Methylxanthines and Neurodegenerative Diseases: An Update
Abstract
:1. Introduction
2. Alzheimer’s Disease
2.1. Epidemiological and Clinical Studies
2.1.1. Are the Positive Effects due to Caffeine or Other Compounds in Coffee?
2.1.2. The Effect of Other Methylxanthines on Alzheimer’s Disease
2.2. Animal Studies/Molecular Pathways
3. Parkinson’s Disease
3.1. Epidemiological and Clinical Studies
3.2. Animal Studies/Molecular Pathways
4. Multiple Sclerosis
4.1. Epidemiological and Clinical Studies
4.2. Animal Studies/Molecular Pathways
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wasim, S.; Kukkar, V.; Awad, V.M.; Sakhamuru, S.; Malik, B.H. Neuroprotective and neurodegenerative aspects of coffee and its active ingredients in view of scientific literature. Cureus 2020, 12, e9578. [Google Scholar] [CrossRef] [PubMed]
- Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine a(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol. 2007, 203, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the role of nrf-2 and a2ar signaling. Antioxidants 2020, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Faivre, E.; Coelho, J.E.; Zornbach, K.; Malik, E.; Baqi, Y.; Schneider, M.; Cellai, L.; Carvalho, K.; Sebda, S.; Figeac, M.; et al. Beneficial effect of a selective adenosine a2a receptor antagonist in the appswe/ps1de9 mouse model of Alzheimer’s disease. Front. Mol. Neurosci. 2018, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Semwal, B.C.; Garabadu, D. Amyloid beta (1-42) downregulates adenosine-2b receptors in addition to mitochondrial impairment and cholinergic dysfunction in memory-sensitive mouse brain regions. J. Recept. Signal Transduct. Res. 2020, 40, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Sanders, O.; Rajagopal, L. Phosphodiesterase inhibitors for Alzheimer’s disease: A systematic review of clinical trials and epidemiology with a mechanistic rationale. J. Alzheimers Dis. Rep. 2020, 4, 185–215. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Jung, G.; Lee, H.N.; Sohn, B.K.; Lee, J.Y.; Kim, Y.K.; et al. Coffee intake and decreased amyloid pathology in human brain. Transl. Psychiatry 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Arendash, G.W.; Mori, T.; Cao, C.; Mamcarz, M.; Runfeldt, M.; Dickson, A.; Rezai-Zadeh, K.; Tane, J.; Citron, B.A.; Lin, X.; et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J. Alzheimers Dis. 2009, 17, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Cirrito, J.R.; Lin, X.; Wang, L.; Verges, D.K.; Dickson, A.; Mamcarz, M.; Zhang, C.; Mori, T.; Arendash, G.W.; et al. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 2009, 17, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Orsini, N. Coffee consumption and risk of dementia and Alzheimer’s disease: A dose-response meta-analysis of prospective studies. Nutrients 2018, 10, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyas, S.L.; Manfreda, J.; Strain, L.A.; Montgomery, P.R. Risk factors for Alzheimer’s disease: A population-based, longitudinal study in manitoba, canada. Int. J. Epidemiol. 2001, 30, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, J.; Laurin, D.; Verreault, R.; Hebert, R.; Helliwell, B.; Hill, G.B.; McDowell, I. Risk factors for Alzheimer’s disease: A prospective analysis from the canadian study of health and aging. Am. J. Epidemiol. 2002, 156, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, K.; Melo van Lent, D.; Wolfsgruber, S.; Weinhold, L.; Kleineidam, L.; Bickel, H.; Scherer, M.; Eisele, M.; van den Bussche, H.; Wiese, B.; et al. Prospective associations between single foods, Alzheimer’s dementia and memory decline in the elderly. Nutrients 2018, 10, 852. [Google Scholar] [CrossRef] [Green Version]
- Iranpour, S.; Saadati, H.M.; Koohi, F.; Sabour, S. Association between caffeine intake and cognitive function in adults; effect modification by sex: Data from national health and nutrition examination survey (nhanes) 2013–2014. Clin. Nutr. 2020, 39, 2158–2168. [Google Scholar] [CrossRef]
- Mancini, R.S.; Wang, Y.; Weaver, D.F. Phenylindanes in brewed coffee inhibit amyloid-beta and tau aggregation. Front. Neurosci. 2018, 12, 735. [Google Scholar] [CrossRef]
- Fukuyama, K.; Kakio, S.; Nakazawa, Y.; Kobata, K.; Funakoshi-Tago, M.; Suzuki, T.; Tamura, H. Roasted coffee reduces beta-amyloid production by increasing proteasomal beta-secretase degradation in human neuroblastoma sh-sy5y cells. Mol. Nutr. Food Res. 2018, 62, e1800238. [Google Scholar] [CrossRef]
- Dong, X.; Li, S.; Sun, J.; Li, Y.; Zhang, D. Association of coffee, decaffeinated coffee and caffeine intake from coffee with cognitive performance in older adults: National health and nutrition examination survey (nhanes) 2011–2014. Nutrients 2020, 12, 840. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid beta plaques in app/ps2 transgenic mouse. Neurosci. Res. 2020, 154, 35–44. [Google Scholar] [CrossRef]
- Yenisetti, S.C.; Muralidhara. Beneficial role of coffee and caffeine in neurodegenerative diseases: A minireview. AIMS Public Health 2016, 3, 407–422. [Google Scholar]
- de Leeuw, F.A.; van der Flier, W.M.; Tijms, B.M.; Scheltens, P.; Mendes, V.M.; Manadas, B.; Bierau, J.; van Wijk, N.; van den Heuvel, E.; Mohajeri, M.H.; et al. Specific nutritional biomarker profiles in mild cognitive impairment and subjective cognitive decline are associated with clinical progression: The nudad project. J. Am. Med. Dir. Assoc. 2020, 21, 1513.e1–1513.e17. [Google Scholar] [CrossRef]
- Janitschke, D.; Nelke, C.; Lauer, A.A.; Regner, L.; Winkler, J.; Thiel, A.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells. Biomolecules 2019, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in personalized nutrition: Can you “eat for your genes”? Nutrients 2020, 12, 3118. [Google Scholar] [CrossRef] [PubMed]
- Barrangou-Poueys-Darlas, M.; Guerlais, M.; Laforgue, E.J.; Bellouard, R.; Istvan, M.; Chauvin, P.; Guillet, J.Y.; Jolliet, P.; Gregoire, M.; Victorri-Vigneau, C. Cyp1a2 and tobacco interaction: A major pharmacokinetic challenge during smoking cessation. Drug Metab. Rev. 2021, 1–12. [Google Scholar] [CrossRef]
- Moua, E.D.; Hu, C.; Day, N.; Hord, N.G.; Takata, Y. Coffee consumption and c-reactive protein levels: A systematic review and meta-analysis. Nutrients 2020, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Rodas, L.; Riera-Sampol, A.; Aguilo, A.; Martinez, S.; Tauler, P. Effects of habitual caffeine intake, physical activity levels, and sedentary behavior on the inflammatory status in a healthy population. Nutrients 2020, 12, 2325. [Google Scholar] [CrossRef]
- Lok, K.; Zhao, H.; Shen, H.; Wang, Z.; Gao, X.; Zhao, W.; Yin, M. Characterization of the app/ps1 mouse model of Alzheimer’s disease in senescence accelerated background. Neurosci. Lett 2013, 557 Pt. B, 84–89. [Google Scholar] [CrossRef]
- Jin, L.; Pan, Y.; Tran, N.L.L.; Polychronopoulos, L.N.; Warrier, A.; Brouwer, K.L.R.; Nicolazzo, J.A. Intestinal permeability and oral absorption of selected drugs are reduced in a mouse model of familial Alzheimer’s disease. Mol. Pharm. 2020, 17, 1527–1537. [Google Scholar] [CrossRef]
- Zappettini, S.; Faivre, E.; Ghestem, A.; Carrier, S.; Buee, L.; Blum, D.; Esclapez, M.; Bernard, C. Caffeine consumption during pregnancy accelerates the development of cognitive deficits in offspring in a model of tauopathy. Front. Cell. Neurosci. 2019, 13, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.Y.; Mitzner, W.; Watson, J. Variation in airway responsiveness of male c57bl/6 mice from 5 vendors. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 401–406. [Google Scholar]
- Yoneda, M.; Sugimoto, N.; Katakura, M.; Matsuzaki, K.; Tanigami, H.; Yachie, A.; Ohno-Shosaku, T.; Shido, O. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. J. Nutr. Biochem. 2017, 39, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, A.G.; Lo, I.; Schumacher, H.; Ho, K.; Gill, M.; Guo, W.; Kim, D.H.; Knox, A.; Saito, T.; Saido, T.C.; et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol. Dis. 2018, 110, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Rivas-Santisteban, R.; Casanovas, M.; Lillo, A.; Saura, C.A.; Navarro, G. Adenosine a2a receptor antagonists affects nmda glutamate receptor function. Potential to address neurodegeneration in Alzheimer’s disease. Cells 2020, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Gastaldo, I.P.; Himbert, S.; Ram, U.; Rheinstadter, M.C. The effects of resveratrol, caffeine, beta-carotene, and epigallocatechin gallate (egcg) on amyloid-beta 25–35 aggregation in synthetic brain membranes. Mol. Nutr. Food Res. 2020, 64, e2000632. [Google Scholar] [CrossRef]
- Khondker, A.; Dhaliwal, A.; Alsop, R.J.; Tang, J.; Backholm, M.; Shi, A.C.; Rheinstadter, M.C. Partitioning of caffeine in lipid bilayers reduces membrane fluidity and increases membrane thickness. Phys. Chem. Chem. Phys. 2017, 19, 7101–7111. [Google Scholar] [CrossRef]
- Gupta, S.; Dasmahapatra, A.K. Caffeine destabilizes preformed abeta protofilaments: Insights from all atom molecular dynamics simulations. Phys. Chem. Chem. Phys. 2019, 21, 22067–22080. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, C.; Murray, A.P.; Corradi, J.; Antollini, S.S. A novel pharmacological activity of caffeine in the cholinergic system. Neuropharmacology 2018, 135, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Mehta, V.; Raj, U.; Varadwaj, P.K.; Udayabanu, M.; Yennamalli, R.M.; Singh, T.R. Computational and in-vitro validation of natural molecules as potential acetylcholinesterase inhibitors and neuroprotective agents. Curr. Alzheimer Res. 2019, 16, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Dazert, P.; Suofu, Y.; Grube, M.; Popa-Wagner, A.; Kroemer, H.K.; Jedlitschky, G.; Kessler, C. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience 2006, 142, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Aronsen, L.; Orvoll, E.; Lysaa, R.; Ravna, A.W.; Sager, G. Modulation of high affinity atp-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur. J. Pharmacol. 2014, 745, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Bi, W.; Xiao, S.; Lan, X.; Cheng, X.; Zhang, J.; Lu, D.; Wei, W.; Wang, Y.; Li, H.; et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci. Rep. 2019, 9, 5790. [Google Scholar] [CrossRef] [Green Version]
- Badshah, H.; Ikram, M.; Ali, W.; Ahmad, S.; Hahm, J.R.; Kim, M.O. Caffeine may abrogate lps-induced oxidative stress and neuroinflammation by regulating nrf2/tlr4 in adult mouse brains. Biomolecules 2019, 9, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Ikram, M.; Muhammad, T.; Park, J.; Kim, M.O. Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating nrf-2/ho-1 in vivo and in vitro. J. Clin. Med. 2019, 8, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, B.; Schmoll, H.; Riederer, P.; Bauer, J.; Platt, D.; Popa-Wagner, A. Complement c1q and c3 mrna expression in the frontal cortex of Alzheimer’s patients. J. Mol. Med. 1995, 73, 465–471. [Google Scholar] [CrossRef]
- Slevin, M.; Matou, S.; Zeinolabediny, Y.; Corpas, R.; Weston, R.; Liu, D.; Boras, E.; Di Napoli, M.; Petcu, E.; Sarroca, S.; et al. Monomeric c-reactive protein—A key molecule driving development of Alzheimer’s disease associated with brain ischaemia? Sci. Rep. 2015, 5, 13281. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ren, J.; Hillier, J.; Lu, W.; Jones, E.Y. Caffeine inhibits notum activity by binding at the catalytic pocket. Commun. Biol. 2020, 3, 555. [Google Scholar] [CrossRef] [PubMed]
- de Leon, J.; Diaz, F.J.; Rogers, T.; Browne, D.; Dinsmore, L.; Ghosheh, O.H.; Dwoskin, L.P.; Crooks, P.A. A pilot study of plasma caffeine concentrations in a us sample of smoker and nonsmoker volunteers. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2003, 27, 165–171. [Google Scholar] [CrossRef]
- Lopez-Sanchez, R.D.C.; Lara-Diaz, V.J.; Aranda-Gutierrez, A.; Martinez-Cardona, J.A.; Hernandez, J.A. Hplc method for quantification of caffeine and its three major metabolites in human plasma using fetal bovine serum matrix to evaluate prenatal drug exposure. J. Anal. Methods Chem. 2018, 2018, 2085059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabbi-Schroeter, D.; Elmenhorst, D.; Oskamp, A.; Laskowski, S.; Bauer, A.; Kroll, T. Effects of long-term caffeine consumption on the adenosine a1 receptor in the rat brain: An in vivo pet study with [(18)f]cpfpx. Mol. Imaging Biol. 2018, 20, 284–291. [Google Scholar] [CrossRef]
- Mendiola-Precoma, J.; Padilla, K.; Rodriguez-Cruz, A.; Berumen, L.C.; Miledi, R.; Garcia-Alcocer, G. Theobromine-induced changes in a1 purinergic receptor gene expression and distribution in a rat brain Alzheimer’s disease model. J. Alzheimers Dis. 2017, 55, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Xavier, N.M.; de Sousa, E.C.; Pereira, M.P.; Loesche, A.; Serbian, I.; Csuk, R.; Oliveira, M.C. Synthesis and biological evaluation of structurally varied 5’-/6’-isonucleosides and theobromine-containing n-isonucleosidyl derivatives. Pharmaceuticals 2019, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Ciaramelli, C.; Palmioli, A.; De Luigi, A.; Colombo, L.; Sala, G.; Salmona, M.; Airoldi, C. Nmr-based lavado cocoa chemical characterization and comparison with fermented cocoa varieties: Insights on cocoa’s anti-amyloidogenic activity. Food Chem. 2021, 341, 128249. [Google Scholar] [CrossRef] [PubMed]
- Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Seyfried, M.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Unique role of caffeine compared to other methylxanthines (theobromine, theophylline, pentoxifylline, propentofylline) in regulation of ad relevant genes in neuroblastoma sh-sy5y wild type cells. Int. J. Mol. Sci. 2020, 21, 9015. [Google Scholar] [CrossRef] [PubMed]
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef]
- Becker, A.; Fassbender, K.; Oertel, W.H.; Unger, M.M. A punch in the gut—Intestinal inflammation links environmental factors to neurodegeneration in Parkinson’s disease. Park. Relat. Disord. 2019, 60, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Seidl, S.E.; Santiago, J.A.; Bilyk, H.; Potashkin, J.A. The emerging role of nutrition in Parkinson’s disease. Front. Aging Neurosci. 2014, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Miyake, Y.; Fukushima, W.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; et al. Intake of japanese and chinese teas reduces risk of Parkinson’s disease. Park. Relat. Disord. 2011, 17, 446–450. [Google Scholar] [CrossRef]
- Ascherio, A.; Zhang, S.M.; Hernan, M.A.; Kawachi, I.; Colditz, G.A.; Speizer, F.E.; Willett, W.C. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann. Neurol. 2001, 50, 56–63. [Google Scholar] [CrossRef]
- Hellenbrand, W.; Seidler, A.; Robra, B.P.; Vieregge, P.; Oertel, W.H.; Joerg, J.; Nischan, P.; Schneider, E.; Ulm, G. Smoking and Parkinson’s disease: A case-control study in germany. Int. J. Epidemiol. 1997, 26, 328–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakshi, R.; Macklin, E.A.; Hung, A.Y.; Hayes, M.T.; Hyman, B.T.; Wills, A.M.; Gomperts, S.N.; Growdon, J.H.; Ascherio, A.; Scherzer, C.R.; et al. Associations of lower caffeine intake and plasma urate levels with idiopathic Parkinson’s disease in the harvard biomarkers study. J. Park. Dis. 2020, 10, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Fujimaki, M.; Saiki, S.; Li, Y.; Kaga, N.; Taka, H.; Hatano, T.; Ishikawa, K.I.; Oji, Y.; Mori, A.; Okuzumi, A.; et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018, 90, e404–e411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluss, J.H.; Mamais, A.; Cookson, M.R. Lrrk2 links genetic and sporadic Parkinson’s disease. Biochem. Soc. Trans. 2019, 47, 651–661. [Google Scholar] [CrossRef]
- Crotty, G.F.; Maciuca, R.; Macklin, E.A.; Wang, J.; Montalban, M.; Davis, S.S.; Alkabsh, J.I.; Bakshi, R.; Chen, X.; Ascherio, A.; et al. Association of caffeine and related analytes with resistance to Parkinson disease among lrrk2 mutation carriers: A metabolomic study. Neurology 2020, 95, e3428–e3437. [Google Scholar] [CrossRef] [PubMed]
- Ohmichi, T.; Kasai, T.; Kosaka, T.; Shikata, K.; Tatebe, H.; Ishii, R.; Shinomoto, M.; Mizuno, T.; Tokuda, T. Biomarker repurposing: Therapeutic drug monitoring of serum theophylline offers a potential diagnostic biomarker of Parkinson’s disease. PLoS ONE 2018, 13, e0201260. [Google Scholar]
- Hong, C.T.; Chan, L.; Bai, C.H. The effect of caffeine on the risk and progression of Parkinson’s disease: A meta-analysis. Nutrients 2020, 12, 1860. [Google Scholar] [CrossRef] [PubMed]
- Maclagan, L.C.; Visanji, N.P.; Cheng, Y.; Tadrous, M.; Lacoste, A.M.B.; Kalia, L.V.; Bronskill, S.E.; Marras, C. Identifying drugs with disease-modifying potential in Parkinson’s disease using artificial intelligence and pharmacoepidemiology. Pharmacoepidemiol. Drug Saf. 2020, 29, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Cunha, R.A. The belated us fda approval of the adenosine a2a receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. 2020, 16, 167–174. [Google Scholar] [CrossRef]
- Sako, W.; Murakami, N.; Motohama, K.; Izumi, Y.; Kaji, R. The effect of istradefylline for Parkinson’s disease: A meta-analysis. Sci. Rep. 2017, 7, 18018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.F.; Xu, K.; Petzer, J.P.; Staal, R.; Xu, Y.H.; Beilstein, M.; Sonsalla, P.K.; Castagnoli, K.; Castagnoli, N., Jr.; Schwarzschild, M.A. Neuroprotection by caffeine and a(2a) adenosine receptor inactivation in a model of Parkinson’s disease. J. Neurosci. 2001, 21, RC143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, Y.; Ren, X.; Zheng, W.; Zeng, Z.; Guo, Y.; Hou, Z.; Guo, W.; Chen, X.; Li, F.; Chen, J.F. Chronic caffeine treatment protects against alpha-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Front. Neurosci. 2018, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Khadrawy, Y.A.; Salem, A.M.; El-Shamy, K.A.; Ahmed, E.K.; Fadl, N.N.; Hosny, E.N. Neuroprotective and therapeutic effect of caffeine on the rat model of Parkinson’s disease induced by rotenone. J. Diet. Suppl 2017, 14, 553–572. [Google Scholar] [CrossRef]
- Pardo, M.; Paul, N.E.; Collins-Praino, L.E.; Salamone, J.D.; Correa, M. The non-selective adenosine antagonist theophylline reverses the effects of dopamine antagonism on tremor, motor activity and effort-based decision-making. Pharmacol. Biochem. Behav. 2020, 198, 173035. [Google Scholar] [CrossRef] [PubMed]
- Rohilla, S.; Bansal, R.; Kachler, S.; Klotz, K.N. Synthesis, biological evaluation and molecular modelling studies of 1,3,7,8-tetrasubstituted xanthines as potent and selective a2a ar ligands with in vivo efficacy against animal model of Parkinson’s disease. Bioorg. Chem. 2019, 87, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Lauer, A.A.; Janitschke, D.; Hartmann, T.; Grimm, H.S.; Grimm, M.O.W. The effects of vitamin d deficiency on neurodegenerative diseases, vitamin d deficiency. In Vitamin D Deficiency; IntechOpen: London, UK, 2019. [Google Scholar]
- Lu, H.; Wu, P.F.; Zhang, W.; Xia, K. Coffee consumption is not associated with risk of multiple sclerosis: A mendelian randomization study. Mult. Scler. Relat. Disord. 2020, 44, 102300. [Google Scholar] [CrossRef]
- Chen, G.Q.; Chen, Y.Y.; Wang, X.S.; Wu, S.Z.; Yang, H.M.; Xu, H.Q.; He, J.C.; Wang, X.T.; Chen, J.F.; Zheng, R.Y. Chronic caffeine treatment attenuates experimental autoimmune encephalomyelitis induced by guinea pig spinal cord homogenates in wistar rats. Brain Res. 2010, 1309, 116–125. [Google Scholar] [CrossRef]
- Duman, M.; Vaquie, A.; Nocera, G.; Heller, M.; Stumpe, M.; Siva Sankar, D.; Dengjel, J.; Meijer, D.; Yamaguchi, T.; Matthias, P.; et al. Eef1a1 deacetylation enables transcriptional activation of remyelination. Nat. Commun. 2020, 11, 3420. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Perera, L.M.; Greiner, J.F.W.; Kaltschmidt, C.; Kaltschmidt, B. A matter of choice: Inhibition of c-rel shifts neuronal to oligodendroglial fate in human stem cells. Cells 2020, 9, 1037. [Google Scholar] [CrossRef]
Author | Year | Type of Study/n | Substance | Outcome |
---|---|---|---|---|
Kim et al. [7] | 2019 | clinical trial/ 411 healthy participants (142 coffee drinkers and 269 reference participants) | coffee | association of coffee intake with reduced amyloid deposition |
Larsson and Orsini [10] | 2018 | dose-response meta-analysis/ eight observational prospective studies | coffee | no evidence for a relationship between coffee-consumption and risk of dementia or AD |
Iranpour et al. [14] | 2019 | clinical trial/ 1440 participants | caffeine | weak positive relation of high caffeine intake with cognitive function |
Dong et al. [17] | 2020 | clinical trial/ 2500 participants | caffeine | significant associations with cognitive performance for coffee, caffeinated coffee and caffeine from coffee, but not for decaffeinated coffee |
Leeuw et al. [20] | 2020 | longitudinal study/ 299 participants | theobromine | high levels of theobromine detected in CSF are associated with clinical progression to dementia |
Sanders et al. [6] | 2020 | systematic review of clinical trials, epidemiology and meta-analyses | propentofylline | propentofylline as phosphodiesterase inhibitor showing improvement of cognition and dementia severity in mild-to-moderate AD |
Moua et al. [24] | 2020 | systematic review and meta-analysis/11 studies and 61,047 participants | coffee | significant association between coffee and CRP levels when analyzing the three studies with the largest sample size but no significant association when combining all studies |
Rodas et al. [25] | 2020 | clinical trial/244 participants | caffeine | regular caffeine consumption induced very limited anti-inflammatory effects |
Author | Year | Used Model | Substance | Outcome |
---|---|---|---|---|
Liang Jin et al. [27] | 2020 | APP/PS1 mice | caffeine | intestinal permeability and oral absorption were not affected in the FAD mouse model |
Zappettini et al. [28] | 2019 | THY-Tau22 mice | caffeine | consumption during pregnancy accelerates the development of cognitive deficits in offspring in a model of tauopathy |
Yoneda et al. [30] | 2017 | C57BL/6NCr mice | theobromine | up-regulated cerebral brain-derived neurotrophic factor and facilitated motor learning |
Orr et al. [31] | 2018 | mice with AD-like amyloid plaque pathology | istradefylline | reduced memory deficits |
Franco et al. [32] | 2020 | primary cultures of neurons and microglia from control and APPSw,Ind mice | antagonists of A2AR | high levels of theobromine detected in CSF are associated with clinical progression to dementia |
Gastaldo et al. [33] | 2020 | synthetic brain membranes | caffeine | caffeine is able to affect Aβ peptide aggregation in AD through a membrane-mediated pathway |
Gupta et al. [35] | 2019 | in silico study | caffeine | disorganization of cross-β structures of Aβ17-42 fibrils in the presence of caffeine |
Janitschke et al. [21] | 2019 | SH-SY5Y cells | caffeine, theobromine, theophylline, pentoxifylline, propentofylline | MTX reduce Aβ levels via pleiotropic molecular mechanisms and decrease oxidative stress, cholesterol levels and Aβ aggregation |
Fabiani et al. [36] | 2018 | AchR-rich membrane fragments from T. californica and HEK293 cells | caffeine | pharmacological activity of caffeine in the cholinergic system |
Kumar et al. [37] | 2019 | primary hippocampal neurons | caffeine | AchE inhibitory potential, improved neuronal survival and protection from neurodegeneration |
Badshah et al. [41] | 2019 | LPS-injected mouse model | caffeine | prevention of LPS-induced oxidative stress and suppression of inflammatory mediators |
Khan et al. [42] | 2019 | HT-22 and BV-2 cells, B57BL/6N mice | caffeine | modulation of cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating nrf-2/ho-1 in vivo and in vitro |
Zhao et al. [45] | 2020 | HEK293 cells | caffeine | inhibition of notum activity by binding at the catalytic pocket |
Nabbi-Schroeter et al. [48] | 2018 | Sprague-Dawley rats | caffeine | no long-persistent upregulation of functionally available A1Ars under their conditions |
Mendiola-Precoma et al. [49] | 2017 | rat brain AD model | theobromine | theobromine-induced changes in A1AR expression and distribution |
Ciaramelli et al. [51] | 2021 | SH-SY5Y cells | theobromine | theobromine hinders Aβ peptide aggregation and toxicity |
Janitschke et al. [52] | 2020 | SH-SY5Y cells | caffeine, theobromine, theophylline, pentoxifylline, propentofylline | different or inverse transcriptional regulatory effects of caffeine compared to the other tested MTX on AD-related genes |
Author | Year | Type of Study/n | Substance | Outcome |
---|---|---|---|---|
Bakshi et al. [59] | 2020 | cross sectional, case-control/197 healthy control vs. 369 idiopathic PD patients | caffeine, urate | the authors found a robust inverse association between idiopathic PD and caffeine intake and urate plasma levels |
Fujimaki et al. [60] | 2018 | clinical trial/31 healthy control vs. 108 PD patients without dementia1 | caffeine, theophylline, theobromine, paraxanthine and other downstream metabolites | absolute lower levels of caffeine and metabolites were found to be a promising biomarker for early PD |
Crotty et al. [62] | 2020 | clinical trial/samples from “23andMe” study, LRRK2 longitudinal study and LRRK2 cross-sectional study (n = 380) | caffeine, theophylline, paraxanthine and other downstream metabolites, trigonelline (non-xanthine constituent of coffee) | significantly lower plasma and CSF levels of caffeine and downstream metabolites in PD patients, even more in LRRK2 mutation carriers |
Ohmichi et al. [63] | 2018 | clinical trial/31 PD patients vs. 33 age-matched controls | theophylline | theophylline serum levels were significantly lower in PD patients compared to control |
Hong et al. [64] | 2020 | meta-analysis/13 studies (9 healthy cohort, 4 PD cohort) | caffeine | caffeine consumption resulted in a significantly lower rate of PD |
Maclagan et al. [65] | 2020 | computational & pharmacoepidemiologic study ranking 620 drugs, case-control study/14,866 PD and 74,330 controls | pentoxifylline, theophylline, dexamethasone | the authors state, that corticosteroids and the found methylxanthines should be investigated as disease-modifying drugs |
Sako et al. [67] | 2017 | meta-analysis/six studies | istradefylline | 20 and 40 mg/day of istradefylline revealed significantly decreased durations of “off episodes” in PD patients |
Author | Year | Used Model | Substance | Outcome |
---|---|---|---|---|
Luan et al. [69] | 2018 | Injected α-synuclein fibrils intra-striatal in mice | caffeine | reduced inclusion of α-synuclein, apoptosis, microglial activation and astrogliosis after caffeine treatment |
Khadrawy et al. [70] | 2017 | rotenenoe induced PD mice model | caffeine | recovering dopamine levels in midbrain and striatum ameliorating motor symptoms, antioxidative and anti-inflammatory effect of caffeine, prevention of neurodegeneration through less lewy bodies |
Pardo et al. [71] | 2020 | pimozide induced PD mice model | theophylline | reversed locomotion, catalepsy and tremulous jaw movement |
Rohilla et al. [72] | 2019 | perphenazine induced catatonia in rats | newly synthesized xanthine derivatives | most xanthines significantly lowered catatonia score, most potent MTX shows a similar response as L-DOPA |
Author | Year | Type of Study/n | Substance | Outcome |
---|---|---|---|---|
Lu et al. [75] | 2020 | mendelian randomization study/14,802 MS subjects vs. 26,703 healthy controls | coffee | The authors state that coffee consumption and the risk of MS might not be causally associated |
Author | Year | Used Model | Substance | Outcome |
---|---|---|---|---|
Duman et al. [77] | 2020 | lysolecithin induced demyelination lesion in the spinal cord of mice | theophylline | increased remyelination efficiency within lesion side via through increase of HADC2, SOX10 and MBP protein levels |
Ruiz-Perera et al. [78] | 2020 | human neuronal stem cells | pentoxifylline | through inhibition of the c-REL pathway pentoxifylline shifted stem cell differentiation to oligodendrioglial cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janitschke, D.; Lauer, A.A.; Bachmann, C.M.; Grimm, H.S.; Hartmann, T.; Grimm, M.O.W. Methylxanthines and Neurodegenerative Diseases: An Update. Nutrients 2021, 13, 803. https://doi.org/10.3390/nu13030803
Janitschke D, Lauer AA, Bachmann CM, Grimm HS, Hartmann T, Grimm MOW. Methylxanthines and Neurodegenerative Diseases: An Update. Nutrients. 2021; 13(3):803. https://doi.org/10.3390/nu13030803
Chicago/Turabian StyleJanitschke, Daniel, Anna A. Lauer, Cornel M. Bachmann, Heike S. Grimm, Tobias Hartmann, and Marcus O. W. Grimm. 2021. "Methylxanthines and Neurodegenerative Diseases: An Update" Nutrients 13, no. 3: 803. https://doi.org/10.3390/nu13030803
APA StyleJanitschke, D., Lauer, A. A., Bachmann, C. M., Grimm, H. S., Hartmann, T., & Grimm, M. O. W. (2021). Methylxanthines and Neurodegenerative Diseases: An Update. Nutrients, 13(3), 803. https://doi.org/10.3390/nu13030803