Younger Adults Are More Likely to Increase Fruit and Vegetable Consumption and Decrease Sugar Intake with the Application of Dietary Monitoring
Abstract
:1. Introduction
2. Research Questions
- Does the dietary monitoring app enhance nutritional knowledge among younger adults?
- Does the dietary monitoring app increase the consumption of fruits and vegetables among younger adults?
- Does the dietary monitoring app decrease the consumption of salt and sugar among younger adults?
- Does the dietary monitoring app increase the consumption of whole grains among younger adults?
3. Methods
3.1. Design and Setting
3.2. Participants
3.3. Intervention
3.4. Outcome Measurements
3.4.1. Nutrition Knowledge
3.4.2. Dietary Behavior
3.5. Procedure
3.6. Data Analysis
4. Results
4.1. Impact of the Dietary Monitoring App on Nutrition Knowledge
4.2. Impact of the Dietary Monitoring App on Dietary Behavior
4.3. Impact of the Dietary Monitoring App on Fruit and Vegetable Consumption
4.4. Predictors of Fruit and Vegetable Consumption
4.5. Feedback on the Application of the Dietary Monitoring App
- (a)
- User experience in the dietary recording process
- (b)
- User reflection on the whole intervention process
- (c)
- User suggestions after the intervention
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allman-Farinelli, M.; Chey, T.; Bauman, A.E.; Gill, T.; James, W.P.T. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, C.E.; Jacobs, D.R., Jr.; McCreath, H.; Kiefe, C.I.; Schreiner, P.J.; Smith, D.E.; Williams, O.D. Weight gain continues in the 1990s: 10-year treands in weight and overweight from the CARDIA study. Coronary Artery Risk Development in Young Adults. Am. J. Epidemiol. 2000, 151, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian health Survey: First Results, 2014–2015; Commonwealth Government of Australia: Canberra, ACT, Australia, 2015.
- Surveillance and Epidemiology Branch, Department of Health. Report of Population Health Survey 2014/2015. Hong Kong SAR. 2017. Available online: http://www.chp.gov.hk. (accessed on 2 December 2020).
- Briggs, A.D.; Mytton, O.T.; Kehlbacher, A.; Tiffin, R.; Rayner, M.; Scarborough, P. Overall and income specific effect on prevalence of overweight an obesity of 20% sugar sweetened drink tax in UK: Econometric and comparative risk assessment modelling study. BMJ Open 2013, 347, f6189. [Google Scholar] [CrossRef] [Green Version]
- Kit, B.; Fakhouri, T.H.; Park, S.; Nielsen, S.J.; Ogden, C.L. Trends in sugar sweetened beverage consumption among youth and adults in the United States: 1999-2010. Am. J. Clin. Nutr. 2013, 98, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Larson, N.; Neumark-Sztainer, D.; Laska, M.N.; Story, M. Young adults and eating away from hone: Associations with dietary intake patterns and weight status differ by choice of restaurant. J. Am. Diet. Assoc. 2011, 111, 1696–1703. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Australian Health Survey: Nutrition First Results–Food an Nutrients; Commonwealth Government of Australia: Canberra, Australia, 2014.
- Lloyd-Jones, D.M.; Liu, K.; Colangelo, L.A.; Yan, L.L.; Klein, L.; Loria, C.M.; Lewis, C.E.; Savage, P. Consistently stable or decreased body mass index in young adulthood and longitudinal changes in metabolic syndrome components: The Coronary Artery Risk Development in Young Adults Study. Circulation 2007, 115, 1004–1011. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.T.C.; Chan, J.C.N.; Tong, S.D.Y.; Chan, A.W.Y.; Wong, P.T.S.; Hui, S.S.C.; Kwok, R.; Chan, C.L.W. Associations between dietary habits and risk factors for cardiovascular diseases in a Hong Kong Chinese working population–the “Better Health for Better Hong Kong” (BHBHK) health promotion campaign. Asia Pac. J. Clin. Nutr. 2007, 16, 757–765. [Google Scholar]
- Lowering Blood Cholesterol to Prevent Heart Disease. NIH Consensus Development Conference Statement. Nutr Rev. 1985, 43, 283–291.
- Food and Health Bureau. Boards and Committees. Committee on Reduction of Salt and Sugar in Food. Hong Kong: 18 July 2019. Available online: https://www.fhb.gov.hk/en/committees/crss.html. (accessed on 2 December 2020).
- Centre for Food Safety. Hong Kong Pollution-Based Food Consumption Survey 2005-2007; Final Report: HKSAR; Centre for Food Safety: Hong Kong, 2010. [Google Scholar]
- Worsley, A. Nutrition knowledge and food consumption: Can nutrition knowledge change food behaviour? Asia Pac. J. Clin. Nutr. 2002, 11, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.M.; Butcher, K.F.; Levine, P.B. Maternal employment and overweight children. J. Health Econ. 2003, 22, 477–504. [Google Scholar] [CrossRef] [Green Version]
- Poobalan, A.S.; Aucott, L.S.; Clarke, A.; Smith, W.C.S. Diet behavior among young people in transition to adulthood (18–25 year olds): A mixed method study. Health Psychol. Behav. Med. 2014, 2, 909–928. [Google Scholar] [CrossRef] [PubMed]
- Munt, A.E.; Partridge, S.R.; Allman-Farinelli, M. The barriers and enablers of healthy eating among young adults: A missing piece of the obesity puzzle: A scoping review. Obes. Rev. 2017, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.S.; Winett, R.A.; Wojcik, J.R. Self-regulation, self-efficacy, outcome expectations, and social support: Social cognitive theory and nutrition behavior. Am. Behav. Med. 2007, 34, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Pagoto, S.; Schneider, K.; Jojie, M.; DeBiasse, M.; Mann, D. Evidence-based strategies in weight-loss mobile apps. Am. J. Prev. Med. 2013, 45, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Laing, B.Y.; Mangione, C.M.; Tseng, C.H.; Leng, M.; Vaisberg, E.; Mahida, M.; Bholat, M.; Glazier, E.; Morisky, D.E.; Bell, D.S. Effectiveness of a smartphone application for weight loss compared with usual care in overweight primary care patients: A randomized, controlled trial. Ann. Intern. Med. 2014, 161, S5–S12. [Google Scholar] [CrossRef]
- Duncan, M.J.; Vandelanotte, C.; Rosenkrantz, R.R.; Caperchione, C.M.; Caperchione, C.; Ding, H.; Ellison, M.; George, E.S.; Hooker, C.; Karunanithi, M.; et al. Effectiveness of a website and mobile phone based physical activity and nutrition intervention for middle-aged males: Trial protocol and baseline findings of the ManUp Study. BMC Pub. Health 2012, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Six, B.L.; Schap, T.E.; Zhu, F.M.; Mariappan, A.; Bosch, M.; Delp, E.J.; Ebert, D.S.; Kerr, D.A.D.; Boushey, C.J. Evidence-based development of a mobile telephone food record. J. Am. Diet. Assoc. 2010, 110, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Ikorok, M.M.; Eka, R.J.; Ogunjimi, L.O.; Udoh, N.B. Determinants of nutritional behaviour of secondary school students in Akwa Ibom State, Nigeria. Int. J. Nutr. Metab. 2012, 4, 94–99. [Google Scholar]
- Chung, L.M.Y.; Fong, S.S.M. Role of Behavioural Feedback in Nutrition Education for Enhancing Nutrition Knowledge and Improving Nutritional Behaviour among Adolescents. Asia Pac. J. Clin. Nutr. 2018, 27, 466–472. [Google Scholar]
- Svetkey, L.P.; Batch, B.C.; Lin, P.H.; Intille, S.S.; Corsino, L.; Tyson, C.C.; Bosworth, H.B.; Grambow, S.C.; Voils, C.; Loria, C.; et al. Cell phone intervention for you (CITY): A randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology. Obesity 2015, 23, 2133–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, L.M.Y.; Law, Q.P.S.; Fong, S.S.M.; Chung, J.W.Y.; Yuen, P.P.M. A cost-effectiveness analysis of teledietetics in short-, intermediate-, and long-term weight reduction. J. Telehealth Telecare 2015, 21, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, L.M.Y.; Law, Q.P.S.; Fong, S.S.M.; Chung, J.W.Y. Tele-dietetics improves weight reduction by modifying eating behavior: A randomized controlled trial. Telemed. E Health 2014, 20, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, L.M.Y.; Law, Q.P.S.; Fong, S.S.M.; Chung, J.W.Y. Electronic dietary recording system improves nutrition knowledge, eating attitude and habitual physical activity: A randomized controlled trial. Eat Behav. 2014, 15, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.M.Y.; Fong, S.S.M.; Law, Q.P.S.; Ma, A.W.W.; Chow, L.P.Y.; Chung, J.W.Y. Theoretical examination of behavioural feedback in the application of teledietetics on weight reduction. J. Telehealth Telecare 2016, 22, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Kliemann, N.; Wardle, J.; Johnson, F.; Croker, H. Reliability and validity of a revised version of the general nutrition knowledge questionnaire. Eur. J. Clin. Nutr. 2016, 70, 1174–1180. [Google Scholar] [CrossRef] [Green Version]
- Parmenter, K.; Wardle, J. Development of a General Nutrition Knowledge Questionnaire for adults. Eur. J. Clin. Nutr. 1999, 53, 298. [Google Scholar] [CrossRef] [Green Version]
- Peltzer, K. Nutrition knowledge among a sample of urban black and white South Africans. S. Afr. J. Clin. Nutr. 2004, 17, 24–31. [Google Scholar] [CrossRef]
- Assya Systems LLC. Nutritionist Pro TM diet Analysis Software. 2009. Available online: http://www.nutritionistpro.com/dietanalysis.php (accessed on 2 December 2020).
- Shetty, P.S.; Henry, C.J.; Black, A.E.; Prentice, A.M. Energy requirements of adults: An update on basal metabolic rates (BMRs) and physical activity levels (PALs). Eur. J. Clin. Nutr. 1996, 50, 11. [Google Scholar]
- SanchezSocarras, V.; Aguilar Martinez, A. Food habits and health-related behaviours in a university population. Nutr. Hosp. 2014, 31, 449–457. [Google Scholar]
- Bernardo, G.L.; Jomori, M.M.; Fernandes, A.C.; Proenca, R.P.D.C. Food intake of university students. Rev. Nutr. 2017, 30, 847–865. [Google Scholar]
- Kresic, G.; Kendel Jovanovic, G.; Pavicic Zezel, S.; Cvijanovic, O.; Ivezic, G. The effect of nutrition knowledge on dietary intake among Croatian university students. Coll. Antropol. 2009, 33, 1047–1056. [Google Scholar]
- Teschl, C.; Nössler, C.; Schneider, M.; Carlsohn, A.; Lührmann, P. Vegetable consumption among university students: Relationship between vegetable intake, knowledge of recommended vegetable servings and self-assessed achievement of vegetable intake recommendations. Health Educ. J. 2018, 77, 398–411. [Google Scholar]
- Rodrigues, V.M.; Bray, J.; Fernandes, A.C.; Bernardo, G.L.; Hartwell, H.; Martinelli, S.S.; Uggioni, P.L.; Cavalli, S.B.; Proenca, R.P.D.C. Vegetable consumption and factors associated with increased intake among college students: A scoping review of the last 10 years. Nutrients 2019, 11, 1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Megeid, F.Y.; Abdelkarem, H.M.; El-Fetouh, A.M. Unhealthy nutritional habits in university students are a risk factor for cardiovascular diseases. Saudi Med. J. 2011, 32, 621–627. [Google Scholar] [PubMed]
Control | Experiment | ||
---|---|---|---|
n (%) | n (%) | ||
Sex | |||
Male | 51 (33.1) | 55 (36.4) | >0.05 |
Female | 103 (66.9) | 96 (63.6) | |
Marital status | |||
Single | 128 (83.1) | 122 (80.8) | |
Married | 26 (16.9%) | 29 (19.2) | >0.05 |
Number of children | |||
0 | 138 (89.6) | 135 (89.4) | <0.05 |
1 | 11 (7.1) | 4 (2.6) | |
2 | 5 (3.2) | 12 (7.9) | |
Highest level of education | |||
Secondary school | 19 (12.3) | 11 (7.3) | <0.05 |
Technical or trade certificate | 50 (32.5) | 35 (23.2) | |
Diploma | 49 (31.8) | 51 (33.8) | |
Bachelor degree | 36 (23.4) | 54 (35.8) | |
Living region | |||
Hong Kong Island | 17 (11.0) | 10 (6.6) | >0.05 |
Kowloon | 41 (26.6) | 33 (21.9) | |
New Territories | 96 (62.3) | 108 (71.5) |
BMI <19 | 19< BMI < 23 | 23 < BMI < 25 | BMI > 25 | p-Value | ||
---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |||
Male | Control group | 7 (70.0) | 25 (41.0) | 7 (43.8) | 12 (63.2) | >0.05 |
Experimental group | 3 (30.0) | 36 (59.0) | 9 (56.3) | 7 (36.8) | ||
Female | Control group | 34 (66.7) | 51 (46.4) | 7 (38.9) | 13 (54.2) | >0.05 |
Experimental group | 17 (33.3) | 59 (53.6) | 11 (61.1) | 11 (45.8) |
Control | Experiment | |||||
---|---|---|---|---|---|---|
Baseline | Post | Baseline | Post | between Groups f-Value † | p-Value | |
Mean (s.d.) | Mean (s.d.) | Mean (s.d.) | Mean (s.d.) | |||
GNKQ-R δ Section 1 | 12.4 (2.68) | 13.7 (2.80) | 13.1 (2.48) | 14.4 (3.54) | 1.125 | >0.05 |
GNKQ-R δ Section 2 | 23.6 (4.51) | 25.1 (5.21) | 24.6 (4.07) | 27.1 (5.2) | 8.264 | <0.05 |
GNKQ-R δ Section 3 | 8.1 (2.42) | 8.5 (2.39) | 8.5 (2.34) | 9.3 (2.76) | 4.931 | <0.05 |
GNKQ-R δ Section 4 | 14.3 (2.88) | 14.6 (2.75) | 14.0 (2.69) | 15.1 (3.61) | 4.050 | <0.05 |
GNKQ-R (Total Score) | 58.4 (9.61) | 61.9 (10.57) | 60.1 (8.67) | 65.9 (13.25) | 5.948 | <0.05 |
Control | Experiment | |||||
---|---|---|---|---|---|---|
Baseline | Post | Baseline | Post | between Groups f-Value † | p-Value | |
Energy requirement (calories) | 2182 (332) | 2197 (322) | 2386 (433) | 2420 (447) | 5.414 | p < 0.05 |
Energy intake (calories) | 2278 (474) | 2036 (395) | 2551 (827) | 2045 (613) | 35.317 | p < 0.001 |
Carbohydrate intake (grams) | 231 (69) | 215 (154) | 244 (86) | 205 (59) | 23.503 | p > 0.001 |
Protein intake (grams) | 166 (39) | 149 (46) | 158 (62) | 129 (53) | 15.274 | p < 0.001 |
Total fat intake (grams) | 76.7 (32.7) | 64.2 (22.6) | 104.7 (49.8) | 78.5 (38.3) | 3.255 | p > 0.05 |
Saturated fat intake (grams) | 54.7 (24.3) | 48.6 (17.5) | 75.3 (37.0) | 57.3 (29.4) | 14.397 | p < 0.001 |
Trans fatty acid intake (grams) | 2.4 (0.97) | 2.2 (0.88) | 2.7 (1.32) | 1.33 (1.08) | 112.390 | p < 0.05 |
Cholesterol intake (milligrams) | 446 (163) | 480 (207) | 514 (239) | 492 (411) | 0.577 | p > 0.05 |
Sugar intake (grams) | 72.4 (48.3) | 60.2 (34.4) | 100.4 (55.8) | 53.8 (36.9) | 53.645 | p < 0.001 |
Dietary fibre intake (grams) | 10.3 (4.67) | 11.8 (4.78) | 14.4 (7.26) | 21.2 (11.56) | 48.625 | p < 0.001 |
Sodium intake (milligrams) | 3611 (1164) | 3794 (3653) | 3590 (1498) | 3659 (3989) | 0.082 | p > 0.05 |
Calcium intake (milligrams) | 299 (140) | 312 (151) | 328 (189) | 594 (420) | 60.109 | p < 0.001 |
Vitamin C intake (milligrams) | 25.8 (24.4) | 22.9 (20.4) | 35.4 (34.7) | 55.4 (46.7) | 64.442 | p < 0.001 |
Vegetable consumption (grams) | 233 (106) | 267 (109) | 327 (165) | 456 (223) | 49.555 | p < 0.001 |
Fruit consumption (grams) | 32.7 (36.8) | 26.1 (28.3) | 37.8 (42.89) | 61.6 (70.0) | 43.258 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, L.M.Y.; Fong, S.S.M.; Law, Q.P.S. Younger Adults Are More Likely to Increase Fruit and Vegetable Consumption and Decrease Sugar Intake with the Application of Dietary Monitoring. Nutrients 2021, 13, 333. https://doi.org/10.3390/nu13020333
Chung LMY, Fong SSM, Law QPS. Younger Adults Are More Likely to Increase Fruit and Vegetable Consumption and Decrease Sugar Intake with the Application of Dietary Monitoring. Nutrients. 2021; 13(2):333. https://doi.org/10.3390/nu13020333
Chicago/Turabian StyleChung, Louisa Ming Yan, Shirley Siu Ming Fong, and Queenie Pui Sze Law. 2021. "Younger Adults Are More Likely to Increase Fruit and Vegetable Consumption and Decrease Sugar Intake with the Application of Dietary Monitoring" Nutrients 13, no. 2: 333. https://doi.org/10.3390/nu13020333
APA StyleChung, L. M. Y., Fong, S. S. M., & Law, Q. P. S. (2021). Younger Adults Are More Likely to Increase Fruit and Vegetable Consumption and Decrease Sugar Intake with the Application of Dietary Monitoring. Nutrients, 13(2), 333. https://doi.org/10.3390/nu13020333