Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study
Abstract
:1. Introduction
2. Method
2.1. Study Population
2.2. Ethical Statement
2.3. Dietary Assessment
2.4. Inflammation Biomarker Assessment
2.5. Potential Confounders and Effect Modifiers
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Rocha, D.M.; Caldas, A.P.; Oliveira, L.L.; Bressan, J.; Hermsdorff, H.H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016, 244, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106, S5–S78. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Melnik, B.C. Milk—The promoter of chronic Western diseases. Med. Hypotheses 2009, 72, 631–639. [Google Scholar] [CrossRef]
- Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; Nunes dos Santos, C.; Pinto, P.; Re, R.; Rémond, D.; et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [Google Scholar] [CrossRef]
- Wennersberg, M.H.; Smedman, A.; Turpeinen, A.M.; Retterstøl, K.; Tengblad, S.; Lipre, E.; Aro, A.; Mutanen, P.; Seljeflot, I.; Basu, S.; et al. Dairy products and metabolic effects in overweight men and women: Results from a 6-mo intervention study. Am. J. Clin. Nutr. 2009, 90, 960–968. [Google Scholar] [CrossRef]
- Van Meijl, L.E.C.; Mensink, R.P. Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: An intervention study. Br. J. Nutr. 2010, 104, 1523–1527. [Google Scholar] [CrossRef]
- Labonté, M.-È.; Cyr, A.; Abdullah, M.M.; Lépine, M.-C.; Vohl, M.-C.; Jones, P.; Couture, P.; Lamarche, B. Dairy Product Consumption Has No Impact on Biomarkers of Inflammation among Men and Women with Low-Grade Systemic Inflammation. J. Nutr. 2014, 144, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- Stancliffe, R.A.; Thorpe, T.; Zemel, M.B. Dairy attentuates oxidative and inflammatory stress in metabolic syndrome. Am. J. Clin. Nutr. 2011, 94, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Zemel, M.B.; Sun, X. Dietary calcium and dairy modulation of oxidative and inflammatory stress in mice and humans. FASEB J. 2007, 21, 1047–1052. [Google Scholar] [CrossRef]
- Song, Y.; Li, T.Y.; Van Dam, R.M.; Manson, J.A.E.; Hu, F.B. Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am. J. Clin. Nutr. 2007, 85, 1068–1074. [Google Scholar] [CrossRef]
- Murumalla, R.K.; Gunasekaran, M.K.; Padhan, J.K.; Bencharif, K.; Gence, L.; Festy, F.; Césari, M.; Roche, R.; Hoareau, L. Fatty acids do not pay the toll: Effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation. Lipids Health Dis. 2012, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veiga, P.; Gallini, C.A.; Beal, C.; Michaud, M.; Delaney, M.L.; DuBois, A.; Khlebnikov, A.; Van Hylckama Vlieg, J.E.T.; Punit, S.; Glickman, J.N.; et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. USA 2010, 107, 18132–18137. [Google Scholar] [CrossRef] [Green Version]
- Nestel, P.J.; Mellett, N.; Pally, S.; Wong, G.; Barlow, C.K.; Croft, K.; Mori, T.A.; Meikle, P.J. Effects of low-fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults. Br. J. Nutr. 2013, 110, 2242–2249. [Google Scholar] [CrossRef] [Green Version]
- Toshimitsu, T.; Gotou, A.; Sashihara, T.; Hachimura, S.; Shioya, N.; Suzuki, S.; Asami, Y. Effects of 12-Week Ingestion of Yogurt Containing Lactobacillus plantarum OLL2712 on Glucose Metabolism and Chronic Inflammation in Prediabetic Adults: A Randomized Placebo-Controlled Trial. Nutrients 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur. J. Nutr. 2019, 58, 27–43. [Google Scholar] [CrossRef]
- Hutchinson, A.N.; Tingö, L.; Brummer, R.J. The potential effects of probiotics and ω-3 fatty acids on chronic low-grade inflammation. Nutrients 2020, 12, 2402. [Google Scholar] [CrossRef] [PubMed]
- Toshimitsu, T.; Mochizuki, J.; Ikegami, S.; Itou, H. Identification of a Lactobacillus plantarum strain that ameliorates chronic inflammation and metabolic disorders in obese and type 2 diabetic mice. J. Dairy Sci. 2016, 99, 933–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.Y.; Ahn, Y.T.; Park, S.H.; Huh, C.S.; Yoo, S.R.; Yu, R.; Sung, M.K.; McGregor, R.A.; Choi, M.S. Supplementation of Lactobacillus curvatus KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity. PLoS ONE 2013, 8, e59470. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Buys, N. Effects of probiotics consumption on lowering lipids and CVD risk factors: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. 2015, 47, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Schüppel, V.L.; Lockett, T.; Haller, D.; Delzenne, N.M. Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends Food Sci. Technol. 2016, 57, 256–264. [Google Scholar] [CrossRef]
- Schiffrin, E.J.; Parlesak, A.; Bode, C.; Bode, J.C.; van’t Hof, M.A.; Grathwohl, D.; Guigoz, Y. Probiotic yogurt in the elderly with intestinal bacterial overgrowth: Endotoxaemia and innate immune functions. Br. J. Nutr. 2009, 101, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Li, Y.Q.; Zuo, X.L.; Zhen, Y.B.; Yang, J.; Liu, C.H. Clinical trial: Effect of active lactic acid bacteria on mucosal barrier function in patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 2008, 28, 994–1002. [Google Scholar] [CrossRef]
- Pei, R.; Dimarco, D.M.; Putt, K.K.; Martin, D.A.; Gu, Q.; Chitchumroonchokchai, C.; White, H.M.; Scarlett, C.O.; Bruno, R.S.; Bolling, B.W. Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: A randomised controlled trial. Br. J. Nutr. 2017, 118, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Cartier, A.; Cote, M.; Lemieux, I.; Perusse, L.; Tremblay, A.; Bouchard, C.; Despres, J.-P. Sex differences in inflammatory markers: What is the contribution of visceral adiposity? Am. J. Clin. Nutr. 2009, 89, 1307–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 2005, 69, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Mohamadshahi, M.; Veissi, M.; Haidari, F.; Shahbazian, H.; Kaydani, G.-A.; Mohammadi, F. Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes. BioImpacts 2014, 4, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.N.; Saboori, S.; Asbaghi, O. Effect of daily probiotic yogurt consumption on inflammation: A systematic review and meta-analysis of randomized Controlled Clinical trials. Obes. Med. 2020, 18, 100221. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Il-6 in inflammation, Immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, 16295–16296. [Google Scholar] [CrossRef]
- Patel, H.; Patel, V.H. Inflammation and metabolic syndrome: An overview. Curr. Res. Nutr. Food Sci. 2015, 3, 263–268. [Google Scholar] [CrossRef]
- El-Mikkawy, D.M.E.; EL-Sadek, M.A.; EL-Badawy, M.A.; Samaha, D. Circulating level of interleukin-6 in relation to body mass indices and lipid profile in Egyptian adults with overweight and obesity. Egypt. Rheumatol. Rehabil. 2020, 47, 7. [Google Scholar] [CrossRef]
- Neyestani, T.R.; Nikooyeh, B.; Alavi-Majd, H.; Shariatzadeh, N.; Kalayi, A.; Tayebinejad, N.; Heravifard, S.; Salekzamani, S.; Zahedirad, M. Improvement of Vitamin D Status via Daily Intake of Fortified Yogurt Drink Either with or without Extra Calcium Ameliorates Systemic Inflammatory Biomarkers, including Adipokines, in the Subjects with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- Maple-Brown, L.J.; Cunningham, J.; Nandi, N.; Hodge, A.; O’Dea, K. Fibrinogen and associated risk factors in a high-risk population: Urban indigenous Australians, the druid Study. Cardiovasc. Diabetol. 2010, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.J.; Pally, S.; MacIntosh, G.L.; Greeve, M.A.; Middleton, S.; Jowett, J.; Meikle, P.J. Circulating inflammatory and atherogenic biomarkers are not increased following single meals of dairy foods. Eur. J. Clin. Nutr. 2012, 66, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beavers, K.M.; Serra, M.C.; Beavers, D.P.; Cooke, M.B.; Willoughby, D.S. Soymilk supplementation does not alter plasma markers of inflammation and oxidative stress in postmenopausal women. Nutr. Res. 2009, 29, 616–622. [Google Scholar] [CrossRef]
- Vázquez-Agell, M.; Urpi-Sarda, M.; Sacanella, E.; Camino-López, S.; Chiva-Blanch, G.; Llorente-Cortés, V.; Tobias, E.; Roura, E.; Andres-Lacueva, C.; Lamuela-Raventós, R.M.; et al. Cocoa consumption reduces NF-κB activation in peripheral blood mononuclear cells in humans. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 257–263. [Google Scholar] [CrossRef]
- Schmid, A.; Petry, N.; Walther, B.; Bütikofer, U.; Luginbüh, W.; Gille, D.; Chollet, M.; McTernan, P.G.; Gijs, M.A.M.; Vionnet, N.; et al. Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. Br. J. Nutr. 2015, 113, 1853–1861. [Google Scholar] [CrossRef]
- Raziani, F.; Tholstrup, T.; Kristensen, M.D.; Svanegaard, M.L.; Ritz, C.; Astrup, A.; Raben, A. High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 973–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, G.D.; McNaughton, S.A.; Bramwell, G.D.; Wadsworth, M.E.J. Longitudinal changes in dietary patterns during adult life. Br. J. Nutr. 2006, 96, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.G.; Milte, C.M.; Crawford, D.; McNaughton, S.A. Education and lifestyle predict change in dietary patterns and diet quality of adults 55 years and over. Nutr. J. 2019, 18, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Yogurt | Milk | Cheese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
None | Some | ≤1 Cup-eq/d | >1 Cup-eq/d | ≤0.5 Cup-eq/d | >0.5 Cup-eq/d | |||||||
N = 1428 | N = 325 | N = 1185 | N = 568 | N = 1149 | N = 604 | |||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Age (yrs) | 55.86 | 9.59 | 53.92 | 8.70 | 55.55 | 9.21 | 55.39 | 9.96 | 56.53 | 9.41 | 53.54 | 9.24 |
BMI (kg/m2) | 26.98 | 4.44 | 26.27 | 4.31 | 26.93 | 4.49 | 26.66 | 4.28 | 26.77 | 4.49 | 26.98 | 4.28 |
Physical Activity (Mets) | 14.71 | 7.96 | 14.63 | 7.85 | 14.63 | 7.98 | 14.82 | 7.84 | 14.61 | 7.68 | 14.85 | 8.40 |
Alcohol (g/d) | 9.46 | 13.17 | 7.54 | 10.35 | 10.12 | 13.63 | 6.98 | 10.25 | 8.11 | 11.90 | 11.00 | 13.95 |
Energy intake (kcals/d) | 1920 | 534 | 1855 | 523 | 1814 | 503 | 2104 | 539 | 1806 | 498 | 2103 | 542 |
HEI 2015 Score | 56.16 | 11.14 | 62.55 | 11.17 | 56.58 | 11.17 | 58.96 | 11.75 | 58.92 | 11.44 | 54.37 | 10.76 |
Yogurt (cup-eq/d) | 0.00 | 0.00 | 0.28 | 0.27 | 0.05 | 0.16 | 0.05 | 0.16 | 0.05 | 0.17 | 0.05 | 0.12 |
Milk (cup-eq/d) | 0.89 | 0.75 | 0.83 | 0.67 | 0.47 | 0.26 | 1.72 | 0.70 | 0.89 | 0.75 | 0.86 | 0.72 |
Cheese (cup-eq/d) | 0.44 | 0.40 | 0.45 | 0.42 | 0.44 | 0.40 | 0.43 | 0.42 | 0.21 | 0.15 | 0.88 | 0.38 |
Meat (oz-eq/d) | 2.59 | 1.63 | 1.88 | 1.34 | 2.43 | 1.60 | 2.52 | 1.62 | 2.32 | 1.54 | 2.72 | 1.69 |
Poultry (oz-eq/d) | 1.43 | 1.28 | 1.47 | 1.24 | 1.45 | 1.30 | 1.42 | 1.22 | 1.49 | 1.27 | 1.34 | 1.27 |
Fish (oz-eq/d) | 1.23 | 1.20 | 1.29 | 1.17 | 1.26 | 1.21 | 1.20 | 1.17 | 1.32 | 1.23 | 1.09 | 1.11 |
Eggs (per day) | 0.39 | 0.36 | 0.32 | 0.32 | 0.38 | 0.36 | 0.38 | 0.34 | 0.36 | 0.34 | 0.42 | 0.37 |
Nuts, Seeds (oz-eq/d) | 0.48 | 0.79 | 0.55 | 0.87 | 0.47 | 0.81 | 0.54 | 0.79 | 0.45 | 0.75 | 0.59 | 0.89 |
Whole Grains (oz-eq/d) | 0.62 | 0.70 | 0.83 | 0.88 | 0.59 | 0.72 | 0.80 | 0.77 | 0.66 | 0.70 | 0.66 | 0.81 |
Fruit, Non-starchy Vegetables (cup-eq/d) | 2.54 | 1.37 | 3.06 | 1.46 | 2.61 | 1.38 | 2.68 | 1.45 | 2.65 | 1.45 | 2.59 | 1.31 |
N | % | N | % | N | % | N | % | N | % | N | % | |
Sex (female) | 714 | 50.0 | 239 | 73.5 | 683 | 57.6 | 270 | 47.5 | 671 | 58.4 | 282 | 46.7 |
Current smoker | 224 | 15.7 | 23 | 7.1 | 173 | 14.6 | 74 | 13.0 | 157 | 13.7 | 90 | 14.9 |
Biomarkers 1 | Yogurt | Milk | Cheese | ||||||
---|---|---|---|---|---|---|---|---|---|
None | Some | ≤1 Cup-eq/d | >1 Cup-eq/d | ≤0.5 Cup-eq/d | >0.5 Cup-eq/d | ||||
Mean 2 ± SE | p-Value | Mean 2 ± SE | p-Value | Mean 2 ± SE | p-Value | ||||
Log-CRP | 1.19 ± 0.02 | 1.16 ± 0.03 | 0.40 | 1.18 ± 0.02 | 1.20 ± 0.02 | 0.51 | 1.19 ± 0.02 | 1.18 ± 0.02 | 0.86 |
Log-IL-6 | 1.31 ± 0.01 | 1.26 ± 0.02 | 0.02 | 1.29 ± 0.01 | 1.33 ± 0.02 | 0.09 | 1.31 ± 0.01 | 1.30 ± 0.02 | 0.67 |
Log-TNFα | 0.81 ± 0.01 | 0.82 ± 0.02 | 0.84 | 0.81 ± 0.01 | 0.82 ± 0.01 | 0.69 | 0.81 ± 0.01 | 0.82 ± 0.01 | 0.54 |
Log-ICAM1 | 5.50 ± 0.01 | 5.48 ± 0.01 | 0.26 | 5.50 ± 0.01 | 5.49 ± 0.01 | 0.47 | 5.49 ± 0.01 | 5.49 ± 0.01 | 0.68 |
Log-MCP1 | 5.72 ± 0.01 | 5.74 ± 0.02 | 0.51 | 5.72 ± 0.01 | 5.74 ± 0.01 | 0.38 | 5.73 ± 0.01 | 5.72 ± 0.01 | 0.71 |
Log-Fibrin | 5.91 ± 0.01 | 5.89 ± 0.01 | 0.03 | 5.91 ± 0.01 | 5.90 ± 0.01 | 0.24 | 5.90 ± 0.01 | 5.91 ± 0.01 | 0.70 |
Biomarkers 1 | Weight Status 2 | Yogurt Intake | ||
---|---|---|---|---|
None | Some | |||
Mean 3 ± SE | p-Value | |||
Log-CRP | Normal | 1.05 ± 0.02 | 0.99 ± 0.04 | 0.20 |
Overweight | 1.42 ± 0.03 | 1.44 ± 0.05 | 0.78 | |
Log-IL-6 | Normal | 1.24 ± 0.01 | 1.19 ± 0.03 | 0.11 |
Overweight | 1.43 ± 0.02 | 1.36 ± 0.04 | 0.08 | |
Log-TNFα | Normal | 0.80 ± 0.01 | 0.81 ± 0.02 | 0.70 |
Overweight | 0.83 ± 0.01 | 0.83 ± 0.03 | 0.86 | |
Log-ICAM1 | Normal | 5.47 ± 0.01 | 5.45 ± 0.02 | 0.24 |
Overweight | 5.53 ± 0.01 | 5.52 ± 0.02 | 0.73 | |
Log-MCP1 | Normal | 5.70 ± 0.01 | 5.72 ± 0.02 | 0.52 |
Overweight | 5.75 ± 0.01 | 5.76 ± 0.03 | 0.83 | |
Log-Fibrin | Normal | 5.88 ± 0.01 | 5.85 ± 0.01 | 0.03 |
Overweight | 5.96 ± 0.01 | 5.94 ± 0.01 | 0.41 |
Biomarkers 1 | Weight Status 2 | Milk Intake | ||
---|---|---|---|---|
≤1 Cup-eq/d | >1 Cup-eq/d | |||
Mean 3 ± SE | p-Value | |||
Log-CRP | Normal | 1.04 ± 0.02 | 1.03 ± 0.03 | 0.88 |
Overweight | 1.41 ± 0.03 | 1.47 ± 0.04 | 0.28 | |
Log-IL-6 | Normal | 1.22 ± 0.01 | 1.25 ± 0.02 | 0.23 |
Overweight | 1.41 ± 0.02 | 1.45 ± 0.03 | 0.25 | |
Log-TNFα | Normal | 0.80 ± 0.01 | 0.81 ± 0.02 | 0.46 |
Overweight | 0.83 ± 0.01 | 0.83 ± 0.02 | 0.73 | |
Log-ICAM1 | Normal | 5.47 ± 0.01 | 5.47 ± 0.01 | 0.93 |
Overweight | 5.53 ± 0.01 | 5.51 ± 0.02 | 0.25 | |
Log-MCP1 | Normal | 5.70 ± 0.01 | 5.71 ± 0.02 | 0.65 |
Overweight | 5.75 ± 0.02 | 5.77 ± 0.02 | 0.45 | |
Log-Fibrin | Normal | 5.88 ± 0.01 | 5.87 ± 0.01 | 0.13 |
Overweight | 5.96 ± 0.01 | 5.95 ± 0.01 | 0.92 |
Biomarkers 1 | Weight Status 2 | Cheese Intake | ||
---|---|---|---|---|
≤0.5 Cup-eq/d | >0.5 Cup-eq/d | |||
Mean 3 ± SE | p-Value | |||
Log-CRP | Normal | 1.03 ± 0.02 | 1.04 ± 0.03 | 0.84 |
Overweight | 1.43 ± 0.03 | 1.42 ± 0.04 | 0.84 | |
Log-IL-6 | Normal | 1.23 ± 0.02 | 1.24 ± 0.02 | 0.48 |
Overweight | 1.43 ± 0.02 | 1.39 ± 0.03 | 0.16 | |
Log-TNFα | Normal | 0.80 ± 0.01 | 0.82 ± 0.01 | 0.26 |
Overweight | 0.83 ± 0.01 | 0.83 ± 0.02 | 0.71 | |
Log-ICAM1 | Normal | 5.47 ± 0.01 | 5.47 ± 0.01 | 0.91 |
Overweight | 5.53 ± 0.01 | 5.52 ± 0.01 | 0.69 | |
Log-MCP1 | Normal | 5.70 ± 0.01 | 5.71 ± 0.02 | 0.85 |
Overweight | 5.76 ± 0.02 | 5.74 ± 0.02 | 0.44 | |
Log-Fibrin | Normal | 5.88 ± 0.01 | 5.87 ± 0.01 | 0.85 |
Overweight | 5.95 ± 0.01 | 5.97 ± 0.01 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, M.; Singer, M.R.; Moore, L.L. Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients 2021, 13, 506. https://doi.org/10.3390/nu13020506
Yuan M, Singer MR, Moore LL. Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients. 2021; 13(2):506. https://doi.org/10.3390/nu13020506
Chicago/Turabian StyleYuan, Mengjie, Martha R. Singer, and Lynn L. Moore. 2021. "Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study" Nutrients 13, no. 2: 506. https://doi.org/10.3390/nu13020506
APA StyleYuan, M., Singer, M. R., & Moore, L. L. (2021). Yogurt Consumption Is Associated with Lower Levels of Chronic Inflammation in the Framingham Offspring Study. Nutrients, 13(2), 506. https://doi.org/10.3390/nu13020506