Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Intervention
2.2. Data Collection and Bone Measures
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Changes in Weight
3.2. Changes in Bone Turnover Markers
3.3. Changes in Bone Mineral Content and Bone Mineral Density
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018; NCHS Data Brief, no 360; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Nielson, C.M.; Marshall, L.M.; Adams, A.L.; LeBlanc, E.S.; Cawthon, P.M.; Ensrud, K.; Stefanick, M.L.; Barrett-Connor, E.; Orwoll, E.S. BMI and fracture risk in older men: The osteoporotic fractures in men study (MrOS). J. Bone Miner. Res. 2011, 26, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Premaor, M.O.; Pilbrow, L.; Tonkin, C.; Parker, R.A.; Compston, J. Obesity and fractures in postmenopausal women. J. Bone Miner. Res. 2010, 25, 292–297. [Google Scholar] [CrossRef]
- Nielson, C.M.; Srikanth, P.; Orwoll, E.S. Obesity and fracture in men and women: An epidemiologic perspective. J. Bone Miner. Res. 2012, 27, 1–10. [Google Scholar] [CrossRef]
- Lloyd, J.T.; Alley, D.E.; Hawkes, W.G.; Hochberg, M.C.; Waldstein, S.R.; Orwig, D.L. Body mass index is positively associated with bone mineral density in US older adults. Arch. Osteoporos. 2014, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Rexhepi, S.; Bahtiri, E.; Rexhepi, M.; Sahatciu-Meka, V.; Rexhepi, B. Association of Body Weight and Body Mass Index with Bone Mineral Density in Women and Men from Kosovo. Mater. Sociomed. 2015, 27, 259–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maïmoun, L.; Mura, T.; Leprieur, E.; Avignon, A.; Mariano-Goulart, D.; Sultan, A. Impact of obesity on bone mass throughout adult life: Influence of gender and severity of obesity. Bone 2016, 90, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-J.; Liu, Y.-J.; Liu, P.-Y.; Hamilton, J.; Recker, R.R.; Deng, H.-W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukumar, D.; Schlussel, Y.; Riedt, C.S.; Gordon, C.; Stahl, T.; Shapses, S.A. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos. Int. 2011, 22, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, S.; Frederiksen, K.D.; Hansen, S.; Brixen, K.; Gram, J.; Støving, R.K. Bone Structure and Estimated Bone Strength in Obese Patients Evaluated by High-Resolution Peripheral Quantitative Computed Tomography. Calcif. Tissue Int. 2014, 95, 19–28. [Google Scholar] [CrossRef]
- Beck, T.J.; Petit, M.A.; Wu, G.; LeBoff, M.S.; Cauley, J.A.; Chen, Z. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2009, 24, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.H.; Yockey, S.R. Weight Loss and Improvement in Comorbidity: Differences at 5%, 10%, 15%, and Over. Curr. Obes. Rep. 2017, 6, 187–194. [Google Scholar] [CrossRef]
- Chao, D.; Espeland, M.A.; Farmer, D.; Register, T.C.; Lenchik, L.; Applegate, W.B.; Ettinger, W.H., Jr. Effect of voluntary weight loss on bone mineral density in older overweight women. J. Am. Geriatr. Soc. 2000, 48, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Shapses, S.A.; Riedt, C.S. Bone, body weight, and weight reduction: What are the concerns? J. Nutr 2006, 136, 1453–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusi-Rasi, K.; Rauhio, A.; Kannus, P.; Pasanen, M.; Kukkonen-Harjula, K.; Fogelholm, M.; Sievänen, H. Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone 2010, 46, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Fontana, L.; Weiss, E.P.; Racette, S.B.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 2502–2510. [Google Scholar] [CrossRef]
- Hunter, G.R.; Plaisance, E.P.; Fisher, G. Weight loss and bone mineral density. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Beavers, K.M.; Beavers, D.P.; Martin, S.B.; Marsh, A.P.; Lyles, M.F.; Lenchik, L.; Shapses, S.A.; Nicklas, B.J. Change in Bone Mineral Density During Weight Loss with Resistance Versus Aerobic Exercise Training in Older Adults. J. Gerontol. Ser. A 2017, 72, 1582–1585. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Shah, K.; Banks, M.R.; Sinacore, D.R.; Klein, S. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: A one-year randomized controlled trial. J. Clin. Endocrinol. Metab. 2008, 93, 2181–2187. [Google Scholar] [CrossRef]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Weight-Loss Clinical Trials with a Minimum 1-Year Follow-Up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, J.d.N.; Macedo, R.C.O.; Tinsley, G.M.; Reischak-Oliveira, A. Time-restricted eating and circadian rhythms: The biological clock is ticking. Crit. Rev. Food Sci. Nutr. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef]
- Cienfuegos, S.; Gabel, K.; Kalam, F.; Ezpeleta, M.; Wiseman, E.; Pavlou, V.; Lin, S.; Oliveira, M.L.; Varady, K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020, 32, 366–378.e3. [Google Scholar] [CrossRef]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef]
- Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab. 2020, 31, 92–104.e5. [Google Scholar] [CrossRef]
- Chow, L.S.; Manoogian, E.N.C.; Alvear, A.; Fleischer, J.G.; Thor, H.; Dietsche, K.; Wang, Q.; Hodges, J.S.; Esch, N.; Malaeb, S.; et al. Time-Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity 2020, 28, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-Restricted Feeding Improves Glucose Tolerance in Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity 2019, 27, 724–732. [Google Scholar] [CrossRef]
- Martens, C.R.; Rossman, M.J.; Mazzo, M.R.; Jankowski, L.R.; Nagy, E.E.; Denman, B.A.; Richey, J.J.; Johnson, S.A.; Ziemba, B.P.; Wang, Y.; et al. Short-term time-restricted feeding is safe and feasible in non-obese healthy midlife and older adults. GeroScience 2020, 42, 667–686. [Google Scholar] [CrossRef]
- Lowe, D.A.; Wu, N.; Rohdin-Bibby, L.; Moore, A.H.; Kelly, N.; Liu, Y.E.; Philip, E.; Vittinghoff, E.; Heymsfield, S.B.; Olgin, J.E.; et al. Effects of Time-Restricted Eating on Weight Loss and Other Metabolic Parameters in Women and Men With Overweight and Obesity: The TREAT Randomized Clinical Trial. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef]
- Shapses, S.A.; Sukumar, D. Bone metabolism in obesity and weight loss. Annu. Rev. Nutr. 2012, 32, 287–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodpaster, B.H.; DeLany, J.P.; Otto, A.D.; Kuller, L.; Vockley, J.; South-Paul, J.E.; Thomas, S.B.; Brown, J.; McTigue, K.; Hames, K.C.; et al. Effects of Diet and Physical Activity Interventions on Weight Loss and Cardiometabolic Risk Factors in Severely Obese Adults: A Randomized Trial. JAMA 2010, 304, 1795–1802. [Google Scholar] [CrossRef] [Green Version]
- Von Thun, N.L.; Sukumar, D.; Heymsfield, S.B.; Shapses, S.A. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women. Menopause 2014, 21, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Zibellini, J.; Seimon, R.V.; Lee, C.M.; Gibson, A.A.; Hsu, M.S.; Shapses, S.A.; Nguyen, T.V.; Sainsbury, A. Does Diet-Induced Weight Loss Lead to Bone Loss in Overweight or Obese Adults? A Systematic Review and Meta-Analysis of Clinical Trials. J. Bone Miner. Res. 2015, 30, 2168–2178. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.W.; Wewalka, M.; Ding, S.A.; Simonson, D.C.; Foster, K.; Holst, J.J.; Vernon, A.; Goldfine, A.B.; Halperin, F. Effects of Gastric Bypass and Gastric Banding on Bone Remodeling in Obese Patients With Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 714–722. [Google Scholar] [CrossRef]
- Lindeman, K.G.; Rushin, C.C.; Cheney, M.C.; Bouxsein, M.L.; Hutter, M.M.; Yu, E.W. Bone Density and Trabecular Morphology at Least 10 Years After Gastric Bypass and Gastric Banding. J. Bone Miner. Res. 2020, 35, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; Palermo, L.; Browner, W.; Marcus, R.; Wallace, R.; Pearson, J.; Blackwell, T.; Eckert, S.; Black, D. Monitoring osteoporosis therapy with bone densitometry: Misleading changes and regression to the mean. Fracture Intervention Trial Research Group. JAMA 2000, 283, 1318–1321. [Google Scholar] [CrossRef] [Green Version]
- US Preventive Services Task Force. Screening for Osteoporosis: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2011, 154, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Clayton, D.J.; James, L.J.; Sale, C.; Templeman, I.; Betts, J.A.; Varley, I. Severely restricting energy intake for 24 h does not affect markers of bone metabolism at rest or in response to re-feeding. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef] [Green Version]
- Barnosky, A.; Kroeger, C.M.; Trepanowski, J.F.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Shapses, S.A.; Varady, K.A. Effect of alternate day fasting on markers of bone metabolism: An exploratory analysis of a 6-month randomized controlled trial. Nutr. Healthy Aging 2017, 4, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahijri, S.M.; Ajabnoor, G.M.; Borai, A.; Al-Aama, J.Y.; Chrousos, G.P. Effect of Ramadan fasting in Saudi Arabia on serum bone profile and immunoglobulins. Ther. Adv. Endocrinol. Metab. 2015, 6, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Nilas, L.; Christiansen, C. Bone mass and its relationship to age and the menopause. J. Clin. Endocrinol. Metab. 1987, 65, 697–702. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Burnett-Bowie, S.-A.M.; Crandall, C.J. Bone Health During the Menopause Transition and Beyond. Obstet. Gynecol. Clin. N. Am. 2018, 45, 695–708. [Google Scholar] [CrossRef]
- Shapses, S.A.; Von Thun, N.L.; Heymsfield, S.B.; Ricci, T.A.; Ospina, M.; Pierson Jr, R.N.; Stahl, T. Bone Turnover and Density in Obese Premenopausal Women During Moderate Weight Loss and Calcium Supplementation. J. Bone Miner. Res. 2001, 16, 1329–1336. [Google Scholar] [CrossRef]
- Riedt, C.S.; Schlussel, Y.; von Thun, N.; Ambia-Sobhan, H.; Stahl, T.; Field, M.P.; Sherrell, R.M.; Shapses, S.A. Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake. Am. J. Clin. Nutr. 2007, 85, 972–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avenell, A.; Richmond, P.R.; Lean, M.E.; Reid, D.M. Bone loss associated with a high fibre weight reduction diet in postmenopausal women. Eur. J. Clin. Nutr. 1994, 48, 561–566. [Google Scholar]
- Riedt, C.S.; Cifuentes, M.; Stahl, T.; Chowdhury, H.A.; Schlussel, Y.; Shapses, S.A. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J. Bone Miner. Res. 2005, 20, 455–463. [Google Scholar] [CrossRef]
- Villalon, K.L.; Gozansky, W.S.; van Pelt, R.E.; Wolfe, P.; Jankowski, C.M.; Schwartz, R.S.; Kohrt, W.M. A Losing Battle: Weight Regain Does Not Restore Weight Loss-Induced Bone Loss in Postmenopausal Women. Obesity 2011, 19, 2345–2350. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.R. The effects of exercise on bone. Basic concepts and implications for the prevention of fractures. Clin. Cases Miner. Bone Metab. 2009, 6, 223–228. [Google Scholar] [PubMed]
- Shah, K.; Armamento-Villareal, R.; Parimi, N.; Chode, S.; Sinacore, D.R.; Hilton, T.N.; Napoli, N.; Qualls, C.; Villareal, D.T. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 2011, 26, 2851–2859. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.S.; Nicklas, B.J.; Dennis, K.E. Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J. Appl. Physiol. 1998, 84, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 2008, 19, 385–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria: | Exclusion Criteria: |
---|---|
|
|
Characteristic | All (n = 20) | TRE (n = 11) | Non-TRE (n = 9) |
---|---|---|---|
Age, y | 45.5 ± 2.7 | 46.5 ± 3.7 | 44.2 ± 4.1 |
BMI, kg/m2 | 34.1 ± 1.7 | 33.8 ± 2.3 | 34.4 ± 2.6 |
Sex, n | |||
Women | 17 | 9 | 8 |
Men | 3 | 2 | 1 |
Daily eating window, h | 15.4 ± 0.2 | 15.2 ± 0.2 | 15.6 ± 0.4 |
TRE (n = 11) | Non-TRE (n = 9) | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
Bone Outcome | Pre- Intervention | Post- Intervention | Change | Pre- Intervention | Post- Intervention | Change | Treatment | Time | Treatment × Time |
Total body BMC, g | 2852 ± 173 | 2866 ± 162 | 13.5 ± 8.6 | 2801 ± 159 | 2784 ± 159 | −17.8 ± 7.9 | 0.80 | 0.83 | 0.02 |
Total body BMD, g/cm2 | 1.33 ± 0.04 | 1.33 ± 0.04 | 0.002 ± 0.01 | 1.25 ± 0.03 | 1.25 ± 0.03 | 0.001 ± 0.05 | 0.13 | 0.82 | 0.94 |
T-score, SD | 2.2 ± 0.3 | 2.2 ± 0.3 | 0.02 ± 0.04 | 1.5 ± 0.3 | 1.5 ± 0.3 | 0.01 ± 0.04 | 0.08 | 0.56 | 0.73 |
Z-score, SD | 1.6 ± 0.3 | 1.8 ± 0.4 | 0.14 ± 0.1 | 0.6 ± 0.3 | 0.7 ± 0.3 | 0.06 ± 0.06 | 0.61 | 0.10 | 0.95 |
P1NP, ng/mL 1 | 18.7 ± 1.3 | 18.5 ± 1.5 | −0.22 ± 0.9 | 28.8 ± 8.8 | 24.7 ± 8.2 | −4.07 ± 1.4 | 0.57 | 0.04 | 0.07 |
NTX, pg/mL 1 | 1074 ± 112 | 1102 ± 104 | 28.3 ± 68 | 1780 ± 513 | 1722 ± 327 | −57.9 ± 237 | 0.13 | 0.30 | 0.83 |
PTH, pg/mL 1 | 45.0 ± 6.9 | 52.3 ± 5.6 | 7.3 ± 3.3 | 62.8 ± 8.2 | 75.2 ± 10.1 | 12.3 ± 13.5 | 0.09 | 0.10 | 0.64 |
Overall (n = 20) | ||||||
---|---|---|---|---|---|---|
Δ Weight | Δ BMI | Δ Eating window | ||||
r (95% CI) | p-value | r (95% CI) | p-value | r (95% CI) | p-value | |
Δ Total body BMC | 0.02 (−0.43, 0.46) | 0.94 | −0.06 (−0.49, 0.82) | 0.82 | −0.40 (−0.71, 0.06) | 0.08 |
Δ Total body BMD | 0.17 (−0.30, 0.57) | 0.48 | 0.08 (−0.38, 0.50) | 0.74 | −0.10 (−0.52, 0.36) | 0.68 |
Δ P1NP | −0.49 (−0.77, −0.02) | 0.04 | −0.52 (−0.79, −0.05) | 0.03 | −0.29 (−0.66, 0.22) | 0.26 |
Δ NTX | 0.16 (−0.33, 0.58) | 0.53 | −0.03 (−0.49, 0.44) | 0.90 | −0.10 (−0.545, 0.39) | 0.70 |
Δ PTH | 0.004 (−0.46, 0.47) | 0.99 | −0.15 (−0.57, 0.35) | 0.57 | 0.13 (−0.36, 0.56) | 0.60 |
TRE (n = 11) | ||||||
Δ Weight | Δ BMI | Δ Eating window | ||||
r (95% CI) | p-value | r (95% CI) | p-value | r (95% CI) | p-value | |
Δ Total body BMC | 0.38 (−0.30, 0.79) | 0.25 | 0.31 (−0.37, 0.76) | 0.36 | 0.07 (−0.55, 0.64) | 0.83 |
Δ Total body BMD | 0.20 (−0.46, 0.71) | 0.57 | 0.10 (−0.54, 0.66) | 0.78 | −0.14 (−0.68, 0.51) | 0.69 |
Δ P1NP | −0.51 (−0.87, 0.26) | 0.17 | −0.31 (−0.80, 0.47) | 0.44 | 0.04 (−0.64, 0.69) | 0.92 |
Δ NTX | 0.11 (−0.60, 0.72) | 0.79 | 0.30 (−0.47, 0.80) | 0.45 | −0.26 (−0.78, 0.50) | 0.52 |
Δ PTH | 0.33 (−0.44, 0.81) | 0.40 | 0.37 (−0.41, 0.82) | 0.34 | 0.11 (−0.60, 0.72) | 0.79 |
Non-TRE (n = 9) | ||||||
Δ Weight | Δ BMI | Δ Eating window | ||||
r (95% CI) | p-value | r (95% CI) | p-value | r (95% CI) | p-value | |
Δ Total body BMC | 0.31 (−0.46, 0.80) | 0.43 | 0.34 (−0.44, 0.81) | 0.39 | 0.10 (−0.61, 0.71) | 0.80 |
Δ Total body BMD | 0.31 (−0.46, 0.80) | 0.43 | 0.19 (−0.55, 0.75) | 0.63 | −0.14 (−0.73, 0.58) | 0.73 |
Δ P1NP | −0.26 (−0.78, 0.50) | 0.52 | −0.39 (−0.83, 0.37) | 0.32 | 0.71 (0.04, 0.93) | 0.03 |
Δ NTX | 0.28 (−0.48, 0.79) | 0.48 | −0.06 (−0.70, 0.63) | 0.88 | 0.03 (−0.65, 0.68) | 0.93 |
Δ PTH | −0.13 (−0.73, 0.59) | 0.76 | −0.41 (−0.83, 0.37) | 0.28 | 0.20 (−0.54, 0.76) | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobene, A.J.; Panda, S.; Mashek, D.G.; Manoogian, E.N.C.; Hill Gallant, K.M.; Chow, L.S. Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults. Nutrients 2021, 13, 1155. https://doi.org/10.3390/nu13041155
Lobene AJ, Panda S, Mashek DG, Manoogian ENC, Hill Gallant KM, Chow LS. Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults. Nutrients. 2021; 13(4):1155. https://doi.org/10.3390/nu13041155
Chicago/Turabian StyleLobene, Andrea J., Satchidananda Panda, Douglas G. Mashek, Emily N. C. Manoogian, Kathleen M. Hill Gallant, and Lisa S. Chow. 2021. "Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults" Nutrients 13, no. 4: 1155. https://doi.org/10.3390/nu13041155
APA StyleLobene, A. J., Panda, S., Mashek, D. G., Manoogian, E. N. C., Hill Gallant, K. M., & Chow, L. S. (2021). Time-Restricted Eating for 12 Weeks Does Not Adversely Alter Bone Turnover in Overweight Adults. Nutrients, 13(4), 1155. https://doi.org/10.3390/nu13041155