The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders
Abstract
:1. Introduction
2. Eating Disorders and the Gut Microbiome
2.1. The Microbiome and Anorexia Nervosa
2.2. The Microbiome in Animal Models of Anorexia Nervosa
3. Anorexia Nervosa and Peripheral Inflammation
4. Anorexia Nervosa and Neuroinflammation
5. Bulimic Syndromes and Inflammation
What Can Animal Studies Tell Us?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FMT | fecal microbiome transplant |
SCFAs | short chain fatty acids |
IL-6 | interleukin 6 |
IL-1b | interleukin 1beta |
TNF-a | tumor necrosis factor alpha |
IL-15 | interleukin 15 |
VCAM-1 | vascular cell adhesion molecule |
IgM | immunoglobulin M |
IgG | immunoglobulin G |
TLR-4 | toll-like receptor 4 |
TBARS | thiobarbituric acid reactive substances |
IL-10 | interleukin 10 |
hs-CRP | high-sensitive C-reactive protein |
IL-18 | interleukin 18 |
IL-18R | interleukin 18 receptor |
iNOS | inducible nitric oxide synthase |
References
- American Psychological Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychological Association: Washington, DC, USA, 2013. [Google Scholar]
- Bulik, C.; Yilmaz, Z.; Hardaway, A. Genetics and epigenetics of eating disorders. Adv. Genom. Genet. 2015, 5, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübel, C.; Gaspar, H.A.; Coleman, J.R.I.; Hanscombe, K.B.; Purves, K.; Prokopenko, I.; Graff, M.; Ngwa, J.S.; Workalemahu, T.; O’Reilly, P.F.; et al. Genetic correlations of psychiatric traits with body composition and glycemic traits are sex- and age-dependent. Nat. Commun. 2019, 10, 5765. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, M.E.; Culbert, K.M.; Sisk, C.L.; Klump, K.L. Gonadal hormone contributions to individual differences in eating disorder risk. Curr. Opin. Psychiatry 2019, 32, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Hoang, U.; Goldacre, M.; James, A. Mortality following hospital discharge with a diagnosis of eating disorder: National record linkage study, England, 2001–2009. Int. J. Eat. Disord. 2014, 47, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Fichter, M.M.; Quadflieg, N. Mortality in eating disorders—Results of a large prospective clinical longitudinal study. Int. J. Eat. Disord. 2016, 49, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Mathes, W.F.; Brownley, K.A.; Mo, X.; Bulik, C.M. The biology of binge eating. Appetite 2009, 52, 545–553. [Google Scholar] [CrossRef]
- De Zwaan, M. Binge eating disorder and obesity. Int. J. Obes. 2001, 25, S51–S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetterich, L.; Mack, I.; Giel, K.E.; Zipfel, S.; Stengel, A. An update on gastrointestinal disturbances in eating disorders. Mol. Cell. Endocrinol. 2019, 497, 110318. [Google Scholar] [CrossRef]
- Westmoreland, P.; Krantz, M.J.; Mehler, P.S. Medical complications of anorexia nervosa and bulimia. Am. J. Med. 2016, 129, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Rantala, M.J.; Luoto, S.; Krama, T.; Krams, I. Eating Disorders: An evolutionary psychoneuroimmunological approach. Front. Psychol. 2019, 10, 2200. [Google Scholar] [CrossRef]
- Mason, B.L. Feeding systems and the gut microbiome: Gut-brain interactions with relevance to psychiatric Cocditions. Psychosomatics 2017, 58, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, J.; Trinh, S.; Herpertz-Dahlmann, B. The microbiome and eating disorders. Psychiatr. Clin. N. Am. 2019, 42, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Tremlett, H.; Bauer, K.C.; Appel-Cresswell, S.; Finlay, B.B.; Waubant, E. The gut microbiome in human neurological disease: A review. Ann. Neurol. 2017, 81, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Kleiman, S.C.; Watson, H.J.; Bulik-Sullivan, E.C.; Huh, E.Y.; Tarantino, L.M.; Bulik, C.M.; Carroll, I.M. The intestinal microbiota in acute anorexia nervosa and during renourishment. Psychosom. Med. 2015, 77, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.A.T.E.; Schröder, H. The gut microbiome profile in obesity: A systematic review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- John, G.; Wang, L.; Nanavati, J.; Twose, C.; Singh, R.; Mullin, G. Dietary alteration of the gut microbiome and its impact on weight and fat mass: A systematic review and meta-analysis. Genes 2018, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Kootte, R.S.; Levin, E.; Salojärvi, J.; Smits, L.P.; Hartstra, A.V.; Udayappan, S.D.; Hermes, G.; Bouter, K.E.; Koopen, A.M.; Holst, J.J.; et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017, 26, 611–619.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witjes, J.J.; Smits, L.P.; Pekmez, C.T.; Prodan, A.; Meijnikman, A.S.; Troelstra, M.A.; Bouter, K.E.C.; Herrema, H.; Levin, E.; Holleboom, A.G.; et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol. Commun. 2020, 4, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Million, M.; Angelakis, E.; Maraninchi, M.; Henry, M.; Giorgi, R.; Valero, R.; Vialettes, B.; Raoult, D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. 2013, 37, 1460–1466. [Google Scholar] [CrossRef] [Green Version]
- Mack, I.; Cuntz, U.; Grmer, C.; Niedermaier, S.; Pohl, C.; Schwiertz, A.; Zimmermann, K.; Zipfel, S.; Enck, P.; Penders, J. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 2016, 6, 26752. [Google Scholar] [CrossRef] [Green Version]
- Borgo, F.; Riva, A.; Benetti, A.; Casiraghi, M.C.; Bertelli, S.; Garbossa, S.; Anselmetti, S.; Scarone, S.; Pontiroli, A.E.; Morace, G.; et al. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS ONE 2017, 12, e0179739. [Google Scholar] [CrossRef]
- Armougom, F.; Henry, M.; Vialettes, B.; Raccah, D.; Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 2009, 4, e7125. [Google Scholar] [CrossRef]
- Morita, C.; Tsuji, H.; Hata, T.; Gondo, M.; Takakura, S.; Kawai, K.; Yoshihara, K.; Ogata, K.; Nomoto, K.; Miyazaki, K.; et al. Gut dysbiosis in patients with anorexia nervosa. PLoS ONE 2015, 10, e0145274. [Google Scholar] [CrossRef] [Green Version]
- Mörkl, S.; Lackner, S.; Müller, W.; Gorkiewicz, G.; Kashofer, K.; Oberascher, A.; Painold, A.; Holl, A.; Holzer, P.; Meinitzer, A.; et al. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int. J. Eat. Disord. 2017, 50, 1421–1431. [Google Scholar] [CrossRef]
- Mörkl, S.; Lackner, S.; Meinitzer, A.; Gorkiewicz, G.; Kashofer, K.; Painold, A.; Holl, A.; Holasek, S. Pilot study: Gut microbiome and intestinal barrier in anorexia nervosa. Fortschr. Der Neurol. Psychiatr. 2019, 87, 39–45. [Google Scholar] [CrossRef]
- Schulz, N.; Belheouane, M.; Dahmen, B.; Ruan, V.A.; Specht, H.E.; Dempfle, A.; Herpertz-Dahlmann, B.; Baines, J.F.; Seitz, J. Gut microbiota alteration in adolescent anorexia nervosa does not normalize with short-term weight restoration. Int. J. Eat. Disord. 2020, eat.23435. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, E. A rat in the labyrinth of anorexia nervosa: Contributions of the activity-based anorexia rodent model to the understanding of anorexia nervosa. Int. J. Eat. Disord. 2013, 46, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.G.; Chen, Y.W.; Aoki, C. Using the activity-based anorexia rodent model to study the neurobiological basis of anorexia nervosa. J. Vis. Exp. 2015, 2015, 52927. [Google Scholar] [CrossRef] [Green Version]
- Casper, R.C.; Sullivan, E.L.; Tecott, L. Relevance of animal models to human eating disorders and obesity. Psychopharmacology 2008, 199, 313–329. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D.P.; Ackert, A.M.; Eckel, L.A. Development of, and recovery from, activity-based anorexia in female rats. Physiol. Behav. 2003, 80, 273–279. [Google Scholar] [CrossRef]
- Frintrop, L.; Liesbrock, J.; Paulukat, L.; Johann, S.; Kas, M.J.; Tolba, R.; Heussen, N.; Neulen, J.; Konrad, K.; Herpertz-Dahlmann, B.; et al. Reduced astrocyte density underlying brain volume reduction inactivity-based anorexia rats. World J. Biol. Psychiatry 2018, 19, 225–235. [Google Scholar] [CrossRef]
- Epling, W.F.; Pierce, W.D. Activity-based anorexia: A biobehavioral perspective. Int. J. Eat. Disord. 1988, 7, 475–485. [Google Scholar] [CrossRef]
- Breton, J.; Legrand, R.; Achamrah, N.; Chan, P.; do Rego, J.L.; do Rego, J.C.; Coëffier, M.; Déchelotte, P.; Fetissov, S.O. Proteome modifications of gut microbiota in mice with activity-based anorexia and starvation: Role in ATP production. Nutrition 2019, 67–68, 110557. [Google Scholar] [CrossRef]
- Breton, J.; Tirelle, P.; Hasanat, S.; Pernot, A.; L’Huillier, C.; do Rego, J.C.; Déchelotte, P.; Coëffier, M.; Bindels, L.B.; Ribet, D. Gut microbiota alteration in a mouse model of Anorexia Nervosa. Clin. Nutr. 2021, 40, 181–189. [Google Scholar] [CrossRef]
- Queipo-Ortuño, M.I.; Seoane, L.M.; Murri, M.; Pardo, M.; Gomez-Zumaquero, J.M.; Cardona, F.; Casanueva, F.; Tinahones, F.J. Gut Microbiota Composition in Male Rat Models under Different Nutritional Status and Physical Activity and Its Association with Serum Leptin and Ghrelin Levels. PLoS ONE 2013, 8, e65465. [Google Scholar] [CrossRef] [PubMed]
- Trinh, S.; Kogel, V.; Voelz, C.; Schlösser, A.; Schwenzer, C.; Kabbert, J.; Heussen, N.; Clavel, T.; Herpertz-Dahlmann, B.; Beyer, C.; et al. Gut microbiota ands brain alterations in a translational anorexia nervosa rat model. J. Psychiatr. Res. 2021, 133, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Toyomasu, Y.; Hayashi, Y.; Linden, D.R.; Szurszewski, J.H.; Nelson, H.; Farrugia, G.; Kashyap, P.C.; Chia, N.; Ordog, T. Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction. Genome Med. 2016, 8, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominique, M.; Legrand, R.; Galmiche, M.; Azhar, S.; Deroissart, C.; Guérin, C.; Do Rego, J.L.; Leon, F.; Nobis, S.; Lambert, G.; et al. Changes in microbiota and bacterial protein caseinolytic peptidase b during food restriction in mice: Relevance for the onset and perpetuation of Anorexia Nervosa. Nutrients 2019, 11, 2514. [Google Scholar] [CrossRef] [Green Version]
- Hata, T.; Miyata, N.; Takakura, S.; Yoshihara, K.; Asano, Y.; Kimura-Todani, T.; Yamashita, M.; Zhang, X.T.; Watanabe, N.; Mikami, K.; et al. The Gut Microbiome Derived from Anorexia Nervosa Patients Impairs Weight Gain and Behavioral Performance in Female Mice. Endocrinology 2019, 160, 2441–2452. [Google Scholar] [CrossRef]
- Prochazkova, P.; Roubalova, R.; Dvorak, J.; Tlaskalova-Hogenova, H.; Cermakova, M.; Tomasova, P.; Sediva, B.; Kuzma, M.; Bulant, J.; Bilej, M.; et al. Microbiota, microbial metabolites, and barrier function in a patient with anorexia nervosa after fecal microbiota transplantation. Microorganisms 2019, 7, 338. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, N.C.; Frissen, M.N.; Davids, M.; Groen, A.K.; Nieuwdorp, M. Weight Gain after Fecal Microbiota Transplantation in a Patient with Recurrent Underweight following Clinical Recovery from Anorexia Nervosa. Psychother. Psychosom. 2019, 88, 52–54. [Google Scholar] [CrossRef]
- Jésus, P.; Ouelaa, W.; François, M.; Riachy, L.; Guérin, C.; Aziz, M.; Do Rego, J.C.; Déchelotte, P.; Fetissov, S.O.; Coëffier, M. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin. Nutr. 2014, 33, 1046–1053. [Google Scholar] [CrossRef]
- Monteleone, P.; Carratù, R.; Cartenì, M.; Generoso, M.; Lamberti, M.; De Magistris, L.; Brambilla, F.; Colurcio, B.; Secondulfo, M.; Maj, M. Intestinal permeability is decreased in anorexia nervosa. Mol. Psychiatry 2004, 9, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Seitz, J.; Dahmen, B.; Keller, L.; Herpertz-Dahlmann, B. Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. Nutrients 2020, 12, 3295. [Google Scholar] [CrossRef]
- Gibson, D.; Mehler, P.S. Anorexia Nervosa and the Immune System—A Narrative Review. J. Clin. Med. 2019, 8, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bambury, A.; Sandhu, K.; Cryan, J.F.; Dinan, T.G. Finding the needle in the haystack: Systematic identification of psychobiotics. Br. J. Pharmacol. 2018, 175, 4430–4438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmblad, J.; Fohlin, L.; Lundstrom, M. Anorexia Nervosa and Polymorphonuclear (PMN) Granulocyte Reactions. Scand. J. Haematol. 2009, 19, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Gotch, F.M.; Spry, C.J.F.; Mowat, A.G.; Beeson, P.B.; Maclennan, I.C. Reversible granulocyte killing defect in anorexia nervosa. Clin. Exp. Immunol. 1975, 21, 244–249. [Google Scholar] [PubMed]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatr. Res. 2018, 103, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef]
- Vaisman, N.; Hahn, T. Tumor necrosis factor-α and anorexia-Cause or effect? Metabolism 1991, 40, 720–723. [Google Scholar] [CrossRef]
- Allende, L.M.; Corell, A.; Manzanares, J.; Madruga, D.; Marcos, A.; Madroño, A.; López-Goyanes, A.; García-Pérez, M.A.; Moreno, J.M.; Rodrigo, M.; et al. Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunology 1998, 94, 543–551. [Google Scholar] [CrossRef]
- Dalton, B.; Campbell, I.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. Inflammatory Markers in Anorexia Nervosa: An Exploratory Study. Nutrients 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Dalton, B.; Leppanen, J.; Campbell, I.C.; Chung, R.; Breen, G.; Schmidt, U.; Himmerich, H. A longitudinal analysis of cytokines in anorexia nervosa. Brain. Behav. Immun. 2020, 85, 88–95. [Google Scholar] [CrossRef]
- Patsalos, O.; Dalton, B.; Himmerich, H. Effects of IL-6 signaling pathway inhibition on weight and BMI: A systematic review and meta-analysis. Int. J. Mol. Sci. 2020, 21, 6290. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; Eckert, E.; Mitchell, J.; Crosby, R.; Pomeroy, C. T-lymphocyte subsets in patients with abnormal body weight: Longitudinal studies in anorexia nervosa and obesity. Int. J. Eat. Disord. 1996, 20, 295–305. [Google Scholar] [CrossRef]
- Mustafa, A.; Ward, A.; Treasure, J.; Peakman, M. T lymphocyte subpopulations in anorexia nervosa and refeeding. Clin. Immunol. Immunopathol. 1997, 82, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Elegido, A.; Graell, M.; Andrés, P.; Gheorghe, A.; Marcos, A.; Nova, E. Increased naive CD4+ and B lymphocyte subsets are associated with body mass loss and drive relative lymphocytosis in anorexia nervosa patients. Nutr. Res. 2017, 39, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, T.; Kiriike, N.; Tobitani, W.; Kawarada, Y.; Matsunaga, H.; Yamagami, S. Lymphocyte subset, lymphocyte proliferative response, and soluble interleukin-2 receptor in anorexic patients. Biol. Psychiatry 1999, 45, 471–474. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Farrell, M.; Berry, P.L.; Forristal, J.; Maloney, M.J.; West, C.D. Reduced alternative complement pathway control protein levels in anorexia nervosa: Response to parenteral alimentation. Am. J. Clin. Nutr. 1982, 35, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.F.; Bartrop, R.; Beumont, P.; Birmingham, C.L. Bacterial infections in anorexia nervosa: Delayed recognition increases complications. Int. J. Eat. Disord. 2005, 37, 261–265. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.F.; Bartrop, R.; Birmingham, C.L. Immunological disturbance and infectious disease in anorexia nervosa: A review. Acta Neuropsychiatr. 2008, 20, 117–128. [Google Scholar] [CrossRef]
- Belmonte, L.; Achamrah, N.; Nobis, S.; Guérin, C.; Riou, G.; Bôle-Feysot, C.; Boyer, O.; Richard, V.; Do Rego, J.C.; Déchelotte, P.; et al. A role for intestinal TLR4-driven inflammatory response during activity-based anorexia. Sci. Rep. 2016, 6, 35813. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Matcovitch-Natan, O.; Winter, D.R.; Giladi, A.; Aguilar, S.V.; Spinrad, A.; Sarrazin, S.; Ben-Yehuda, H.; David, E.; González, F.Z.; Perrin, P.; et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016, 353, aad8670. [Google Scholar] [CrossRef] [PubMed]
- Reis, W.L.; Yi, C.-X.; Gao, Y.; Tschöp, M.H.; Stern, J.E. Brain Innate Immunity Regulates Hypothalamic Arcuate Neuronal Activity and Feeding Behavior. Endocrinology 2015, 156, 1303–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collu, R.; Post, J.M.; Scherma, M.; Giunti, E.; Fratta, W.; Lutz, B.; Fadda, P.; Bindila, L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158578. [Google Scholar] [CrossRef] [PubMed]
- Layé, S. Polyunsaturated fatty acids, neuroinflammation and well being. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ortega, P.; Ragu Varman, D.; Rodríguez, V.M.; Reyes-Haro, D. Anorexia induces a microglial associated pro-inflammatory environment and correlates with neurodegeneration in the prefrontal cortex of young female rats. Behav. Brain Res. 2020, 392, 112606. [Google Scholar] [CrossRef]
- Seitz, J.; Konrad, K.; Herpertz-Dahlmann, B. Extend, Pathomechanism and Clinical Consequences of Brain Volume Changes in Anorexia Nervosa. Curr. Neuropharmacol. 2018, 16, 1164–1173. [Google Scholar] [CrossRef]
- Simon, J.J.; Stopyra, M.A.; Mönning, E.; Sailer, S.; Lavandier, N.; Kihm, L.P.; Bendszus, M.; Preissl, H.; Herzog, W.; Friederich, H.C. Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity. J. Clin. Investig. 2020, 140, 4049–4103. [Google Scholar] [CrossRef] [Green Version]
- Fonville, L.; Giampietro, V.; Williams, S.C.R.; Simmons, A.; Tchanturia, K. Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration. Psychol. Med. 2014, 44, 1965–1975. [Google Scholar] [CrossRef] [Green Version]
- Frank, G.K.W. Advances from neuroimaging studies in eating disorders. CNS Spectr. 2014, 20, 391–400. [Google Scholar] [CrossRef]
- Florent, V.; Baroncini, M.; Jissendi-Tchofo, P.; Lopes, R.; Vanhoutte, M.; Rasika, S.; Pruvo, J.-P.; Vignau, J.; Verdun, S.; Johansen, J.E.; et al. Hypothalamic Structural and Functional Imbalances in Anorexia Nervosa. Neuroendocrinology 2020, 110, 552–562. [Google Scholar] [CrossRef]
- Nilsson, I.A.K. The ANX/ANX mouse—A valuable resource in anorexia nervosa research. Front. Neurosci. 2019, 13, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, I.; Lindfors, C.; Fetissov, S.O.; Hökfelt, T.; Johansen, J.E. Aberrant agouti-related protein system in the hypothalamus of theanx/anx mouse is associated with activation of microglia. J. Comp. Neurol. 2008, 507, 1128–1140. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, I.A.K.; Thams, S.; Lindfors, C.; Bergstrand, A.; Cullheim, S.; Hökfelt, T.; Johansen, J.E. Evidence of hypothalamic degeneration in the anorectic anx/anx mouse. Glia 2011, 59, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Frank, G.K.W.; Deguzman, M.C.; Shott, M.E.; Laudenslager, M.L.; Rossi, B.; Pryor, T. Association of Brain Reward Learning Response with Harm Avoidance, Weight Gain, and Hypothalamic Effective Connectivity in Adolescent Anorexia Nervosa. JAMA Psychiatry 2018, 75, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Jais, A.; Brüning, J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Investig. 2017, 127, 24–32. [Google Scholar] [CrossRef]
- Stefaniak, J.; O’brien, J. Imaging of neuroinflammation in dementia: A review. J. Neurol. Neurosurg. Psychiatry 2016, 87, 21–28. [Google Scholar] [CrossRef]
- Guertin, T.L. Eating behavior of bulimics, self-identified binge eaters, and non-eating-disordered individuals: What differentiates these populations? Clin. Psychol. Rev. 1999, 19, 1–23. [Google Scholar] [CrossRef]
- Buchanan, J.B.; Johnson, R.W. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 2007, 86, 183–190. [Google Scholar] [CrossRef]
- Nakai, Y.; Hamagaki, S.; Takagi, R.; Taniguchi, A.; Kurimoto, F. Plasma concentrations of tumor necrosis factor-α (TNF-α) and soluble TNF receptors in patients with bulimia nervosa. Clin. Endocrinol. 2000, 53, 383–388. [Google Scholar] [CrossRef]
- MacDowell, K.S.; Díaz-Marsá, M.; Güemes, I.; Rodríguez, A.; Leza, J.C.; Carrasco, J.L. Inflammatory activation and cholinergic anti-inflammatory system in eating disorders. Brain Behav. Immun. 2013, 32, 33–39. [Google Scholar] [CrossRef]
- Tabasi, M.; Anbara, T.; Siadat, S.D.; Khezerloo, J.K.; Elyasinia, F.; Bayanolhagh, S.; Safavi, S.A.S.; Yazdannasab, M.R.; Soroush, A.; Bouzari, S. Socio-demographic Characteristics, Biochemical and Cytokine Levels in Bulimia Nervosa Candidates for Sleeve Gastrectomy. Arch. Iran. Med. 2020, 23, 23–30. [Google Scholar] [PubMed]
- Raymond, N.C.; Dysken, M.; Bettin, K.; Eckert, E.D.; Crow, S.J.; Markus, K.; Pomeroy, C. Cytokine Production in Patients with Anorexia Nervosa, Bulimia Nervosa, and Obesity. Int. J. Eat. Disord. 2000, 28, 293–302. [Google Scholar] [CrossRef]
- Opal, A.S.M.; Depalo, V.A. Anti-Inflammatory Cytokines (*). Chest 2000, 117, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroleo, M.; Carbone, E.A.; Greco, M.; Corigliano, D.M.; Arcidiacono, B.; Fazia, G.; Rania, M.; Aloi, M.; Gallelli, L.; Segura-Garcia, C.; et al. Brain-behavior-immune interaction: Serum cytokines and growth factors in patients with eating disorders at extremes of the body mass index (bmi) spectrum. Nutrients 2019, 11, 1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, F.M.; Green, P.; Amjadi, P.; Robertshaw, H.J.; Alvarez-Iglesias, M.; Takata, M. Interleukin-10 regulates TNF-α-converting enzyme (TACE/ADAM-17) involving a TIMP-3 dependent and independent mechanism. Eur. J. Immunol. 2008, 38, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Pestka, S.; Krause, C.D.; Sarkar, D.; Walter, M.R.; Shi, Y.; Fisher, P.B. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol. 2004, 22, 929–979. [Google Scholar] [CrossRef]
- Shank, L.M.; Tanofsky-Kraff, M.; Kelly, N.R.; Schvey, N.A.; Marwitz, S.E.; Mehari, R.D.; Brady, S.M.; Demidowich, A.P.; Broadney, M.M.; Galescu, O.A.; et al. Pediatric Loss of Control Eating and High-Sensitivity C-Reactive Protein Concentrations. Child. Obes. 2017, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Succurro, E.; Segura-Garcia, C.; Ruffo, M.; Caroleo, M.; Rania, M.; Aloi, M.; De Fazio, P.; Sesti, G.; Arturi, F. Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile. Medicine 2015, 94, e2098. [Google Scholar] [CrossRef]
- Brandão, P.P.; Garcia-Souza, E.P.; Neves, F.A.; Jose, M.; Sichieri, R.; De Moura, E.G.; Cristina, P.; Moura, A.S. Leptin/adiponectin ration in obese women with and without binge eating disorder. Neuro Endocrinol. Lett. 2010, 31, 353–358. [Google Scholar]
- Blomquist, K.K.; Milsom, V.A.; Barnes, R.D.; Boeka, A.G.; White, M.A.; Masheb, R.M.; Grilo, C.M. Metabolic syndrome in obese men and women with binge eating disorder: Developmental trajectories of eating and weight-related behaviors. Compr. Psychiatry 2012, 53, 1021–1027. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.E.; Hubbard, J.; Anderson, E.J. Impact of binge eating on metabolic and leptin dynamics in normal young women. J. Clin. Endocrinol. Metab. 1999, 84, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Kral, J.G.; Buckley, M.C.; Kissileff, H.R.; Schaffner, F. Metabolic correlates of eating behavior in severe obesity. Int. J. Obes. 2001, 25, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, A.; Varela, P.; Santacruz, A.; Munoz-Velez, A.; Morande, G. Nutritional status and immunocompetence in eating disorders. A comparative study. Eur. J. Clin. Nutr. 1993, 47, 787–793. [Google Scholar] [PubMed]
- Marcos, A.; Varela, P.; Toro, O.; Nova, E.; Lopez-Vidriero, I.; Morande, G. Evaluation of nutritional status by immunologic assessment in bulimia nervosa: Influence of body mass index and vomiting episodes. Am. J. Clin. Nutr. 1997, 66, 491S–497S. [Google Scholar] [CrossRef] [Green Version]
- Zerwas, S.; Larsen, J.T.; Petersen, L.; Thornton, L.M.; Quaranta, M.; Koch, S.V.; Pisetsky, D.; Mortensen, P.B.; Bulik, C.M. Eating disorders, autoimmune, and autoinflammatory disease. Pediatrics 2017, 140, e20162089. [Google Scholar] [CrossRef] [Green Version]
- Raevuori, A.; Haukka, J.; Vaarala, O.; Suvisaari, J.M.; Gissler, M.; Grainger, M.; Linna, M.S.; Suokas, J.T. The increased risk for autoimmune diseases in patients with eating disorders. PLoS ONE 2014, 9, e104845. [Google Scholar] [CrossRef]
- Yilmaz, Z.; Gottfredson, N.C.; Zerwas, S.C.; Bulik, C.M.; Micali, N. Developmental Premorbid Body Mass Index Trajectories of Adolescents With Eating Disorders in a Longitudinal Population Cohort. J. Am. Acad. Child Adolesc. Psychiatry 2019, 58, 191–199. [Google Scholar] [CrossRef]
- Corcos, M.; Guilbaud, O.; Paterniti, S.; Moussa, M.; Chambry, J.; Chaouat, G.; Consoli, S.M.; Jeammet, P. Involvement of cytokines in eating disorders: A critical review of the human literature. Psychoneuroendocrinology 2003, 28, 229–249. [Google Scholar] [CrossRef]
- Harrison, N.A.; Voon, V.; Cercignani, M.; Cooper, E.A.; Pessiglione, M.; Critchley, H.D. A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol. Psychiatry 2016, 80, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Cifani, C.; Polidori, C.; Melotto, S.; Ciccocioppo, R.; Massi, M. A preclinical model of binge eating elicited by yo-yo dieting and stressful exposure to food: Effect of sibutramine, fluoxetine, topiramate, and midazolam. Psychopharmacology 2009, 204, 113–125. [Google Scholar] [CrossRef]
- Cifani, C.; Di Bonaventura, M.V.M.; Ciccocioppo, R.; Massi, M. Binge Eating in Female Rats Induced by Yo-Yo Dieting and Stress. In Animal Models of Eating Disorders. Neuromethods; Avena, N.M., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 74. [Google Scholar]
- Alboni, S.; Micioni Di Bonaventura, M.V.; Benatti, C.; Giusepponi, M.E.; Brunello, N.; Cifani, C. Hypothalamic expression of inflammatory mediators in an animal model of binge eating. Behav. Brain Res. 2017, 320, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Zorrilla, E.P.; Conti, B. Interleukin-18 null mutation increases weight and food intake and reduces energy expenditure and lipid substrate utilization in high-fat diet fed mice. Brain. Behav. Immun. 2014, 37, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netea, M.G.; Joosten, L.A.B.; Lewis, E.; Jensen, D.R.; Voshol, P.J.; Kullberg, B.J.; Tack, C.J.; Van Krieken, H.; Kim, S.H.; Stalenhoef, A.F.; et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 2006, 12, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Green, S.J.; Scheller, L.F.; Marletta, M.A.; Seguin, M.C.; Klotz, F.W.; Slayter, M.; Nelson, B.J.; Nacy, C.A. Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol. Lett. 1994, 43, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E.; Farr, S.A.; Sell, R.L.; Hileman, S.M.; Banks, W.A. Nitric oxide is a central component in neuropeptide regulation of appetite. Peptides 2011, 32, 776–780. [Google Scholar] [CrossRef]
- Vannacci, A.; Ravaldi, C.; Giannini, L.; Rotella, C.M.; Masini, E.; Faravelli, C.; Ricca, V. Increased nitric oxide production in eating disorders. Neurosci. Lett. 2006, 399, 230–233. [Google Scholar] [CrossRef]
References | Sample | Microbiome Changes |
---|---|---|
Kleiman et al., 2015 [16] | AN | Decreased alpha diversity at admission and discharge from treatment facility, significant difference in beta diversity. |
Mack et al., 2016 [27] | AN | Increased Clostridium species, decreased Roseburia species, no change in alpha diversity. |
Borgo et al., 2017 [28] | AN | Increased Enterobacteriaceae and M. smithii species, decreased Roseburia, Clostridium, and Ruminococcus species, no change in alpha diversity. |
Mörkl et al., 2017 [31] | AN | Decreased alpha diversity. |
Mörkl et al., 2019 [32] | AN | Decreased alpha diversity, no change in gut permeability (no change in plasma zonulin). |
Schulz et al., 2020 [33] | AN | Increased alpha diversity. |
Breton et al., 2019 [40] | Animal model of AN | Increased Clostridium species. |
Breton et al., 2021 [41] | Animal model of AN | Increased Clostridium and Lactobacillus species, decreased Burkholderiales species. |
Queipo-Ortuño et al., 2013 [42] | Animal model of AN | Decreased Firmicutes, Bacteroidetes, and Lactobacillus species, increased M. smithii species. |
Trinh et al., 2021 [43] | Animal model of AN | Increased alpha diversity, differences in beta diversity. |
Dominique et al., 2019 [45] | Animal model of AN | Increased levels of gut microbial protein (caseinolytic peptidase B). |
Prochazkova et al., 2019 [47] | Healthy FMT in AN patient (case study) | Improved gut barrier function and alpha diversity, increased SCFAs and serotonin. |
De Clercq et al., 2019 [48] | Healthy FMT in AN patient (case study) | Increased adiposity with no change in caloric intake. |
Jésus et al., 2014 [49] | Animal model of AN | Increased colon permeability, decreased gastric wall thickness, decreased expression of tight junction proteins. |
Monteleone et al., 2004 [50] | AN | Decreased gut permeability (decreased absorption of mannitol and lactulose). |
References | Sample | Immune Changes |
---|---|---|
Palmblad et al., 2009 [54] | AN | Decreased neutrophil chemotaxis. |
Gotch et al., 1975 [55] | AN | Reduction in granulocyte ability to kill bacteria; decreased neutrophil phagocytosis. |
Dalton et al., 2018 [56]; Solmi et al., 2015 [57] | AN | Increased proinflammatory cytokines (IL-6, IL-1β, and TNF-α). |
Vaisman et al., 1991 [58]; Allende et al., 1998 [59] | AN | Increased proinflammatory cytokine (TNF-α). |
Dalton et al., 2018 [60] | AN | Increased proinflammatory cytokines (IL-6, IL-15) and VCAM-1. |
Dalton et al., 2020 [61] | AN | Increased plasma proinflammatory cytokine (IL-6). |
Fink et al., 1996 [63]; Mustafa et al., 1997 [64]; Elegido et al., 2017 [65]; Nagata et al., 1999 [66] | AN | Dysregulated T cell subtypes compared to healthy controls and individuals with primary malnutrition. |
Wyatt et al., 1982 [67] | AN | Decreased levels of IgM and IgG antibodies. |
Belmonte et al., 2016 [70] | Animal model of AN | Increased TLR4 mRNA in colon; elevated mucosal IL-6 and TNF-α production. |
Collu et el., 2020 [74] | Animal model of AN | Increased proinflammatory eicosanoids. |
Reyes-Ortega et al., 2020 [76]; Nilsson et al., 2008 [83]; Nilsson et al., 2011 [84] | Animal model of AN | Increased neuroinflammation and hypothalamic neurodegeneration. |
References | Sample | Immune Changes |
---|---|---|
Nakai et al., 2000 [90] | BN | Increased proinflammatory cytokine (TNF-α). |
MacDowell et al., 2013 [91] | Mixed sample of eating disorder patients. | Increased proinflammatory cytokine (IL-1β) and TBARS. |
Tabasi et al., 2020 [92] | BN | Increased proinflammatory cytokines (IL-1β, IL-6, and TNF-α). |
Caroleo et al., 2019 [95] | BED | Decreased anti-inflammatory cytokine (IL-10). |
Succurro et al., 2015 [99] | BED | Increased hs-CRP and white blood cells. |
Brandão et al., 2010 [100] | BED | Decreased adiponectin. |
Marcos et al., 1993 [104] | AN, BN | Decreased CD4/CD8 T-cell ratio, compared to healthy controls. |
Marcos et al., 1997 [105] | BN | Decreased T-cell types (CD2, CD3, CD4, CD8, CD57). |
Alboni et al., 2017 [113] | Animal model of binge-like eating. | Decreased IL-18 and IL-18R mRNA, and increased iNOS mRNA. |
Vannacci et al., 2006 [118] | BN | Increased nitric oxide production. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, M.J.; Perrini, A.A.; Eckel, L.A. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients 2021, 13, 500. https://doi.org/10.3390/nu13020500
Butler MJ, Perrini AA, Eckel LA. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients. 2021; 13(2):500. https://doi.org/10.3390/nu13020500
Chicago/Turabian StyleButler, Michael J., Alexis A. Perrini, and Lisa A. Eckel. 2021. "The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders" Nutrients 13, no. 2: 500. https://doi.org/10.3390/nu13020500
APA StyleButler, M. J., Perrini, A. A., & Eckel, L. A. (2021). The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients, 13(2), 500. https://doi.org/10.3390/nu13020500