The Combined Effects of Milk Intake and Physical Activity on Bone Mineral Density in Korean Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Milk Intake
2.3. Physical Activity
- Questions on moderate physical activity:
- ○
- On how many days in the past week did you perform moderate physical activity that made you feel slightly more tired than usual, or during which you felt a little short of breath for at least 10 min?
- ○
- On the days when you performed moderate physical activities, how many minutes per day did you usually perform them?
- Questions on vigorous physical activity:
- ○
- On how many days in the past week did you perform vigorous physical activity that made you feel much more exhausted than usual, or during which you felt very short of breath?
- ○
- On the days when you performed vigorous physical activities, how many minutes per day did you usually perform them?
2.4. Subject Grouping
2.5. Bone Mineral Density
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Lamas, C.; De Castro, M.J.; Gil-Campos, M.; Gil, Á.; Couce, M.L.; Leis, R. Effects of dairy product consumption on height and bone mineral content in children: A systematic review of controlled trials. Adv. Nutr. 2019, 10, S88–S96. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.G.; Kontulainen, S.A.; Faulkner, R.A.; Bailey, D.A. A Longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone 2008, 43, 1101–1107. [Google Scholar] [CrossRef]
- Kohrt, W.M.; Bloomfield, S.A.; Little, K.D.; Nelson, M.E.; Yingling, V.R. Physical activity and bone health. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Yi, K.H.; Hwang, J.S.; Kim, E.Y.; Lee, J.A.; Kim, D.H.; Lim, J.S. Reference values for bone mineral density according to age with body size adjustment in Korean children and adolescents. J. Bone Miner. Metab. 2014, 32, 281–289. [Google Scholar] [CrossRef]
- Lee, E.Y.; Kim, D.; Kim, K.M.; Kim, K.J.; Choi, H.S.; Rhee, Y.; Lim, S.K. Age-related bone mineral density patterns in Koreans (KNHANES IV). J. Clin. Endocrinol. Metab. 2012, 97, 3310–3318. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.; Westlake, S.; Harvey, N.; Javaid, K.; Dennison, E.; Hanson, M. Review: Developmental origins of osteoporotic fracture. Osteoporos. Int. 2006, 17, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Baim, S.; Leonard, M.B.; Bianchi, M.L.; Hans, D.B.; Kalkwarf, H.J.; Langman, C.B.; Rauch, F. Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J. Clin. Densitom. 2008, 11, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.L.; Chevalley, T.; Bonjour, J.P.; Rizzoli, R. Childhood fractures are associated with decreased bone mass gain during puberty: An early marker of persistent bone fragility? J. Bone Miner. Res. 2006, 21, 501–507. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.R.; Bishop, N.J.; Tobias, J.H. Association between bone mass and fractures in children: A prospective cohort study. J. Bone Miner. Res. 2006, 21, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Nikander, R.; Sievänen, H.; Heinonen, A.; Daly, R.M.; Uusi-Rasi, K.; Kannus, P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tan, V.P.S.; Macdonald, H.M.; Kim, S.J.; Nettlefold, L.; Gabel, L.; Ashe, M.C.; McKay, H.A. Influence of physical activity on bone strength in children and adolescents: A systematic review and narrative Synthesis. J. Bone Miner. Res. 2014, 29, 2161–2181. [Google Scholar] [CrossRef] [PubMed]
- Iuliano-Burns, S.; Stone, J.; Hopper, J.L.; Seeman, E. Diet and exercise during growth have site-specific skeletal effects: A co-twin control study. Osteoporos. Int. 2005, 16, 1225–1232. [Google Scholar] [CrossRef]
- Alexy, U.; Remer, T.; Manz, F.; Neu, C.M.; Schoenau, E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am. J. Clin. Nutr. 2005, 82, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyer-Mileur, L.J.; Xie, B.; Ball, S.D.; Pratt, T. Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J. Musculoskelet. Neuronal Interact. 2003, 3, 63–70. [Google Scholar] [PubMed]
- Lanou, A.J.; Berkow, S.E.; Barnard, N.D. Calcium, dairy products, and bone health in children and young adults: A reevaluation of the evidence. Pediatrics 2005, 115, 736–743. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.K.; Lee, Y.K.; Lee, H.L.; Park, S.M. Maternal and lifestyle effect on bone mineral density in Korean children and adolescents aged 8-19. Korean J. Nutr. 2013, 46, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Séverin, S.; Wenshui, X. Milk biologically active components as nutraceuticals: Review. Crit. Rev. Food Sci. Nutr. 2005, 45, 645–656. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, W.K.; Kim, S.H. Participation in the school milk program contributes intake by middle school students in South Korea. Nutrients 2019, 11, 2386. [Google Scholar] [CrossRef] [Green Version]
- Rangan, A.M.; Flood, V.M.; Denyer, G.; Webb, K.; Marks, G.B.; Gill, T. Dairy consumption and diet quality in a sample of Australian children. J. Am. Coll. Nutr. 2012, 31, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Iglesia, I.; Intemann, T.; De Miguel-Etayo, P.; Pala, V.; Hebestreit, A.; Wolters, M.; Russo, P.; Veidebaum, T.; Papoutsou, S.; Nagy, P.; et al. Dairy consumption at snack meal occasions and the overall quality of diet during childhood. Prospective and cross-sectional analyses from the IDEFICS/I.family cohort. Nutrients 2020, 12, 642. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, G. The use of vibration as physical exercise and therapy. J. Funct. Morphol. Kinesiol. 2017, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Castrogiovanni, P.; Trovato, F.M.; Szychlinska, M.A.; Nsir, H.; Imbesi, R.; Musumeci, G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histol. Histopathol. 2016, 31, 1183–1194. [Google Scholar] [CrossRef]
- Fujita, Y.; Iki, M.; Ikeda, Y.; Morita, A.; Matsukura, T.; Nishino, H.; Yamagami, T.; Kagamimori, S.; Kagawa, Y.; Yoneshima, H. Tracking of appendicular bone mineral density for 6 years including the pubertal growth spurt: Japanese population-based osteoporosis kids cohort study. J. Bone Miner. Metab. 2011, 29, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Deere, K.; Sayers, A.; Rittweger, J.; Tobias, J.H. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: Results from a population-based study of adolescents. J. Bone Miner. Res. 2012, 27, 1887–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hind, K.; Burrows, M. Weight-bearing exercise and bone mineral accrual in children and adolescents: A review of controlled trials. Bone 2007, 40, 14–27. [Google Scholar] [CrossRef]
- Lorentzon, M.; Mellström, D.; Ohlsson, C. Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: The GOOD study. J. Bone Miner. Res. 2005, 20, 1936–1943. [Google Scholar] [CrossRef]
- Sayers, A.; Mattocks, C.; Deere, K.; Ness, A.; Riddoch, C.; Tobias, J.H. Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J. Clin. Endocrinol. Metab. 2011, 96, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Courteix, D.; Jaffré, C.; Lespessailles, E.; Benhamou, L. Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: A double-blind randomised placebo-controlled trial. Int. J. Sports Med. 2005, 26, 332–338. [Google Scholar] [CrossRef]
- Specker, B.; Binkley, T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3 to 5-year-old children. J. Bone Miner Res. 2003, 18, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bass, S.L.; Naughton, G.; Saxon, L.; Iuliano-Burns, S.; Daly, R.; Briganti, E.M.; Hume, C.; Nowson, C. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: A blinded randomized placebo-controlled trial in boys. J. Bone Miner. Res. 2007, 22, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare. The Physical Activity Guide for Koreans; Company, H.C., Ed.; Ministry of Health and Welfare: Seoul, Korea, 2013.
- Korean Ministry of Health and Welfare, The Korean Nutrition Society. 2020 Dietary Reference Intakes for Koreans: Energy and Macronutrients; The Korean Nutrition Society: Seoul, Korea, 2020. [Google Scholar]
- Korea Centers for Disease Control and Prevention; Division of Chronic Diseases Surveillance; Committee for the Development of Growth Standard for Korean Children and Adolescents; Korean Pediatric Society; Committee for School Health and Public Health Statistics. 2017 Korean Children and Adolescents Growth Standard; Korea Centers for Disease Control and Prevention: Cheongju, Korea, 2017.
- Park, H.W.; Chung, S. Body composition and obesity in Korean adolescents and its impact on diabetes mellitus. Korean J. Obes. 2013, 22, 137–144. [Google Scholar] [CrossRef]
- Branca, F.; Valtuena, S. Calcium, physical activity and bone health -- Building bones for a stronger future. Public Health Nutr. 2001, 4, 117–123. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Khoury, J.C.; Lanphear, B.P. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. 2003, 77, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhakeem, A.; Heron, J.; Tobias, J.H.; Lawlor, D.A. Physical activity throughout adolescence and peak hip strength in young adults. JAMA Netw. 2020, 3, e2013463. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Montero-Marín, J.; González-Agüero, A.; García-Campayo, J.; Moreno, L.; Casajús, J.A.; Vicente-Rodríguez, G. The effect of swimming during childhood and adolescence on bone mineral density: A systematic review and meta-analysis. Sport. Med. 2016, 46, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott: Philadelphia, PA, USA, 2017. [Google Scholar]
- Händel, M.N.; Heitmann, B.L.; Abrahamsen, B. Nutrient and food intakes in early life and risk of childhood fractures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 1182–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huncharek, M.; Muscat, J.; Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: Results of a meta-analysis. Bone 2008, 43, 312–321. [Google Scholar] [CrossRef]
- Ren, J.; Brann, L.S.; Bruening, K.S.; Scerpella, T.A.; Dowthwaite, J.N. Relationships among diet, physical activity, and dual plane dual-energy X-ray absorptiometry bone outcomes in pre-pubertal girls. Arch. Osteoporos. 2017, 12, 19. [Google Scholar] [CrossRef]
- Julián-Almárcegui, C.; Gómez-Cabello, A.; Huybrechts, I.; González-Agüero, A.; Kaufman, J.M.; Casajús, J.A.; Vicente-Rodríguez, G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: A systematic review. Nutr. Rev. 2015, 73, 127–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, N.H.; Abrams, S.A. Optimizing Bone Health in Children and Adolescents. Pediatrics 2014, 134, e1229-43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowthwaite, J.N.; Scerpella, T.A. Skeletal geometry and indices of bone strength in artistic gymnasts. J. Musculoskelet. Neuronal Interact. 2009, 9, 198–214. [Google Scholar]
- Dowthwaite, J.N.; Rosenbaum, P.F.; Scerpella, T.A. Site-specific advantages in skeletal geometry and strength at the proximal femur and forearm in young female gymnasts. Bone 2012, 50, 1173–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | MnoPlow 1 | MnoPhigh | MyesPlow | MyesPhigh | Total | p-Value 2 | |
---|---|---|---|---|---|---|---|
School year | Middle school (7th–9th year) | 146(34.6) 3 | 100(49.5) | 108(41.2) | 102(58.3) | 456(43.0) | <0.001 |
High school (10th–12th year) | 276(65.4) | 102(50.5) | 154(58.8) | 73(41.7) | 605(57.0) | ||
Gender | Male | 203(48.1) | 105(52.0) | 130(49.6) | 119(68.0) | 557(52.5) | 0.044 |
Female | 219(51.9) | 97(48.0) | 132(50.4) | 56(32.0) | 504(47.5) | ||
Income | Low | 125(30.0) | 49(24.7) | 65(25.0) | 35(20.2) | 274(26.1) | 0.086 |
Middle–low | 108(25.9) | 47(23.7) | 60(23.1) | 43(24.9) | 258(24.6) | ||
Middle–high | 96(23.0) | 51(25.8) | 61(23.4) | 42(24.3) | 250(23.9) | ||
High | 88(21.1) | 51(25.8) | 74(28.5) | 53(30.6) | 266(25.4) | ||
Region (Living area) | Large city | 172(40.8) | 76(37.6) | 105(40.1) | 80(45.7) | 433(40.8) | 0.719 |
Medium or small city | 183(43.3) | 98(48.5) | 113(43.1) | 77(44.0) | 471(44.4) | ||
Rural area | 67(15.9) | 28(13.9) | 44(16.8) | 18(10.3) | 157(14.8) |
Gender | Variables | MnoPlow 1 | MnoPhigh | MyesPlow | MyesPhigh | p-Value 2 | Total |
---|---|---|---|---|---|---|---|
Male | N | 203 | 105 | 130 | 119 | 557 | |
Milk intake (mL/day) | 0.0 ± 0.0 3 a 4 | 0.0 ± 0.0 a | 360.1 ± 30.3 b | 349.0 ± 28.1 b | <0.001 | 146.2 ± 12.2 | |
Physical activity (min/week) | 11.8 ± 1.9 a | 227.3 ± 12.2 b | 26.3 ± 3.7 c | 230.0 ± 14.3 b | <0.001 | 120.7 ± 7.9 | |
Female | N | 219 | 97 | 132 | 56 | 504 | |
Milk intake (mL/day) | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 280.8 ± 19.6 b | 278.8 ± 18.6 b | <0.001 | 100.1 ± 9.1 | |
Physical activity (min/week) | 0.0 ± 0.0 a | 130.7 ± 11.1 b | 0.0 ± 0.0 a | 175.9 ± 22.7 c | <0.001 | 70.4 ± 7.9 |
Gender | Variables | MnoPlow 1 | MnoPhigh | MyesPlow | MyesPhigh | p-Value 2 | Total |
---|---|---|---|---|---|---|---|
Male | Age (year) | 15.9 ± 0.2 3 a 4 | 15.6 ± 0.2 ab | 15.3 ± 0.2 b | 15.1 ± 0.2 b | 0.005 | 15.5 ± 0.1 |
Height (cm) | 171.0 ± 0.9 | 172.0 ± 0.8 | 169.9 ± 0.9 | 170.4 ± 0.7 NS 5 | 0.416 | 171.2 ± 0.4 | |
Weight (kg) | 61.3 ± 1.2 | 64.1 ± 1.3 | 62.5 ± 1.7 | 62.3 ± 1.4 NS | 0.745 | 62.5 ± 0.6 | |
BMI (kg/m2) 6 | 20.9 ± 0.4 | 21.8 ± 0.4 | 21.1 ± 0.5 | 21.4 ± 0.4 NS | 0.307 | 21.2 ± 0.2 | |
%Fat (%) | 20.2 ± 0.7 | 21.3 ± 0.7 | 20.0 ± 0.8 | 22.2 ± 0.9 NS | 0.425 | 20.8 ± 0.4 | |
Female | Age (year) | 15.9 ± 0.2 a | 15.3 ± 0.2 bc | 15.3 ± 0.2 bc | 14.8 ± 0.2 b | <0.001 | 15.4 ± 0.1 |
Height (cm) | 159.7 ± 0.6 | 160.4 ± 0.5 | 160.4 ± 0.7 | 160.0 ± 0.6 NS | 0.551 | 160.2 ± 0.3 | |
Weight (kg) | 53.0 ± 0.8 | 56.2 ± 1.1 | 52.5 ± 1.1 | 55.3 ± 1.7 NS | 0.890 | 54.1 ± 0.6 | |
BMI (kg/m2) | 20.8 ± 0.3 a | 21.8 ± 0.3 b | 20.3 ± 0.3 a | 21.6 ± 0.6 b | 0.036 | 21.0 ± 0.2 | |
%Fat (%) | 31.9 ± 0.5 | 33.6 ± 0.6 | 31.8 ± 0.6 | 33.0 ± 1.0 NS | 0.195 | 32.7 ± 0.4 |
Milk Intake and Physical Activity | Variables of BMD 1 | Male (n = 557) | Female (n = 504) | ||
---|---|---|---|---|---|
r | p-Value 2 | r | p-Value | ||
Milk intake | Total BMD (g/cm2) | 0.025 | 0.574 | 0.038 | 0.426 |
Femur BMD (g/cm2) | 0.017 | 0.707 | 0.017 | 0.718 | |
Femur neck BMD (g/cm2) | −0.001 | 0.991 | 0.029 | 0.545 | |
Lumbar BMD (g/cm2) | 0.049 | 0.274 | 0.075 | 0.112 | |
Physical activity time | Total BMD (g/cm2) | 0.212 | <0.001 | 0.120 | 0.019 |
Femur BMD (g/cm2) | 0.257 | <0.001 | 0.142 | 0.005 | |
Femur neck BMD (g/cm2) | 0.250 | <0.001 | 0.135 | 0.008 | |
Lumbar BMD (g/cm2) | 0.120 | 0.020 | 0.180 | <0.001 |
Gender | Variables | MnoPlow 2 | MnoPhigh | MyesPlow | MyesPhigh | p-Value 3 | Total |
---|---|---|---|---|---|---|---|
Male | Total BMD 1 (g/cm2) | 0.916 ± 0.012 4 a 5 | 0.952 ± 0.010 b | 0.917 ± 0.014 ac | 0.947 ± 0.012 bc | 0.003 | 0.939 ± 0.005 |
Femur BMD (g/cm2) | 0.896 ± 0.015 a | 0.952 ± 0.016 b | 0.917 ± 0.017 ab | 0.952 ± 0.013 b | 0.003 | 0.934 ± 0.006 | |
Femur neck BMD (g/cm2) | 0.813 ± 0.014 a | 0.866 ± 0.014 b | 0.817 ± 0.018 ac | 0.863 ± 0.014 c | 0.002 | 0.847 ± 0.006 | |
Lumbar BMD (g/cm2) | 0.839 ± 0.015 a | 0.881 ± 0.016 b | 0.850 ± 0.020 ab | 0.866 ± 0.015 b | 0.019 | 0.865 ± 0.007 | |
Female | Total BMD (g/cm2) | 0.868 ± 0.010 | 0.866 ± 0.009 | 0.860 ± 0.010 | 0.866 ± 0.011 NS 6 | 0.094 | 0.866 ± 0.005 |
Femur BMD (g/cm2) | 0.868 ± 0.014 | 0.876 ± 0.012 | 0.859 ± 0.015 | 0.885 ± 0.011 NS | 0.416 | 0.873 ± 0.006 | |
Femur neck BMD (g/cm2) | 0.760 ± 0.013 | 0.769 ± 0.014 | 0.755 ± 0.015 | 0.770 ± 0.011 NS | 0.700 | 0.765 ± 0.006 | |
Lumbar BMD (g/cm2) | 0.902 ± 0.011 a | 0.900 ± 0.013 a | 0.898 ± 0.014 a | 0.931 ± 0.015 b | 0.030 | 0.904 ± 0.007 |
Variables | Group | Male | Female | ||
---|---|---|---|---|---|
Odds Ratio | CI 1 | Odds Ratio | CI | ||
Total BMD 2 ≥50th percentile, 0.896 (Reference) | MnoPlow 3 vs. MyesPhigh | 0.317 | (0.151, 0.663) * 4 | 0.635 | (0.301, 1.342) |
MnoPhigh vs. MyesPhigh | 1.539 | (0.729, 3.249) | 0.654 | (0.332, 1.289) | |
MyesPlow vs. MyesPhigh | 0.582 | (0.248, 1.363) | 0.652 | (0.307, 1.384) | |
Femur BMD ≥50th percentile, 0.897 (Reference) | MnoPlow vs. MyesPhigh | 0.289 | (0.154, 0.539) * | 0.684 | (0.339, 1.380) |
MnoPhigh vs. MyesPhigh | 0.773 | (0.394, 1.517) | 0.752 | (0.388, 1.461) | |
MyesPlow vs. MyesPhigh | 0.485 | (0.234, 1.007) | 0.545 | (0.261, 1.141) | |
Femur neck BMD ≥50th percentile, 0.801 (Reference) | MnoPlow vs. MyesPhigh | 0.512 | (0.274, 0.958) * | 0.843 | (0.405, 1.754) |
MnoPhigh vs. MyesPhigh | 1.551 | (0.798, 3.012) | 0.918 | (0.454, 1.857) | |
MyesPlow vs. MyesPhigh | 0.636 | (0.30, 1.35) | 0.894 | (0.409, 1.951) | |
Lumbar BMD ≥50th percentile, 0.875 (Reference) | MnoPlow vs. MyesPhigh | 0.493 | (0.245, 0.992) * | 0.433 | (0.21, 0.895) * |
MnoPhigh vs. MyesPhigh | 1.140 | (0.58, 2.24) | 0.485 | (0.233, 1.009) | |
MyesPlow vs. MyesPhigh | 1.149 | (0.568, 2.322) | 0.434 | (0.203, 0.928) * | |
MyesPhigh | 1.000 | (ref) | 1.000 | (ref) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Ha, A.W.; Kim, W.K.; Kim, S.H. The Combined Effects of Milk Intake and Physical Activity on Bone Mineral Density in Korean Adolescents. Nutrients 2021, 13, 731. https://doi.org/10.3390/nu13030731
Lee JH, Ha AW, Kim WK, Kim SH. The Combined Effects of Milk Intake and Physical Activity on Bone Mineral Density in Korean Adolescents. Nutrients. 2021; 13(3):731. https://doi.org/10.3390/nu13030731
Chicago/Turabian StyleLee, Jae Hyun, Ae Wha Ha, Woo Kyoung Kim, and Sun Hyo Kim. 2021. "The Combined Effects of Milk Intake and Physical Activity on Bone Mineral Density in Korean Adolescents" Nutrients 13, no. 3: 731. https://doi.org/10.3390/nu13030731
APA StyleLee, J. H., Ha, A. W., Kim, W. K., & Kim, S. H. (2021). The Combined Effects of Milk Intake and Physical Activity on Bone Mineral Density in Korean Adolescents. Nutrients, 13(3), 731. https://doi.org/10.3390/nu13030731