Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review
Abstract
:1. Introduction
1.1. Definition and Demographic Data of Osteoporosis and Sarcopenia
1.1.1. Osteoporosis
1.1.2. Sarcopenia
2. Methodology
2.1. Narrative Review Construction
2.2. Studies Selection
3. Discussion/Summary
3.1. Osteoporosis
Mechanism
3.2. Exercise and Nutrition Impact on Osteoporosis
3.2.1. Exercise
3.2.2. Nutrition
3.3. Sarcopenia
Mechanism
3.4. Exercise and Nutrition Impact on Sarcopenia
3.4.1. Exercise
3.4.2. Nutrition
3.5. Osteosarcopenia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pisani, P.; Renna, M.D.; Conversano, F.; Casciaro, E.; Di Paola, M.; Quarta, E.; Muratore, M.; Casciaro, S. Major Osteoporotic Fragility Fractures: Risk Factor Updates and Societal Impact. World J. Orthop. 2016, 7, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic Obesity: A New Category of Obesity in the Elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The Global Prevalence of Osteoporosis in the World: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2021, 16, 609. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden. Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, R.J.; Hasni, S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, G.R.; Singh, H.; Carter, S.J.; Bryan, D.R.; Fisher, G. Sarcopenia and Its Implications for Metabolic Health. J. Obes. 2019, 2019, 8031705. [Google Scholar] [CrossRef]
- Hong, S.; Choi, K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, M.H.; Dennison, E.M.; Sayer, A.A.; Fielding, R.; Cooper, C. Osteoporosis and Sarcopenia in Older Age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Tsintavis, P.; Potsaki, G.; Papandreou, D. Differences in the Prevalence of Sarcopenia in Community-Dwelling, Nursing Home and Hospitalized Individuals. A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Sandall, A.M.; Wall, C.L.; Lomer, M.C.E. Nutrition Assessment in Crohn’s Disease Using Anthropometric, Biochemical, and Dietary Indexes: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 624–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Patil, S.; Jia, J. The Development of Molecular Biology of Osteoporosis. Int. J. Mol. Sci. 2021, 22, 8182. [Google Scholar] [CrossRef]
- Föger-Samwald, U.; Dovjak, P.; Azizi-Semrad, U.; Kerschan-Schindl, K.; Pietschmann, P. Osteoporosis: Pathophysiology and Therapeutic Options. EXCLI J. 2020, 19, 1017–1037. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Furlini, G.; Zati, A.; Mauro, L.G. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. BioMed Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-R.; Hou, P.-H.; Chen, K.-H. Nutritional Support and Physical Modalities for People with Osteoporosis: Current Opinion. Nutrients 2019, 11, 2848. [Google Scholar] [CrossRef] [Green Version]
- McMillan, L.; Zengin, A.; Ebeling, P.; Scott, D. Prescribing Physical Activity for the Prevention and Treatment of Osteoporosis in Older Adults. Healthcare 2017, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.H. Osteoporosis Prevention and Osteoporosis Exercise in Community-Based Public Health Programs. Osteoporos. Sarcopenia 2017, 3, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, P.A.; Carneiro, J.A.O.; Coqueiro, R.S.; Pereira, R.; Fernandes, M.H. “Chair Stand Test” as Simple Tool for Sarcopenia Screening in Elderly Women. J. Nutr. Health Aging 2016, 20, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.T.; Beck, B.R. Exercise, Osteoporosis, and Bone Geometry. Sports 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, K.E.; Misra, M. Bone Health and the Female Athlete Triad in Adolescent Athletes. Phys. Sportsmed. 2011, 39, 131–141. [Google Scholar] [CrossRef]
- Nazem, T.G.; Ackerman, K.E. The Female Athlete Triad. Sports Health 2012, 4, 302–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bone Health and Osteoporosis Foundation. Available online: https://www.bonehealthandosteoporosis.org/patients/treatment/exercisesafe-movement/osteoporosis-exercise-for-strong-bones/ (accessed on 11 December 2021).
- Gómez-Cabello, A.; Ara, I.; González-Agüero, A.; Casajús, J.A.; Vicente-Rodríguez, G. Effects of Training on Bone Mass in Older Adults: A Systematic Review. Sports Med. 2012, 42, 301–325. [Google Scholar] [CrossRef]
- Watson, S.L.; Weeks, B.K.; Weis, L.J.; Harding, A.T.; Horan, S.A.; Beck, B.R. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women With Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial: Heavy lifting improves bmd in osteoporosis. J. Bone Miner. Res. 2018, 33, 211–220. [Google Scholar] [CrossRef]
- Pasqualini, L.; Ministrini, S.; Lombardini, R.; Bagaglia, F.; Paltriccia, R.; Pippi, R.; Collebrusco, L.; Reginato, E.; Tomaro, S.E.; Marini, E.; et al. Effects of a 3-Month Weight-Bearing and Resistance Exercise Training on Circulating Osteogenic Cells and Bone Formation Markers in Postmenopausal Women with Low Bone Mass. Osteoporos. Int. 2019, 30, 797–806. [Google Scholar] [CrossRef]
- Moreira, L.D.F.; Fronza, F.C.A.O.; dos Santos, R.N.; Zach, P.L.; Kunii, I.S.; Hayashi, L.F.; Teixeira, L.R.; Kruel, L.F.M.; Castro, M.L. The Benefits of a High-Intensity Aquatic Exercise Program (HydrOS) for Bone Metabolism and Bone Mass of Postmenopausal Women. J. Bone Miner. Metab. 2013, 32, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bruton, A.; Gónzalez-Agüero, A.; Gómez-Cabello, A.; Casajús, J.A.; Vicente-Rodríguez, G. Is Bone Tissue Really Affected by Swimming? A Systematic Review. PLoS ONE 2013, 8, e70119. [Google Scholar] [CrossRef] [Green Version]
- Greenway, K.G.; Walkley, J.W.; Rich, P.A. Does Long-Term Swimming Participation Have a Deleterious Effect on the Adult Female Skeleton? Eur. J. Appl. Physiol. 2012, 112, 3217–3225. [Google Scholar] [CrossRef]
- Varahra, A.; Rodrigues, I.B.; MacDermid, J.C.; Bryant, D.; Birmingham, T. Exercise to Improve Functional Outcomes in Persons with Osteoporosis: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2018, 29, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Malmir, H.; Larijani, B.; Esmaillzadeh, A. Consumption of Milk and Dairy Products and Risk of Osteoporosis and Hip Fracture: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1722–1737. [Google Scholar] [CrossRef]
- Hill, T.R.; Aspray, T.J. The Role of Vitamin D in Maintaining Bone Health in Older People. Ther. Adv. Musculoskelet. Dis. 2017, 9, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatima, M.; Brennan-Olsen, S.L.; Duque, G. Therapeutic Approaches to Osteosarcopenia: Insights for the Clinician. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19867009. [Google Scholar] [CrossRef] [Green Version]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Sieber, C.C.; et al. Nutritional Status, Body Composition, and Quality of Life in Community-Dwelling Sarcopenic and Non-Sarcopenic Older Adults: A Case-Control Study. Clin. Nutr. 2017, 36, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giezenaar, C.; Chapman, I.; Luscombe-Marsh, N.; Feinle-Bisset, C.; Horowitz, M.; Soenen, S. Ageing Is Associated with Decreases in Appetite and Energy Intake—A Meta-Analysis in Healthy Adults. Nutrients 2016, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Pilgrim, A.; Robinson, S.; Sayer, A.A.; Roberts, H. An Overview of Appetite Decline in Older People. Nurs. Older People 2015, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Granic, A.; Sayer, A.A. Nutrition and Muscle Strength, As the Key Component of Sarcopenia: An Overview of Current Evidence. Nutrients 2019, 11, 2942. [Google Scholar] [CrossRef] [Green Version]
- Tai, V.; Leung, W.; Grey, A.; Reid, I.R.; Bolland, M.J. Calcium Intake and Bone Mineral Density: Systematic Review and Meta-Analysis. BMJ 2015, 351, h4183. [Google Scholar] [CrossRef] [Green Version]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of Vitamin D Supplements on Bone Mineral Density: A Systematic Review and Meta-Analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef]
- Knapen, M.H.J.; Drummen, N.E.; Smit, E.; Vermeer, C.; Theuwissen, E. Three-Year Low-Dose Menaquinone-7 Supplementation Helps Decrease Bone Loss in Healthy Postmenopausal Women. Osteoporos. Int. 2013, 24, 2499–2507. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Boivin, G.; Andersen, O. Osteoporosis and Trace Elements-an Overview. J. Trace. Elem. Med. Biol. 2012, 26, 149–152. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary Protein and Bone Health: A Systematic Review and Meta-Analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2017, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- New, S.A. Do Vegetarians Have a Normal Bone Mass? Osteoporos. Int. 2004, 15, 679–688. [Google Scholar] [CrossRef]
- Stanghelle, B.; Bentzen, H.; Giangregorio, L.; Pripp, A.H.; Bergland, A. Effect of a Resistance and Balance Exercise Programme for Women with Osteoporosis and Vertebral Fracture: Study Protocol for a Randomized Controlled Trial. BMC Musculoskelet. Disord. 2018, 19, 100. [Google Scholar] [CrossRef]
- Isanejad, M.; Mursu, J.; Sirola, J.; Kröger, H.; Rikkonen, T.; Tuppurainen, M.; Erkkilä, A.T. Association of Protein Intake with the Change of Lean Mass among Elderly Women: The Osteoporosis Risk Factor and Prevention—Fracture Prevention Study (OSTPRE-FPS). J. Nutr. Sci. 2015, 4, e41. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Kim, R.; Choi, H.; Lee, S.-J.; Bae, G.-U. Understanding of Sarcopenia: From Definition to Therapeutic Strategies. Arch. Pharm. Res. 2021, 44, 876–889. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.M.; Emerson, C.P.; Owens, J.; Christoforou, N. P38 MAPKs—Roles in Skeletal Muscle Physiology, Disease Mechanisms, and as Potential Therapeutic Targets. JCI Insight 2021, 6, 12. [Google Scholar] [CrossRef]
- Yun, Y.-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.-H.; Shin, U.S.; Kim, H.-W. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. J. Tissue Eng. 2010, 2010, 218142. [Google Scholar] [CrossRef]
- Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.V.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front. Physiol. 2020, 11, 963. [Google Scholar] [CrossRef]
- Xia, Q.; Huang, X.; Huang, J.; Zheng, Y.; March, M.E.; Li, J.; Wei, Y. The Role of Autophagy in Skeletal Muscle Diseases. Front. Physiol. 2021, 12, 638983. [Google Scholar] [CrossRef]
- Beckwée, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J. Nutr. Health Aging 2019, 23, 494–502. [Google Scholar] [CrossRef]
- Liao, C.-D.; Chen, H.-C.; Huang, S.-W.; Liou, T.-H. The Role of Muscle Mass Gain Following Protein Supplementation Plus Exercise Therapy in Older Adults with Sarcopenia and Frailty Risks: A Systematic Review and Meta-Regression Analysis of Randomized Trials. Nutrients 2019, 11, E1713. [Google Scholar] [CrossRef] [Green Version]
- Marzetti, E.; Calvani, R.; Tosato, M.; Cesari, M.; Di Bari, M.; Cherubini, A.; Broccatelli, M.; Savera, G.; D’Elia, M.; Pahor, M.; et al. Physical Activity and Exercise as Countermeasures to Physical Frailty and Sarcopenia. Aging Clin. Exp. Res. 2017, 29, 35–42. [Google Scholar] [CrossRef]
- Moore, S.A.; Hrisos, N.; Errington, L.; Rochester, L.; Rodgers, H.; Witham, M.; Sayer, A.A. Exercise as a Treatment for Sarcopenia: An Umbrella Review of Systematic Review Evidence. Physiotherapy 2020, 107, 189–201. [Google Scholar] [CrossRef]
- Steffl, M.; Bohannon, R.W.; Sontakova, L.; Tufano, J.J.; Shiells, K.; Holmerova, I. Relationship between Sarcopenia and Physical Activity in Older People: A Systematic Review and Meta-Analysis. Clin. Interv. Aging 2017, 12, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Vlietstra, L.; Hendrickx, W.; Waters, D.L. Exercise Interventions in Healthy Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Australas J. Ageing 2018, 37, 169–183. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Yamada, M.; Kim, H.; Harada, A.; Arai, H. Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Am. Med. Dir. Assoc. 2017, 18, 553.e1–553.e16. [Google Scholar] [CrossRef]
- Frontera, W.R.; Suh, D.; Krivickas, L.S.; Hughes, V.A.; Goldstein, R.; Roubenoff, R. Skeletal Muscle Fiber Quality in Older Men and Women. Am. J. Physiol. Cell Physiol. 2000, 279, C611–C618. [Google Scholar] [CrossRef]
- Clark, B.C.; Taylor, J.L. Age-Related Changes in Motor Cortical Properties and Voluntary Activation of Skeletal Muscle. Curr. Aging Sci. 2011, 4, 192–199. [Google Scholar] [CrossRef]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Bori, Z.; Zhao, Z.; Koltai, E.; Fatouros, I.G.; Jamurtas, A.Z.; Douroudos, I.I.; Terzis, G.; Chatzinikolaou, A.; Sovatzidis, A.; Draganidis, D.; et al. The Effects of Aging, Physical Training, and a Single Bout of Exercise on Mitochondrial Protein Expression in Human Skeletal Muscle. Exp. Gerontol. 2012, 47, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-Z.; No, M.-H.; Heo, J.-W.; Park, D.-H.; Kang, J.-H.; Kim, S.H.; Kwak, H.-B. Role of Exercise in Age-Related Sarcopenia. J. Exerc. Rehabil. 2018, 14, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vásquez-Morales, A.; Sanz-Valero, J.; Wanden-Berghe, C. Eccentric exercise as preventive physical option in people over 65 years: A systematic review of the scientific literature. Enferm. Clin. 2013, 23, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.G.; Iodice, P.; Maffulli, N.; Maghradze, T.; Coco, V.; Saggini, R. Muscle Strength and Balance Training in Sarcopenic Elderly: A Pilot Study with Randomized Controlled Trial. Eur. J. Inflamm. 2013, 11, 193–201. [Google Scholar] [CrossRef]
- Paillard, T. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults. Front. Physiol. 2017, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Marty, E.; Liu, Y.; Samuel, A.; Or, O.; Lane, J. A Review of Sarcopenia: Enhancing Awareness of an Increasingly Prevalent Disease. Bone 2017, 105, 276–286. [Google Scholar] [CrossRef]
- Martone, A.M.; Marzetti, E.; Calvani, R.; Picca, A.; Tosato, M.; Santoro, L.; Di Giorgio, A.; Nesci, A.; Sisto, A.; Santoliquido, A.; et al. Exercise and Protein Intake: A Synergistic Approach against Sarcopenia. BioMed Res. Int. 2017, 2017, e2672435. [Google Scholar] [CrossRef]
- Narici, M.V.; Maganaris, C.N. Adaptability of Elderly Human Muscles and Tendons to Increased Loading. J. Anat. 2006, 208, 433–443. [Google Scholar] [CrossRef]
- Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the Optimal Level of Protein Intake for Older Adults Greater than the Recommended Dietary Allowance? J. Gerontol. A. Biol. Sci. Med. Sci. 2013, 68, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Santilli, V. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177. [Google Scholar] [CrossRef]
- Rolland, Y.; Cesari, M.; Fielding, R.A.; Reginster, J.Y.; Vellas, B.; Cruz-Jentoft, A.J. The ICFSR Task Force. Osteoporosis in Frail Older Adults: Recommendations for Research from the ICFSR Task Force 2020. J. Frailty Aging 2021, 10, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, R.; Aliakbar, S.; Abdollahi, A.; Yekaninejad, M.S.; Maghbooli, Z.; Mirzaei, K. Relationship between Major Dietary Patterns and Sarcopenia among Menopausal Women. Aging Clin. Exp. Res. 2017, 29, 1241–1248. [Google Scholar] [CrossRef]
- Sgrò, P.; Sansone, M.; Sansone, A.; Sabatini, S.; Borrione, P.; Romanelli, F.; Di Luigi, L. Physical Exercise, Nutrition and Hormones: Three Pillars to Fight Sarcopenia. Aging Male 2019, 22, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and Physical Activity in the Prevention and Treatment of Sarcopenia: Systematic Review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia—What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C.; McGlory, C.; Bolster, D.R.; Kamil, A.; Rahn, M.; Harkness, L.; Baker, S.K.; Phillips, S.M. Leucine, Not Total Protein, Content of a Supplement Is the Primary Determinant of Muscle Protein Anabolic Responses in Healthy Older Women. J. Nutr. 2018, 148, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Eley, H.L.; Russell, S.T.; Tisdale, M.J. Mechanism of Attenuation of Muscle Protein Degradation Induced by Tumor Necrosis Factor-α and Angiotensin II by β-Hydroxy-β-Methylbutyrate. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1417–E1426. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein Intake and Exercise for Optimal Muscle Function with Aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, S.K. Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Cesari, M.; Calvani, R.; Cherubini, A.; Di Bari, M.; Bejuit, R.; Mshid, J.; Andrieu, S.; Sinclair, A.J.; Sieber, C.C.; et al. The “Sarcopenia and Physical FRailty IN Older People: Multi-ComponenT Treatment Strategies” (SPRINTT) Randomized Controlled Trial: Design and Methods. Aging Clin. Exp. Res. 2017, 29, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Elder, C.R.; Gullion, C.M.; Funk, K.L.; DeBar, L.L.; Lindberg, N.M.; Stevens, V.J. Impact of Sleep, Screen Time, Depression, and Stress on Weight Change in the Intensive Weight Loss Phase of the LIFE Study. Int. J. Obes. 2012, 36, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Sanchez-Rodriguez, D.; Locquet, M.; Reginster, J.-Y.; Lengelé, L.; Bruyère, O. Malnutrition as a Strong Predictor of the Onset of Sarcopenia. Nutrients 2019, 11, E2883. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-Y.; Huang, K.-S.; Chen, K.-M.; Chou, C.-P.; Tu, Y.-K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-Analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef]
- Bao, W.; Sun, Y.; Zhang, T.; Zou, L.; Wu, X.; Wang, D.; Chen, Z. Exercise Programs for Muscle Mass, Muscle Strength and Physical Performance in Older Adults with Sarcopenia: A Systematic Review and Meta-Analysis. Aging Dis. 2020, 11, 863–873. [Google Scholar] [CrossRef]
- Karlsson, M.; Becker, W.; Michaëlsson, K.; Cederholm, T.; Sjögren, P. Associations between Dietary Patterns at Age 71 and the Prevalence of Sarcopenia 16 Years Later. Clin. Nutr. 2020, 39, 1077–1084. [Google Scholar] [CrossRef]
- Granic, A.; Dismore, L.; Hurst, C.; Robinson, S.; Sayer, A. Myoprotective Whole Foods, Muscle Health and Sarcopenia: A Systematic Review of Observational and Intervention Studies in Older Adults. Nutrients 2020, 12, 2257. [Google Scholar] [CrossRef]
- Zhu, L.-Y.; Chan, R.; Kwok, T.; Cheng, K.C.-C.; Ha, A.; Woo, J. Effects of Exercise and Nutrition Supplementation in Community-Dwelling Older Chinese People with Sarcopenia: A Randomized Controlled Trial. Age Ageing 2019, 48, 220–228. [Google Scholar] [CrossRef]
- Liao, C.-D.; Tsauo, J.-Y.; Lin, L.-F.; Huang, S.-W.; Ku, J.-W.; Chou, L.-C.; Liou, T.-H. Effects of Elastic Resistance Exercise on Body Composition and Physical Capacity in Older Women with Sarcopenic Obesity: A CONSORT-Compliant Prospective Randomized Controlled Trial. Medicine 2017, 96, e7115. [Google Scholar] [CrossRef]
- Drey, M.; Sieber, C.C.; Bertsch, T.; Bauer, J.M.; Schmidmaier, R. FiAT intervention group. Osteosarcopenia Is More than Sarcopenia and Osteopenia Alone. Aging Clin. Exp. Res. 2016, 28, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Paintin, J.; Cooper, C.; Dennison, E. Osteosarcopenia. Br. J. Hosp. Med. 2018, 79, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Roh, E.; Choi, K.M. Health Consequences of Sarcopenic Obesity: A Narrative Review. Front. Endocrinol. 2020, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Zanker, J.; Duque, G. Osteosarcopenia: Epidemiology, Diagnosis, and Treatment—Facts and Numbers. J. Cachexia Sarcopenia Muscle 2020, 13, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banitalebi, E.; Ghahfarrokhi, M.M.; Dehghan, M. Effect of 12-Weeks Elastic Band Resistance Training on MyomiRs and Osteoporosis Markers in Elderly Women with Osteosarcopenic Obesity: A Randomized Controlled Trial. BMC Geriatr. 2021, 21, 433. [Google Scholar] [CrossRef]
- Atlihan, R.; Kirk, B.; Duque, G. Non-Pharmacological Interventions in Osteosarcopenia: A Systematic Review. J. Nutr. Health Aging 2020, 25, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.R.; Suriyaarachchi, P.; Gomez, F.; Curcio, C.L.; Boersma, D.; Gunawardene, P.; Demontiero, O.; Duque, G. Comprehensive Nutritional Status in Sarco-Osteoporotic Older Fallers. J. Nutr. Health Aging 2015, 19, 474–480. [Google Scholar] [CrossRef]
Authors | Type of Article | Examined | Results |
---|---|---|---|
Muñoz-Garach et al., 2020 [37] | Review | Nutrition (vitamin D, calcium, trace elements, different types of food) | Eating a healthy diet contributes to bone health and reduces the risk of osteoporosis/fractures. |
Malmir et al., 2020 [33] | Systematic review and meta-analysis | Nutrition (dairy products) | Conflicting results between cohort and case-control studies. The final conclusion was that dairy consumption does not reduce the risk of osteoporosis. |
Pasqualini et al., 2019 [28] | Article | Resistance exercise | Resistance exercise enhances bones formation and performance on 1 RM. |
Stanghelle et al., 2018 [46] | Randomized control trial | Exercise | A combination of resistance and balance exercises can help osteoporotic women. |
Watson et al., 2018 [27] | Randomized control trial | High-intensity resistance and impact training (HiRIT) | HiRIT exercise was beneficial on BDM of post-menopausal women with osteoporosis and osteopenia. |
Benedetti et al., 2018 [17] | Review | Exercise | Studies are still limited and no clear conclusions can be drawn. However, it seems that weight training and RT help osteoporotic people. |
Isanejad et al., 2015 [47] | Article | Nutrition | Protein supplementation has a positive effect on body mass and prevention of osteoporosis, but more studies are needed. |
Moreira et al. 2014 [29] | Article | Aerobic exercise | Aerobic exercise enhances bone formation and attenuates bone resorption. |
Authors | Type of Article | Examined | Results |
---|---|---|---|
Ganapathy and Nieves, 2020 [79] | Review | Nutrition (vitamin D, selenium, magnesium, calcium, etc.) | Especially vitamin D and proteins seem to have a protective role against sarcopenia and loss of muscle mass. |
Moore et al., 2020 [56] | Umbrella review | Exercise | Little evidence for the effect of exercise on sarcopenia. Further studies needed. |
Beaudart et al., 2019 [86] | Cohort study | Nutrition | Malnutrition is associated with an increased risk of sarcopenia. |
Robinson et al., 2019 [39] | Review | Nutrition | The data are not yet sufficient to suggest a protective role of diet in sarcopenia. |
Beckwée et al., 2019 [53] | Umbrella review | Exercise | Resistance exercises improve muscle mass, strength and physical activity. |
Liao et al., 2019 [54] | Review | Exercise and diet | Strengthening exercises combined with protein supplements help to increase muscle mass and strength and improve mobility. When these supplements are combined with RT the positive effect is even greater for patients. |
Sgrò et al., 2019 [77] | Review | Exercise and diet | The Mediterranean diet and protein/mineral supplements, as well as strengthening exercises, seem to have a positive effect on delaying the progression of sarcopenia. |
Vlietstra and Hendrickx, 2018 [58] | Review | Exercise | The results are not yet clear, more studies with more rigorous and detailed inclusion criteria are needed. |
Mohseni et al., 2017 [76] | Cross sectional | Nutrition | The evidence suggests that the Mediterranean diet contributes to the prevention of sarcopenia. |
Steffl et al., 2017 [57] | Review and meta-analysis | Exercise | Physical activity such as aerobic exercise and strengthening exercises help prevent sarcopenia. |
Yoshimura et al., 2017 [59] | Review and meta-analysis | Exercise and diet | Very limited evidence shows a positive association between exercise, diet and sarcopenia. More studies are needed. |
Marzetti et al., 2017 [55] | Review | Exercise | Exercise helps to slow the progression of sarcopenia and increase muscle mass, but it is not yet known how long the duration of exercise has to be to produce long-term effects. |
Wu, Pei-Yu, et al., 2020 [87] | Systematic review and meta-analysis | Exercise and diet | Both exercise and a combination of exercise and diet have beneficial effects on muscle strength and physical performance in older adults with sarcopenia |
Bao et al., 2020 [88] | Systematic review and meta-analysis | Exercise | Exercise programs have the potential to support muscle function in older people with sarcopenia, which is recommended for daily life. Compared to muscle mass, muscle strength and physical performance can be improved to a greater extent with exercise. |
Karlsson et al. 2020 [89] | Review | Nutrition | At an average age of 71 as a reflection of habitual eating habits, healthy eating patterns tend to protect against the development of sarcopenia over 16 years. In particular, increased adherence to a Mediterranean dietary pattern may be advantageous. |
Granic et al., 2020 [90] | Systematic review | Nutrition | There was limited or inconclusive to moderate evidence for the role of food on muscle strength and sarcopenia in older adults. Although current dietary recommendations are often based on a nutrient approach, further research on the role of protein-rich and other foods in muscle health is needed. |
Zhu et al., 2019 [91] | Article | Resistance exercise and nutrition | Resistance exercise program with and without nutrition supplementation improves strength factors. |
Liao et al., 2017 [92] | Article | Resistance exercise | Resistance exercises attenuate muscle mass loss and prevent physical difficulty. |
Authors | Type of Article | Examined | Results |
---|---|---|---|
Banitalebi et al., 2021 [97] | Article | Resistance exercise | Resistance exercise causes slight and insignificant improvement in osteoporosis markers. |
Atlihan et al., 2020 [98] | Systematic review | Exercise | Increasing muscle mass and strength, but not in physical activity and bone transformation. |
Fatima et al., 2019 [35] | Review | Exercise and diet (vitamin D) | Aerobic exercise does not affect muscle mass, unlike RT. Low levels of vitamin D are associated with an increased risk of osteoporosis and sarcopenia. |
Huo et al., 2015 [98] | Cross-sectional study | Nutrition | Low intake of vitamins and amino acids are associated with the development of osteoporosis/sarcopenia in older people. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, S.K.; Papadimitriou, K.; Voulgaridou, G.; Georgaki, E.; Tsotidou, E.; Zantidou, O.; Papandreou, D. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review. Nutrients 2021, 13, 4499. https://doi.org/10.3390/nu13124499
Papadopoulou SK, Papadimitriou K, Voulgaridou G, Georgaki E, Tsotidou E, Zantidou O, Papandreou D. Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review. Nutrients. 2021; 13(12):4499. https://doi.org/10.3390/nu13124499
Chicago/Turabian StylePapadopoulou, Sousana K., Konstantinos Papadimitriou, Gavriela Voulgaridou, Evridiki Georgaki, Eudoxia Tsotidou, Olga Zantidou, and Dimitrios Papandreou. 2021. "Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review" Nutrients 13, no. 12: 4499. https://doi.org/10.3390/nu13124499
APA StylePapadopoulou, S. K., Papadimitriou, K., Voulgaridou, G., Georgaki, E., Tsotidou, E., Zantidou, O., & Papandreou, D. (2021). Exercise and Nutrition Impact on Osteoporosis and Sarcopenia—The Incidence of Osteosarcopenia: A Narrative Review. Nutrients, 13(12), 4499. https://doi.org/10.3390/nu13124499