; Corrado, G.; Russo, K.; Maiorano, A.; Salerno, F.; Gritti, A. A glance into psychiatric comorbidity in adolescents with anorexia nervosa. Minerva Pediatr. 2020, 72, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Ulfvebrand, S.; Birgegård, A.; Norring, C.; Högdahl, L.; von Hausswolff-Juhlin, Y. Psychiatric comorbidity in women and men with eating disorders results from a large clinical database. Psychiatry Res. 2015, 230, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Severus, E.; Möller, H.-J.; Young, A.H.; WFSBP Task Force on Unipolar Depressive Disorders. Pharmacological treatment of unipolar depressive disorders: Summary of WFSBP guidelines. Int. J. Psychiatry Clin. Pract. 2017, 21, 166–176. [Google Scholar] [CrossRef]
- Bandelow, B.; Zohar, J.; Hollander, E.; Kasper, S.; Möller, H.-J. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of anxiety, obsessive-compulsive and posttraumatic stress disorders. World J. Biol. Psychiatry 2002, 3, 171–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvanova, M.; Gramith, K. Role of antidepressants in the treatment of adults with anorexia nervosa. Ment. Health Clin. 2018, 8, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Himmerich, H.; Kan, C.; Au, K.; Treasure, J. Pharmacological treatment of eating disorders, comorbid mental health problems, malnutrition and physical health consequences. Pharmacol Ther. 2021, 217, 107667. [Google Scholar] [CrossRef] [PubMed]
- Keeler, J.L.; Treasure, J.; Juruena, M.F.; Kan, C.; Himmerich, H. Ketamine as a Treatment for Anorexia Nervosa: A Narrative Review. Nutrients 2021, 13, 4158. [Google Scholar] [CrossRef]
- Casper, R.C.; Kirschner, B.; Sandstead, H.H.; Jacob, R.A.; Davis, J.M. An evaluation of trace metals, vitamins, and taste function in anorexia nervosa. Am. J. Clin. Nutr. 1980, 33, 1801–1808. [Google Scholar] [CrossRef] [PubMed]
- Donig, A.; Hautzinger, M. Zinc as an adjunct to antidepressant medication: A meta-analysis with subgroup analysis for different levels of treatment response to antidepressants. Nutr. Neurosci. 2021. ahead of print. [Google Scholar] [CrossRef]
- Baskaran, C.; Carson, T.L.; Reyes, K.J.C.; Becker, K.R.; Slattery, M.J.; Tulsiani, S.; Eddy, K.T.; Anderson, E.J.; Hubbard, J.L.; Misra, M.; et al. Macronutrient intake associated with weight gain in adolescent girls with anorexia nervosa. Int. J. Eat. Disord. 2017, 50, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.T.; E Adams, C.; A Nelson, R.; Grater, S.J.; A Jaskiewicz, J.; Johnson, S.B.; Erdman, J.W. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J. Nutr. 1995, 125, 901–907. [Google Scholar]
- Shih, P.; Yang, J.; Morisseau, C.; German, J.; Scott-Van Zeeland, A.A.; Armando, A.M.; Quehenberger, O.; Bergen, A.; Magistretti, P.J.; Berrettini, W.; et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol. Psychiatry 2016, 21, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, M.; Kawai, K.; Yamashita, M.; Shoji, M.; Takakura, S.; Hata, T.; Nakashima, M.; Tatsushima, K.; Tanaka, K.; Sudo, N. Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: A case control study. BioPsychoSocial Med. 2020, 14, 14. [Google Scholar] [CrossRef]
- Humphries, L.; Vivian, B.; Stuart, M.; McClain, C.J. Zinc deficiency and eating disorders. J. Clin. Psychiatry 1989, 50, 456–459. [Google Scholar] [PubMed]
- Sossa, C.; Delisle, H.; Agueh, V.; Sodjinou, R.; Ntandou, G.; Makoutodé, M. Lifestyle and Dietary Factors Associated with the Evolution of Cardiometabolic Risk over Four Years in West-African Adults: The Benin Study. J. Obes. 2013, 2013, 298024. [Google Scholar] [CrossRef]
- Sabzwari, S.R.A.; Garg, L.; Lakkireddy, D.; Day, J. Ten Lifestyle Modification Approaches to Treat Atrial Fibrillation. Cureus 2018, 10, e2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, J.; Solmi, M.; Wootton, R.; Vancampfort, D.; Schuch, F.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef]
- Fairweather-Schmidt, K.; Wade, T. The relationship between disordered eating and cigarette smoking among adult female twins. Int. J. Eat. Disord. 2015, 48, 708–714. [Google Scholar] [CrossRef]
- Bat-Pitault, F.; Da Silva, C.; Charvin, I.; Da Fonseca, D. Sleep disturbances in anorexia nervosa subtypes in adolescence. Eat. Weight Disord. 2021, 26, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Trott, M.; Jackson, S.; Firth, J.; Jacob, L.; Grabovac, I.; Mistry, A.; Stubbs, B.; Smith, L. A comparative meta-analysis of the prevalence of exercise addiction in adults with and without indicated eating disorders. Eat. Weight Disord. Stud. Anorex. Boulimia Obeistyulimia Obes. 2021, 26, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Schebendach, J.E.; Porter, K.J.; Wolper, C.; Walsh, B.T.; Mayer, L.E.S. Accuracy of self-reported energy intake in weight-restored patients with anorexia nervosa compared with obese and normal weight individuals. Int. J. Eat. Disord. 2012, 45, 570–574. [Google Scholar] [CrossRef]
- Forbush, K.T.; Hunt, T.K. Characterization of eating patterns among individuals with eating disorders: What is the state of the plate? Physiol. Behav. 2014, 134, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Pérez Rodrigo, C.; Aranceta, J.; Salvador, G.; Varela-Moreiras, G. Food Frequency Questionnaires. Nutr. Hosp. 2015, 31, 49–56. [Google Scholar] [PubMed]
- Huseinovic, E.; Hörnell, A.; Johansson, I.; Esberg, A.; Lindahl, B.; Winkvist, A. Changes in food intake patterns during 2000–2007 and 2008–2016 in the population-based Northern Sweden Diet Database. Nutr. J. 2019, 18, 36. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
HC n = 49 | AN n = 51 | RecAN n = 23 | Group Comparisons | |
---|---|---|---|---|
Demographic characteristics | ||||
Age [years] [median (IQR a)] | 22.5 (20.3, 25.8) | 24 (21.0, 30.0) | 24 (21.0, 30.0) | H (2) = 4.003 p = 0.135 |
Ethnicity [Caucasian/BAME] [n] | 25/24 | 45/6 | 22/1 | F (2) = 5.96 p = 0.003 |
Current smoker [n] | 7 | 8 | 3 | F (2) = 0.068 p = 0.93 |
BMI [kg/m2] [median (IQR a)] | 21.0 (19.6, 22.5) | 16.1 (15.1, 17.0) | 20.7 (19.6, 21.3) | H (2) = 84.121 p < 0.001 |
Body fat [%] [mean ± SD] | 23.9 ± 5.2 | 12.0 ± 5.2 | 22.3 ± 6.3 | F (2) = 69.33 p < 0.001 |
Clinical characteristics | ||||
AN subtype [AN-R/AN-BP] [n] | 45/6 | |||
Current treatment [none/outpatient/inpatient] [n] | 20/30/1 | |||
Disease Duration [years] | 5.57 | |||
Current antidepressant use [n] | 0 | 21 | 6 | F (2) = 13.88 p < 0.001 |
Current antipsychotic use [n] | 0 | 6 | 2 | F (2) = 3.21 p = 0.04 |
Nutrient | AN [SD] (n = 51) | RecAN [SD] (n = 23) | HC [SD] (n = 49) | Group Comparison | Post-Hoc Pairwise Comparison |
---|---|---|---|---|---|
Alcohol [g] | 2.22 [4.35] | 4.85 [7.05] | 3.13 [3.37] | F (2) = 2.561 p = 0.081 | HC—AN: p = 0.978 HC—RecAN: p = 0.436 AN—RecAN: p = 0.077 |
β-carotene [μg] | 5239.39 [4561.55] | 5701.02 [4846.22] | 4387.41 [3068.63] | F (2) = 0.973 p = 0.381 | HC—AN: p = 0.900 HC—RecAN: p = 0.619 AN—RecAN: p = 1.000 |
Total carbohydrate [g] | 204.37 [108.67] | 232.42 [99.08] | 218.22 [118.02] | F (2) = 0.539 p = 0.585 | HC—AN: p = 1.000 HC—RecAN: p = 1.000 AN—RecAN: p = 0.947 |
Cholesterol [mg] | 168.56 [132.23] | 181.90 [139.96] | 294.07 [208.61] | F (2) = 7.72 p = 0.001 | HC—AN: p = 0.001 HC—RecAN: 0.028 AN—RecAN: p = 1.000 |
Energy [kcal] | 1553.64 [739.79] | 1928.31 [875.55] | 1823.68 [950.70] | F (2) = 2.0 p = 0.140 | HC—AN: p = 0.350 HC—RecAN: p = 1.000 AN—RecAN: p = 0.250 |
Total fat [g] | 57.43 [35.27] | 81.07 [44.25] | 72.16 [41.05] | F (2) = 3.375 p = 0.038 | HC—AN: p = 0.192 HC—RecAN: p = 1.000 AN—RecAN: p = 0.055 |
Folate [μg] | 323.52 [183.11] | 375.31 [209.03] | 310.05 [151.86] | F (2) = 1.094 p = 0.338 | HC—AN: p = 1.000 HC—RecAN: p = 0.440 AN—RecAN: p = 0.736 |
Englyst fibre [g] | 20.40 [11.41] | 23.28 [13.94] | 18.80 [10.47] | F (2) = 1.176 p = 0.312 | HC—AN: p = 1.000 HC—RecAN: p = 0.385 AN—RecAN: p = 0.973 |
Iron [mg] | 10.86 [5.21] | 13.22 [6.54] | 11.93 [5.90] | F (2) = 1.380 p = 0.256 | HC—AN: p = 1.000 HC—RecAN: p = 1.000 AN—RecAN: p = 0.316 |
Magnesium [mg] | 319.62 [129.58] | 388.72 [202.81] | 337.13 [170.24] | F (2) = 1.457 p = 0.237 | HC—AN: p = 1.000 HC—RecAN: p = 0.627 AN—RecAN: p = 0.274 |
Monounsaturated fat [g] | 21.03 [12.46] | 30.93 [18.35] | 27.75 [15.87] | F (2) = 4.279 p = 0.016 | HC—AN: p = 0.083 HC—RecAN: p = 1.000 AN—RecAN: p = 0.030 |
Niacin (vitamin B3) [mg] | 20.51 [10.60] | 22.32 [11.79] | 21.97 [11.63] | F (2) = 0.299 p = 0.742 | HC—AN: p = 1.000 HC—RecAN: p = 1.000 AN—RecAN: p = 1.000 |
Total protein [g] | 63.91 [31.43] | 73.61 [34.67] | 83.85 [46.41] | F (2) = 3.325 p = 0.039 | HC—AN: p = 0.033 HC—RecAN: p = 0.890 AN—RecAN: p = 0.959 |
Polyunsaturated fat [g] | 11.91 [7.34] | 17.01 [10.88] | 13.22 [8.01] | F (2) = 2.965 p = 0.055 | HC—AN: p = 1.000 HC—RecAN: p = 0.227 AN—RecAN: p = 0.050 |
Riboflavin (vitamin B2) [mg] | 1.87 [1.12] | 1.97 [1.06] | 1.82 [0.91] | F (2) = 0.174 p = 0.841 | HC—AN: p = 1.000 HC—RecAN: p = 1.000 AN—RecAN: p = 1.000 |
Saturated fatty acids [g] | 19.54 [14.91] | 26.64 [16.07] | 24.87 [15.50] | F (2) = 2.302 p = 0.104 | HC—AN: p = 0.256 HC—RecAN: p = 1.000 AN—RecAN: p = 0.205 |
Selenium [μg] | 50.83 [30.96] | 54.35 [27.31] | 63.16 [34.12] | F (2) = 1.954 p = 0.146 | HC—AN: p = 0.162 HC—RecAN: p = 0.819 AN—RecAN: p = 1.000 |
Thiamin (Vitamin B1) [mg] | 1.51 [0.81] | 1.94 [1.11] | 1.59 [0.82] | F (2) = 1.957 p = 0.146 | HC—AN: p = 1.000 HC—RecAN: p = 0.336 AN—RecAN: p = 0.163 |
Retinol (Vitamin A) [μg] | 251.89 [368.00] | 313.50 [358.19] | 421.35 [398.41] | F (2) = 2.532 p = 0.084 | HC—AN: p = 0.081 HC—RecAN: p = 0.786 AN—RecAN: p =1.000 |
Vitamin B6 [mg] | 1.83 [0.89] | 2.12 [1.01] | 2.23 [1.07] | F (2) = 2.168 p = 0.119 | HC—AN: p = 1.000 HC—RecAN: p = 0.130 AN—RecAN: p = 0.735 |
Vitamin B12 [μg] | 4.27 [3.69] | 3.51 [2.87] | 5.66 3.61] | F (2) = 3.527 p = 0.032 | HC—AN: p = 0.151 HC—RecAN: p = 0.051 AN—RecAN: p = 1.000 |
Vitamin C [mg] | 146.15 [90.44] | 142.01 [91.63] | 123.88 [69.78] | F (2) = 0.961 p = 0.385 | HC—AN: p = 0.548 HC—RecAN: p = 1.000 AN—RecAN: p = 1.000 |
Vitamin D [μg] | 2.04 [2.32] | 2.11 [1.82] | 2.73 1.98] | F (2) = 1.508 p = 0.225 | HC—AN: p = 0.309 HC—RecAN: p = 0.720 AN—RecAN: p = 1.000 |
Vitamin E [mg] | 12.58 [5.53] | 15.44 [7.89] | 12.45 [7.06] | F (2) = 1.813 p = 0.168 | HC—AN: p = 1.000 HC—RecAN: p = 0.233 AN—RecAN: p = 0.268 |
Zinc | 7.27 [3.23] | 8.67 [4.35] | 9.76 [5.26] | F (2) = 4.115 p = 0.019 | HC—AN: p = 0.015 HC—RecAN: p = 0.971 AN—RecAN: p = 0.606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patsalos, O.; Dalton, B.; Kyprianou, C.; Firth, J.; Shivappa, N.; Hébert, J.R.; Schmidt, U.; Himmerich, H. Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa. Nutrients 2021, 13, 4400. https://doi.org/10.3390/nu13124400
Patsalos O, Dalton B, Kyprianou C, Firth J, Shivappa N, Hébert JR, Schmidt U, Himmerich H. Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa. Nutrients. 2021; 13(12):4400. https://doi.org/10.3390/nu13124400
Chicago/Turabian StylePatsalos, Olivia, Bethan Dalton, Christia Kyprianou, Joseph Firth, Nitin Shivappa, James R. Hébert, Ulrike Schmidt, and Hubertus Himmerich. 2021. "Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa" Nutrients 13, no. 12: 4400. https://doi.org/10.3390/nu13124400
APA StylePatsalos, O., Dalton, B., Kyprianou, C., Firth, J., Shivappa, N., Hébert, J. R., Schmidt, U., & Himmerich, H. (2021). Nutrient Intake and Dietary Inflammatory Potential in Current and Recovered Anorexia Nervosa. Nutrients, 13(12), 4400. https://doi.org/10.3390/nu13124400