Investigating the Relationship between Perceived Meal Colour Variety and Food Intake across Meal Types in a Smartphone-Based Ecological Momentary Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Materials and Measures
2.3.1. Food Intake
2.3.2. Meal Type
2.3.3. Perceived Meal Colour Variety
2.4. Statistical Analysis
3. Results
3.1. Perceived Meal Colour Variety
3.2. Food Intake
3.3. Relationships between Perceived Meal Colour Variety and Food Intake
3.3.1. Vegetables
3.3.2. Fruit
3.3.3. Grains and Starches
3.3.4. Protein
3.3.5. Dairy
3.3.6. Fats and Oils
3.3.7. Sugary Extras
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M.; García-Solís, P.; Celis, M.E.M. Contribution of fruits and vegetables to human nutrition and health. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–45. [Google Scholar]
- World Health Organization. Increasing Fruit and Vegetable Consumption to Reduce the Risk of Noncommunicable Diseases. Available online: https://www.who.int/elena/titles/bbc/fruit_vegetables_ncds/en/ (accessed on 19 March 2020).
- Wahl, D.R.; Villinger, K.; König, L.M.; Ziesemer, K.; Schupp, H.T.; Renner, B. Healthy Food Choices are Happy Food Choices: Evidence from a real-life sample using smartphone based assessments. Sci. Rep. 2017, 7, 17069. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Robertson, W.; Towey, M.; Stewart-Brown, S.; Clarke, A. Changes over time in mental well-being, fruit and vegetable consumption and physical activity in a community-based lifestyle intervention: A before and after study. Public Health 2017, 146, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Ding, D.; Mihrshahi, S. Fruit and vegetable consumption and psychological distress: Cross-sectional and longitudinal analyses based on a large Australian sample. BMJ Open 2017, 7, e014201. [Google Scholar] [CrossRef]
- Rösch, R.; Jungvogel, A. Vollwertig Essen und Trinken nach den 10 Regeln der DGE [Whole Foods and Drinks according to the 10 Rules of the German Nutrition Society]; Deutsche Gesellschaft für Ernährung e.V. (DGE): Bonn, Germany, 2013. [Google Scholar]
- U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; Government Printing Office: Washington, DC, USA, 2015. [Google Scholar]
- Yeh, M.-C.; Ickes, S.B.; Lowenstein, L.M.; Shuval, K.; Ammerman, A.S.; Farris, R.; Katz, D.L. Understanding barriers and facilitators of fruit and vegetable consumption among a diverse multi-ethnic population in the USA. Health Promot. Int. 2008, 23, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Van Lee, L.; Geelen, A.; van Huysduynen, E.J.H.; de Vries, J.H.; van’t Veer, P.; Feskens, E.J. The Dutch Healthy Diet index (DHD-index): An instrument to measure adherence to the Dutch Guidelines for a Healthy Diet. Nutr. J. 2012, 11, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, J.; Flood, V.; Rochtchina, E.; Gopinath, B.; Allman-Farinelli, M.; Bauman, A.; Mitchell, P. Adherence to dietary guidelines and 15-year risk of all-cause mortality. Br. J. Nutr. 2013, 109, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Max-Rubner-Institut. Nationale Verzehrsstudie II. Ergebnisbericht Teil 2 [National Nutrition Survey II. Results Report Part 2]; Max-Rubner Institut: Karlsruhe, Germany, 2008. [Google Scholar]
- Hall, J.N.; Moore, S.; Harper, S.B.; Lynch, J.W. Global variability in fruit and vegetable consumption. Am. J. Prev. Med. 2009, 36, 402–409. [Google Scholar] [CrossRef]
- Mishra, G.D.; Schoenaker, D.A.; Mihrshahi, S.; Dobson, A.J. How do women’s diets compare with the new Australian dietary guidelines? Public Health Nutr. 2015, 18, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, S.I.; Dodd, K.W.; Reedy, J.; Krebs-Smith, S.M. Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J. Acad. Nutr. Diet 2012, 112, 624–635.e6. [Google Scholar] [CrossRef] [Green Version]
- Mc Morrow, L.; Ludbrook, A.; Macdiarmid, J.; Olajide, D. Perceived barriers towards healthy eating and their association with fruit and vegetable consumption. J. Public Health 2017, 39, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Mook, K.; Laraia, B.A.; Oddo, V.M.; Jones-Smith, J.C. Peer Reviewed: Food Security Status and Barriers to Fruit and Vegetable Consumption in Two Economically Deprived Communities of Oakland, California, 2013–2014. Prev. Chronic Dis. 2016, 13, E21. [Google Scholar] [CrossRef] [Green Version]
- Schätzer, M.; Rust, P.; Elmadfa, I. Fruit and vegetable intake in Austrian adults: Intake frequency, serving sizes, reasons for and barriers to consumption, and potential for increasing consumption. Public Health Nutr. 2010, 13, 480–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, O.; Merunka, D.; Anton, J.-L.; Nazarian, B.; Spence, C.; Cheok, A.D.; Raccah, D.; Oullier, O. Health and pleasure in consumers’ dietary food choices: Individual differences in the brain’s value system. PLoS ONE 2016, 11, e0156333. [Google Scholar] [CrossRef] [PubMed]
- Bédard, A.; Lamarche, P.-O.; Grégoire, L.-M.; Trudel-Guy, C.; Provencher, V.; Desroches, S.; Lemieux, S. Can eating pleasure be a lever for healthy eating? A systematic scoping review of eating pleasure and its links with dietary behaviors and health. PLoS ONE 2020, 15, e0244292. [Google Scholar]
- Briers, B.; Huh, Y.E.; Chan, E.; Mukhopadhyay, A. The unhealthy= tasty belief is associated with BMI through reduced consumption of vegetables: A cross-national and mediational analysis. Appetite 2020, 150, 104639. [Google Scholar] [CrossRef]
- Block, L.G.; Grier, S.A.; Childers, T.L.; Davis, B.; Ebert, J.E.; Kumanyika, S.; Laczniak, R.N.; Machin, J.E.; Motley, C.M.; Peracchio, L. From nutrients to nurturance: A conceptual introduction to food well-being. J. Public Policy Mark. 2011, 30, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Turnwald, B.P.; Bertoldo, J.D.; Perry, M.A.; Policastro, P.; Timmons, M.; Bosso, C.; Connors, P.; Valgenti, R.T.; Pine, L.; Challamel, G. Increasing vegetable intake by emphasizing tasty and enjoyable attributes: A randomized controlled multisite intervention for taste-focused labeling. Psychol. Sci. 2019, 30, 1603–1615. [Google Scholar] [CrossRef] [PubMed]
- König, L.M.; Renner, B. Colourful = healthy? Exploring meal colour variety and its relation to food consumption. Food Qual. Prefer. 2018, 64, 66–71. [Google Scholar] [CrossRef]
- König, L.M.; Renner, B. Boosting healthy food choices by meal colour variety: Results from two experiments and a just-in-time Ecological Momentary Intervention. BMC Public Health 2019, 19, 975. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Machín, L.; Jaeger, S.R. Using Twitter data for food-related consumer research: A case study on “what people say when tweeting about different eating situations”. Food Qual. Prefer. 2015, 45, 58–69. [Google Scholar] [CrossRef]
- Ziesemer, K.; König, L.M.; Boushey, C.J.; Villinger, K.; Wahl, D.; Butscher, S.; Müller, J.; Reiterer, H.; Schupp, H.T.; Renner, B. Occurrence of and reasons for “missing events” in mobile dietary assessments: Results from three event-based EMA studies. JMIR mHealth uHealth 2020, 8, e15430. [Google Scholar] [CrossRef]
- Villinger, K.; Wahl, D.; Schupp, H.T.; Renner, B. Memorable Meals: The Memory-Experience Gap in Day-to-Day Experiences. 2020. Submitted for Publication. [Google Scholar]
- Koelsch, C.; Brüggemann, I. Die Aid-Ernährungspyramide—Richtig Essen Lehren und Lernen [The AID Nutrition Pyramid—Correcly Teaching and Learning How to Eat]; Aid Infodienst: Bonn, Germany, 2012. [Google Scholar]
- Jungvogel, A. Lebensmittelbezogene Ernährungsempfehlungen in Deutschland [Food-Related Dietary Guidelines in Germany]; Deutsche Gesellschaft für Ernährung e.V. (DGE): Bonn, Germany, 2014. [Google Scholar]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Hallgren, K.A. Computing inter-rater reliability for observational data: An overview and tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Hox, J.J.; Moerbeek, M.; van de Schoot, R. Multilevel Analysis: Techniques and Applications; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Grothendieck, G.; Green, P. lme4: Linear Mixed-Effects Models Using ‘Eigen’ and S4, 1.1-11. 2016. Available online: https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 19 March 2020).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. Package ‘lmerTest’, 2.0-30. 2016. Available online: https://cran.r-project.org/web/packages/lmerTest/index.html (accessed on 19 March 2020).
- Enders, C.K.; Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 2007, 12, 121–138. [Google Scholar] [CrossRef]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Thousand Oaks, XA, USA, 2002; Volume 1. [Google Scholar]
- Renner, B.; Sproesser, G.; Stok, F.M.; Schupp, H. Eating in the dark: A dissociation between perceived and actual food consumption. Food Qual. Prefer. 2016, 50, 145–151. [Google Scholar] [CrossRef]
- Schulte-Mecklenbeck, M.; Sohn, M.; de Bellis, E.; Martin, N.; Hertwig, R. A lack of appetite for information and computation. Simple heuristics in food choice. Appetite 2013, 71, 242–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piqueras-Fiszman, B.; Spence, C. Colour, pleasantness, and consumption behaviour within a meal. Appetite 2014, 75, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. On the psychological impact of food colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Spence, C.; Piqueras-Fiszman, B. Food color and its impact on taste/flavor perception. In Multisensory Flavor Perception: From Fundamental Neuroscience through to the Marketplace; Piqueras-Fiszman, B., Spence, C., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 107–132. [Google Scholar]
- DuBose, C.N.; Cardello, A.V.; Maller, O. Effects of colorants and flavorants on identification, perceived flavor intensity, and hedonic quality of fruit-flavored beverages and cake. J. Food Sci. 1980, 45, 1393–1399. [Google Scholar] [CrossRef]
- Calvo, C.; Salvador, A.; Fiszman, S.M. Influence of colour intensity on the perception of colour and sweetness in various fruit-flavoured yoghurts. Eur. Food Res. Technol. 2001, 213, 99–103. [Google Scholar] [CrossRef]
- Valentin, D.; Parr, W.V.; Peyron, D.; Grose, C.; Ballester, J. Colour as a driver of Pinot noir wine quality judgments: An investigation involving French and New Zealand wine professionals. Food Qual. Prefer. 2016, 48, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Foroni, F.; Pergola, G.; Rumiati, R.I. Food color is in the eye of the beholder: The role of human trichromatic vision in food evaluation. Sci. Rep. 2016, 6, 37034. [Google Scholar] [CrossRef] [Green Version]
- Paakki, M.; Aaltojärvi, I.; Sandell, M.; Hopia, A. The importance of the visual aesthetics of colours in food at a workday lunch. Int. J. Gastron. Food Sci. 2019, 16, 100131. [Google Scholar] [CrossRef]
- Nutrilite Health Institute. Global Phytonutrient Report; Nutrilite Health Institute: Buena Park, CA, USA, 2014. [Google Scholar]
- Minich, D.M. A Review of the Science of Colorful, Plant-Based Food and Practical Strategies for “Eating the Rainbow”. J. Nutr. Metab. 2019, 2019, 2125070. [Google Scholar] [CrossRef]
- Rolls, B.J.; Rowe, E.A.; Rolls, E.T. How sensory properties of foods affect human feeding behavior. Physiol. Behav. 1982, 29, 409–417. [Google Scholar] [CrossRef]
- Kahn, B.E.; Wansink, B. The influence of assortment structure on perceived variety and consumption quantities. J. Consum. Res. 2004, 30, 519–533. [Google Scholar] [CrossRef]
- Velasco, C.; Michel, C.; Youssef, J.; Gamez, X.; Cheok, A.D.; Spence, C. Colour–taste correspondences: Designing food experiences to meet expectations or to surprise. Int. J. Food Des. 2016, 1, 83–102. [Google Scholar] [CrossRef]
- Woods, A.T.; Marmolejo-Ramos, F.; Velasco, C.; Spence, C. Using single colors and color pairs to communicate basic tastes II: Foreground–background color combinations. i-Perception 2016, 7, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Philipsen, D.; Clydesdale, F.; Griffin, R.; Stern, P. Consumer age affects response to sensory characteristics of a cherry flavored beverage. J. Food Sci. 1995, 60, 364–368. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Principato, L.; Morwitz, V.; Mattei, J. Sensory variety in shape and color influences fruit and vegetable intake, liking, and purchase intentions in some subsets of adults: A randomized pilot experiment. Food Qual. Prefer. 2019, 71, 301–310. [Google Scholar] [CrossRef]
- Jeltema, M.; Beckley, J.; Vahalik, J. Food texture assessment and preference based on mouth behavior. Food Qual. Prefer. 2016, 52, 160–171. [Google Scholar] [CrossRef]
- Chapman, K.; Goldsbury, D.; Watson, W.; Havill, M.; Wellard, L.; Hughes, C.; Bauman, A.; Allman-Farinelli, M. Exploring perceptions and beliefs about the cost of fruit and vegetables and whether they are barriers to higher consumption. Appetite 2017, 113, 310–319. [Google Scholar] [CrossRef]
- Mensink, G.; Truthmann, J.; Rabenberg, M.; Heidemann, C.; Haftenberger, M.; Schienkiewitz, A.; Richter, A. Obst- und Gemüsekonsum in Deutschland [Fruit and vegetable consumption in Germany]. Bundesgesundheitsblatt Gesundh. Gesundh. 2013, 56, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Malisova, O.; Bountziouka, V.; Zampelas, A.; Kapsokefalou, M. Evaluation of drinks contribution to energy intake in summer and winter. Nutrients 2015, 7, 3724–3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alinia, S.; Hels, O.; Tetens, I. The potential association between fruit intake and body weight—A review. Obes. Rev. 2009, 10, 639–647. [Google Scholar] [CrossRef]
Meal Type | M | SD | ICC |
---|---|---|---|
Across eating occasions | 38.47 | 25.75 | 0.16 |
Breakfast | 35.71 | 22.31 | 0.42 |
Lunch | 50.70 | 24.85 | 0.25 |
Afternoon tea | 25.83 | 17.58 | 0.47 |
Dinner | 48.36 | 24.94 | 0.21 |
Snack | 24.50 | 22.56 | 0.25 |
Food Group | % of Meals | Proportion of Food Group in the Meal | ICC | |
---|---|---|---|---|
M | SD | |||
Across eating occasions (n = 2818) | ||||
Vegetables | 39.03 | 0.14 | 0.22 | 0.05 |
Fruit | 24.06 | 0.14 | 0.31 | 0.05 |
Grains and starches | 63.31 | 0.30 | 0.29 | 0.05 |
Protein | 23.07 | 0.08 | 0.17 | 0.09 |
Dairy | 34,88 | 0.12 | 0.21 | 0.06 |
Fats and oils | 12.38 | 0.04 | 0.14 | 0.06 |
Sugary extras | 24.95 | 0.18 | 0.35 | 0.05 |
Breakfast (n = 704) | ||||
Vegetables | 13.35 | 0.03 | 0.11 | 0.18 |
Fruit | 39.49 | 0.16 | 0.26 | 0.22 |
Grains and starches | 80.68 | 0.38 | 0.28 | 0.21 |
Protein | 15.91 | 0.06 | 0.16 | 0.18 |
Dairy | 48.30 | 0.19 | 0.23 | 0.14 |
Fats and oils | 11.22 | 0.03 | 0.09 | 0.13 |
Sugary extras | 31.68 | 0.15 | 0.28 | 0.16 |
Lunch (n = 566) | ||||
Vegetables | 77.39 | 0.28 | 0.24 | 0.15 |
Fruit | 9.89 | 0.03 | 0.10 | 0.08 |
Grains and starches | 86.40 | 0.38 | 0.25 | 0.19 |
Protein | 37.63 | 0.12 | 0.18 | 0.13 |
Dairy | 39.93 | 0.12 | 0.19 | 0.07 |
Fats and oils | 18.20 | 0.06 | 0.14 | 0.06 |
Sugary extras | 5.30 | 0.02 | 0.13 | 0.07 |
Afternoon tea (n = 89) | ||||
Vegetables | 0.00 | 0.00 | - | - |
Fruit | 4.49 | 0.01 | 0.05 | 0.04 |
Grains and starches | 2.25 | 0.02 | 0.12 | 0.80 |
Protein | 1.12 | <0.01 | 0.02 | <0.01 |
Dairy | 10.11 | 0.05 | 0.15 | 0.27 |
Fats and oils | 0.00 | 0.00 | - | - |
Sugary extras | 96.63 | 0.93 | 0.22 | 0.47 |
Dinner (n = 692) | ||||
Vegetables | 70.81 | 0.26 | 0.25 | 0.17 |
Fruit | 8.67 | 0.03 | 0.13 | 0.24 |
Grains and starches | 78.61 | 0.35 | 0.25 | 0.11 |
Protein | 40.17 | 0.14 | 0.20 | 0.16 |
Dairy | 43.79 | 0.13 | 0.19 | 0.14 |
Fats and oils | 16.61 | 0.06 | 0.14 | 0.11 |
Sugary extras | 7.37 | 0.05 | 0.18 | 0.10 |
Snack (n = 767) | ||||
Vegetables | 10.17 | 0.04 | 0.16 | 0.03 |
Fruit | 36.51 | 0.32 | 0.45 | 0.10 |
Grains and starches | 23.60 | 0.14 | 0.29 | 0.05 |
Protein | 6.00 | 0.02 | 0.10 | 0.16 |
Dairy | 13.69 | 0.07 | 0.20 | 0.12 |
Fats and oils | 6.78 | 0.04 | 0.19 | 0.17 |
Sugary extras | 40.81 | 0.35 | 0.46 | 0.09 |
Across Eating Occasions | Breakfast | Lunch | Dinner | Snacks | |
---|---|---|---|---|---|
Vegetables | 99% a | 83% a | 76% a | 85% a | 78% a |
Fruit | 15% b | 0% c | |||
Grains and starches | 96% a | 32% b | 24% b | 27% b | 75% a |
Protein | 96% a | 76% a | 100% c | 70% a | |
Dairy | 38% b | ||||
Fats and oils | 64% a | ||||
Sugary extras | 2% b | 24% b | 34% b | 0% c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, L.M.; Koller, J.E.; Villinger, K.; Wahl, D.R.; Ziesemer, K.; Schupp, H.T.; Renner, B. Investigating the Relationship between Perceived Meal Colour Variety and Food Intake across Meal Types in a Smartphone-Based Ecological Momentary Assessment. Nutrients 2021, 13, 755. https://doi.org/10.3390/nu13030755
König LM, Koller JE, Villinger K, Wahl DR, Ziesemer K, Schupp HT, Renner B. Investigating the Relationship between Perceived Meal Colour Variety and Food Intake across Meal Types in a Smartphone-Based Ecological Momentary Assessment. Nutrients. 2021; 13(3):755. https://doi.org/10.3390/nu13030755
Chicago/Turabian StyleKönig, Laura M., Julia E. Koller, Karoline Villinger, Deborah R. Wahl, Katrin Ziesemer, Harald T. Schupp, and Britta Renner. 2021. "Investigating the Relationship between Perceived Meal Colour Variety and Food Intake across Meal Types in a Smartphone-Based Ecological Momentary Assessment" Nutrients 13, no. 3: 755. https://doi.org/10.3390/nu13030755
APA StyleKönig, L. M., Koller, J. E., Villinger, K., Wahl, D. R., Ziesemer, K., Schupp, H. T., & Renner, B. (2021). Investigating the Relationship between Perceived Meal Colour Variety and Food Intake across Meal Types in a Smartphone-Based Ecological Momentary Assessment. Nutrients, 13(3), 755. https://doi.org/10.3390/nu13030755