Histamine Intolerance Originates in the Gut
Abstract
:1. Introduction
2. Histamine
3. Histamine Intolerance (HIT)
4. Histamine Intolerance (HIT) Associated with Gastrointestinal (GI) Disorders
4.1. Irritable Bowel Syndrome (IBS)-Like Disorders
4.2. Non-Celiac Gluten Sensitivity (NCGS)
4.3. Food Intolerance/Malabsorption
4.4. Medications
4.5. Disorders Associated with Mast Cells
4.6. Helicobacter Pylori (H.p.) Infection
5. Histamine Intolerance (HIT) Associated with Other Disorders
5.1. Headache
5.2. Urticaria
5.3. Further Diseases and Disorders
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CD | Celiac Disease |
DAO | Diamine oxidase |
EGE | Eosinophilic gastroenteritis |
FD | Functional dyspepsia |
GI | Gastrointestinal |
H.p. | Helicobacter pylori |
HIT | Histamine intolerance |
IBS | Irritable bowel syndrome |
LIT | Lactose intolerance |
MCAS | Mast cell activation syndrome; Mrgprs, Mas-related G protein-coupled receptor family |
NCGS | Non-celiac gluten sensitivity |
SIBO | Small intestinal bacterial overgrowth |
References
- Schnedl, W.J.; Lackner, S.; Enko, D.; Schenk, M.; Holasek, S.J.; Mangge, H. Evaluation of symptoms and symptom combinations in histamine intolerance. Intest. Res. 2019, 17, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comas-Basté, O.; Sánchez-Pérez, S.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.; Vidal-Carou, M.D.C. Histamine intolerance: The current state of the art. Biomolecules 2020, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Reese, I.; Ballmer-Weber, B.; Beyer, K.; Fuchs, T.; Kleine-Tebbe, J.; Klimek, L.; Lepp, U.; Niggemann, B.; Saloga, J.; Schäfer, C.; et al. German guideline for the management of adverse reactions to ingested histamine: Guideline of the German society for allergology and clinical immunology (dgaki), the German society for pediatric allergology and environmental medicine (gpa), the German association of allergologists (aeda), and the swiss society for allergology and immunology (sgai) Allergo. J. Int. 2017, 26, 72–79. [Google Scholar]
- Schnedl, W.J.; Enko, D. Considering histamine in functional gastrointestinal disorders. Crit. Rev. Food. Sci. Nutr. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Enko, D.; Meinitzer, A.; Mangge, H.; Kriegshäuser, G.; Halwachs-Baumann, G.; Reininghaus, E.Z.; Bengesser, S.A.; Schnedl, W.J. Concomitant prevalence of low serum diamine oxidase activity and carbohydrate malabsorption. Can. J. Gastroenterol. Hepatol. 2016, 2016, 4893501. [Google Scholar] [CrossRef] [Green Version]
- San Mauro Martin, I.; Brachero, S.; Garicano Vilar, E. Histamine intolerance and dietary management: A complete review. Allergol. Immunopathol. 2016, 44, 475–483. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food. Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Chazot, P.L. Histamine pharmacology: Four years on. Brit. J. Pharmacol. 2013, 170, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Visciano, P.; Schirone, M.; Tofalo, R.; Suzzi, G. Histamine poisoning and control measures in fish and fishery products. Front. Microbiol. 2014, 5, 500. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.Y.; Park, S.Y.; Byun, Y.S.; Son, J.H.; Choi, Y.W.; Cho, Y.S.; Kim, H.O.; Park, C.W. Effect of different cooking methods on histamine levels in selected foods. Ann. Dermatol. 2017, 29, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Togias, A.; Cooper, S.F.; Acebal, M.L.; Assa’ad, A.; Baker, J.R., Jr.; Beck, L.A.; Block, J.; Byrd-Bredbenner, C.; Chan, E.S.; Eichenfield, L.F.; et al. Addendum guidelines for the prevention of peanut allergy in the United States: Report of the National Institute of Allergy and Infectious Disease sponsored expert panel. Ann. Allergy. Asthma Immunol. 2017, 118, 166–173e7. [Google Scholar] [CrossRef] [Green Version]
- Schwelberger, H.G. Histamine intolerance: A metabolic disease? Inflamm. Res. 2010, 59, S219–S221. [Google Scholar] [CrossRef] [PubMed]
- Kucher, A.N.; Cherevko, N.A. Genes of the histamine pathway and common diseases. Russ. J. Genet. 2018, 54, 12–26. [Google Scholar] [CrossRef]
- Elmore, B.O.; Bollinger, J.A.; Dooley, D.M. Human kidney diamine oxidase: Heterologous expression, purification, and characterization. J. Biol. Inorg. Chem. 2002, 7, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Gludovacz, E.; Maresch, D.; De Carvalho, L.L.; Puxbaum, V.; Baier, L.J.; Sützl, L.; Guédez, G.; Grünwald-Gruber, C.; Ulm, B.; Pils, S.; et al. Oligomannosidic glycans at asn-110 are essential for secretion of human diamine oxidase. J. Biol. Chem. 2018, 293, 1070–1087. [Google Scholar] [CrossRef] [Green Version]
- Elsenhans, B.; Hunder, G.; Strugala, G.; Schümann, K. Longitudinal pattern of enzymatic and absorptive functions in the small intestine of rats after short-term exposure to dietary cadmium chloride. Arch. Environ. Contam. Toxicol. 1999, 36, 341–346. [Google Scholar] [CrossRef]
- Ji, Y.; Sakata, Y.; Li, X.; Zhang, C.; Yang, Q.; Xu, M.; Wollin, A.; Langhans, W.; Tso, P. Lymphatic diamine oxidase secretion stimulated by fat absorption is linked with histamine release. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G732–G740. [Google Scholar] [CrossRef] [Green Version]
- Wollin, A.; Wang, X.; Tso, P. Nutrients regulate diamine oxidase release from intestinal mucosa. Am. J. Physiol. 1988, 275, R969–R975. [Google Scholar] [CrossRef] [PubMed]
- Kovacova-Hanuskova, E.; Buday, T.; Gavliakova, S.; Plevkova, J. Histamine, histamine intoxication and intolerance. Allergol. Immunopathol. 2015, 43, 498–506. [Google Scholar] [CrossRef]
- Smolinska, S.; Jutel, M.; Crameri, R.; O’Mahony, L. Histamine and gut mucosal immune regulation. Allergy 2014, 69, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Pugin, B.; Barcik, W.; Westermann, P.; Heider, A.; Wawrzyniak, M.; Hellings, P.; Akdis, C.A.; O’Mahony, L. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb. Ecol. Healht Dis. 2017, 28, 1353881. [Google Scholar] [CrossRef]
- Mayo-Yáñez, M.; Díaz-Díaz, A.; Calvo-Henríquez, C.; Chiesa-Estomba, C.; Figueroa, A.; Martín-Martín, C.S. Usefulness of the histamine intolerance assessment questionnaire for diagnosis. Rev. Fr. Allergol. 2021, 61, 87–91. [Google Scholar] [CrossRef]
- Maintz, L.; Novak, N. Histamine and histamine intolerance. Am. J. Clin. Nutr. 2007, 85, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, P.; García-Martín, E.; Martínez, C.; Agúndez, J.A.G. Genetic variability of human diamine oxidase: Occurrence of three nonsynonymous polymorphisms and study of their effect on serum enzyme activity. Pharmacogenet. Genom. 2007, 17, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Kucher, A.N. Association of polymorphic variants of key histamine metabolism genes and histamine receptor genes with multifactorial diseases. Russ. J. Genet. 2019, 55, 794–814. [Google Scholar] [CrossRef]
- Gagic, M.; Jamróz, E.; Krizkova, S.; Milosavljevic, V.; Kopel, P.; Adam, V. Current trends in detection of histamine in food and beverages. J. Agric. Food Chem. 2019, 67, 773–783. [Google Scholar] [CrossRef]
- Mušič, E.; Korošec, P.; Šilar, M.; Adamič, K.; Košnik, M.; Rijavec, M. Serum diamine oxidase activity as a diagnostic test for histamine intolerance. Wien. Klin. Wochenschr. 2013, 125, 239–243. [Google Scholar] [CrossRef]
- Lackner, S.; Malcher, V.; Enko, D.; Mangge, H.; Holasek, S.J.; Schnedl, W.J. Histamine-reduced diet and increase of serum diamine oxidase correlating to diet compliance in histamine intolerance. Eur. J. Clin. Nutr. 2019, 73, 102–104. [Google Scholar] [CrossRef]
- Manzotti, G.; Breda, D.; Di Gioacchino, M.; Burastero, S.E. Serum diamine oxidase activity in patients with histamine intolerance. Int. J. Immunopath. Pharmacol. 2016, 29, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Schnedl, W.J.; Schenk, M.; Lackner, S.; Enko, D.; Mangge, H.; Forster, F. Diamine oxidase supplementation improves symptoms in patients with histamine intolerance. Food Sci. Biotechnol. 2019, 28, 1779–1784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacik, J.; Wróblewska, B.; Lewicki, S.; Zdanowski, R.; Kalicki, B. Serum diamine oxidase in pseudoallergy in the pediatric population. Adv. Exp. Med. Biol. 2018, 1039, 35–44. [Google Scholar] [PubMed]
- Neree, A.T.; Soret, R.; Marcocci, L.; Pietrangeli, P.; Pilon, N.; Mateescu, M.A. Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles. Sci. Rep. 2020, 10, 21563. [Google Scholar] [CrossRef] [PubMed]
- Jumarie, C.; Séïde, M.; Marcocci, L.; Pietrangeli, P.; Mateescu, M.A. Diamine oxidase from white pea (Lathyrus sativus) combined with catalase protects the human intestinal Caco-2 cell line from histamine damage. Appl. Biochem. Biotechnol. 2017, 182, 1171–1181. [Google Scholar] [CrossRef]
- Boehm, T.; Pils, S.; Gludovacz, E.; Szoelloesi, H.; Petroczi, K.; Majdic, O.; Quaroni, A.; Borth, N.; Valent, P.; Jilma, B. Quantification of human diamine oxidase. Clin. Biochem. 2016, 50, 444–451. [Google Scholar] [CrossRef]
- Pfanzagl, B.; Zevallos, V.F.; Schuppan, D.; Pfragner, R.; Jensen-Jarolim, E. Histamine causes influx via T-type voltage-gated calcium channels in an enterochromaffin tumor cell line: Potential therapeutic target in adverse food reactions. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G291–G303. [Google Scholar] [CrossRef]
- Honzawa, Y.; Nakase, H.; Matsuura, M.; Chiba, T. Clinical significance of serum diamine oxidase activity in inflammatory bowel disease: Importance of evaluation of small intestinal permeability. Inflamm. Bowel Dis. 2011, 17, E23–E25. [Google Scholar] [CrossRef]
- Schmidt, W.U.; Sattler, J.; Hesterberg, R.; Röher, H.D.; Zoedler, T.; Sitter, H.; Lorenz, W. Human intestinal diamine oxidase (DAO) activity in Crohn’s disease: A new marker for disease assessment? Agents Actions 1990, 30, 267–270. [Google Scholar] [CrossRef]
- Raithel, M.; Matek, M.; Baenkler, H.W.; Jorde, W.; Hahn, E.G. Mucosal histamine content and histamine secretion in Crohn’s disease, ulcerative colitis and allergic enteropathy. Int. Arch. Allergy Immunol. 1995, 108, 127–133. [Google Scholar] [CrossRef]
- Thompson, J.S.; Burnett, D.A.; Markin, R.S.; Vaughan, W.P. Intestinal mucosa diamine oxidase activity reflects intestinal involvement in Crohn’s disease. Am. J. Gastroenterol. 1988, 83, 756–760. [Google Scholar]
- Raithel, M.; Ulrich, P.; Hochberger, J.; Hahn, E.G. Measurement of gut diamine oxidase activity. Diamine oxidase as a new biologic marker of colorectal proliferation? Ann. N. Y. Acad. Sci. 1998, 859, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Kuefner, M.A.; Schwelberger, H.G.; Hahn, E.G.; Raithel, M. Decreased histamine catabolism in the colonic mucosa of patients with colonic adenoma. Dig. Dis. Sci. 2008, 53, 436–442. [Google Scholar] [CrossRef]
- Fukudome, I.; Kobayashi, M.; Dabanaka, K.; Maeda, H.; Okamoto, K.; Okabayashi, T.; Baba, R.; Kumagai, N.; Oba, K.; Fujita, M.; et al. Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med. Mol. Morphol. 2014, 47, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, J.; Miyamoto, H.; Goji, T.; Taniguchi, T.; Tomonari, T.; Sogabe, M.; Kimura, T.; Kitamura, S.; Okamoto, K.; Fujino, Y.; et al. Serum diamine oxidase activity as a predictor of gastrointestinal toxicity and malnutrition due to anticancer drugs. J. Gastroenterol. Hepatol. 2015, 30, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Grandfils, C.; van Cutsem, J.L.; Dandrifosse, G. Diamine oxidase and disaccharidase activities in small intestinal biopsies of children. Pediatr. Res. 1984, 18, 647–649. [Google Scholar] [CrossRef] [Green Version]
- Borghini, R.; Donato, G.; Alvaro, D.; Picarelli, A. New insights in IBS-like disorders: Pandora’s box has been opened; a review. Gastroenterol. Hepatol. Bed Bench. 2017, 10, 79–89. [Google Scholar]
- Talley, N.J. What causes functional gastrointestinal disorders? A proposed disease model. Am. J. Gastroenterol. 2020, 115, 41–48. [Google Scholar] [CrossRef]
- Böhn, L.; Störsrud, S.; Törnblom, H.; Bengtsson, U.; Simrén, M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 2013, 108, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Harer, K.N.; Shanti, L.; Eswaran, S.L. Irritable bowel syndrome. Food as a friend or foe? Gastroenterol. Clin. N. Am. 2021, 50, 183–190. [Google Scholar] [CrossRef]
- Grad, S.; Dumitrascu, D.L. Irritable bowel syndrome subtypes: New names for old medical conditions. Dig. Dis. 2020, 38, 122–127. [Google Scholar] [CrossRef]
- Borghini, R.; Puzzono, M.; Rosato, E.; Di Tola, M.; Marino, M.; Greco, F.; Picarelli, A. Nickel-related intestinal mucositis in IBS-like patients: Laser Doppler perfusion imaging and oral mucosa patch test in use. Biol. Trace. Elem. Res. 2016, 173, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, M.R.; Cremon, C.; Wrona, D.; Fuschi, D.; Marasco, G.; Stanghellini, V.; Barbara, G. Non-celiac gluten sensitivity in the context of functional gastrointestinal disorders. Nutrients 2020, 12, 3735. [Google Scholar] [CrossRef] [PubMed]
- Choung, R.S.; Unalp-Arida, A.; Ruhl, C.E.; Brantner, T.L.; Everhart, J.E.; Murray, J.A. Less hidden celiac disease but increased gluten avoidance without a diagnosis in the United States: Findings from the National Health and Nutrition Examination Surveys from 2009 to 2014. Mayo Clin. Proc. 2017, 92, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 2017, 152, 1100–1113. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Van Haute, M.J.; Rose, D.J. Processing has differential effects on microbiota-accessible carbohydrates in whole grains during in vitro fermentation. Appl. Environ. Microbiol. 2020, 86, e01705-20. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Herrmann, J.; Strobl, M.; Jekle, M.; Becker, T. The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem. 2015, 173, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Bolygo, E.P.; Cooper, A.; Jessop, M.; Moffatt, F. Determination of histamine in tomatoes by liquid chromatography/mass spectrometry. J. Assoc. Offic. Anal. Chem. Int. 2000, 3, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, J.A.; Neufeld, A. Food sources of energy and nutrients among Canadian adults following a gluten-free diet. Peer J. 2020, 8, e9590. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Garzon, R.; Serna-Saldivar, S.O.; Rosell, C.M. Mimicking gluten functionality with β-conglycinin concentrate: Evaluation in gluten free yeast-leavened breads. Food Res. Int. 2018, 106, 64–70. [Google Scholar] [CrossRef]
- Schnedl, W.J.; Lackner, S.; Enko, D.; Schenk, M.; Mangge, H.; Holasek, S.J. Non-celiac gluten sensitivity. People without celiac disease avoiding gluten–Is it due to histamine intolerance? Inflamm. Res. 2018, 67, 279–284. [Google Scholar] [CrossRef]
- Albenberg, L.G.; Wu, G.D. Diet and the intestinal microbiome: Associations, functions and implications for health and disease. Gastroenterology. 2014, 146, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
- Schink, M.; Konturek, P.C.; Tietz, E.; Dieterich, W.; Pinzer, T.C.; Wirtz, S.; Neurath, M.F.; Zopf, Y. Microbial patterns in patients with histamine intolerance. J. Physiol. Pharmacol. 2018, 69, 579–593. [Google Scholar]
- Wilder-Smith, C.H.; Materna, A.; Wermelinger, C.; Schuler, J. Fructose and lactose intolerance and malabsorption testing the relationship with symptoms in functional gastrointestinal disorders. Aliment. Pharm. Therap. 2013, 37, 1074–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enko, D.; Kriegshäuser, G.; Halwachs-Baumann, G.; Mangge, H.; Schnedl, W.J. Serum diamine oxidase activity is associated with lactose malabsorption phenotypic variation. Clin. Biochem. 2017, 50, 50–53. [Google Scholar] [CrossRef]
- Schnedl, W.J.; Meier-Allard, N.; Lackner, S.; Enko, D.; Mangge, H.; Holasek, S.J. Increasing expiratory hydrogen in lactose intolerance is associated with additional food intolerance/malabsorption. Nutrients 2020, 12, 3690. [Google Scholar] [CrossRef]
- Maintz, L.; Bieber, T.; Novak, N. Histamine intolerance in clinical practice. Dtsch. Ärztebl. 2006, 103, 3477–3483. [Google Scholar]
- Wantke, F.; Proud, D.; Siekierski, E.; Kagey-Sobotka, A. Daily variations of serum diamine oxidase and the influence of H1 and H2 blockers: A critical approach to routine diamine oxidase assessment. Inflamm. Res. 1998, 47, 396–400. [Google Scholar] [CrossRef]
- Sattler, J.; Hesterberg, R.; Lorenz, W.; Schmidt, U.; Crombach, M.; Stahlknecht, C.D. Inhibition of human and canine diamine oxidase by drugs used in an intensive care unit: Relevance for clinical side effects? Agents Actions 1985, 16, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Blanca-Lopez, N.; Sorian, V.; Garcia-Martin, E.; Canto, G.; Blanca, M. NSAID-induced reactions: Classification, prevalence, impact, and management strategies. J. Asthma Allergy 2019, 12, 217–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanwar, V.G.; Pawar, S.V.; Gambhire, P.A.; Jain, S.S.; Surude, R.G.; Shah, V.B.; Contractor, Q.Q.; Rathi, P.M. Symptomatic improvement with gluten restriction in irritable bowel syndrome: A prospective, randomized, double blinded placebo controlled trial. Intest. Res. 2016, 4, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frossi, B.; Tripodo, C.; Guarnotta, C.; Carroccio, A.; De Carli, M.; De Carli, S.; Marino, M.; Calabrò, A.; Pucillo, C.E. Mast cells are associated with the onset and progression of celiac disease. J. Allergy Clin. Immunol. 2017, 139, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Schnedl, W.J.; Mangge, H.; Schenk, M.; Enko, D. Non-responsive celiac disease may coincide with additional food intolerance/malabsorption, including histamine intolerance. Med. Hypotheses 2021, 146, 110404. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Che, D.; Wei, D.; Wang, C.; Xie, Y.; Zhang, K.; Cao, J.; Fu, J.; Zhou, N.; He, H. Phenothiazine antipsychotics exhibit dual properties in pseudo-allergic reactions: Activating MRGPRX2 and inhibiting the H1 receptor. Mol. Immunol. 2019, 111, 118–127. [Google Scholar] [CrossRef]
- Sunkara, T.; Rawla, P.; Yarlagadda, K.S.; Gaduputi, V. Eosinophilic gastroenteritis: Diagnosis and clinical perspectives. Clin. Exp. Gastroenterol. 2019, 12, 239–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimolai, N. Comparing histamine intolerance and non-clonal mast cell activation syndrome. Intest. Res. 2020, 18, 134–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valent, P.; Akin, C.; Bonadonna, P.; Hartmann, K.; Brockow, K.; Niedoszytko, M.; Nedoszytko, B.; Siebenhaar, F.; Sperr, W.R.; Oude Elberink, J.N.G.; et al. Proposed diagnostic algorithm for patients with suspected mast cell activation syndrome. J. Allergy Clin. Immunol. Pract. 2019, 7, 1125–1133.e1. [Google Scholar] [CrossRef]
- Bonamichi-Santos, R.; Yoshimi-Kanamori, K.; Giavina-Bianchi, P.; Aun, M.V. Association of postural tachycardia syndrome and Ehlers-Danlos syndrome with mast cell activation disorders. Immunol. Allergy Clin. N. Am. 2018, 38, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Tai, F.W.D.; Palsson, O.S.; Lam, C.Y.; Whitehead, W.E.; Sperber, A.D.; Tornblom, H.; Simren, M.; Aziz, I. Functional gastrointestinal disorders are increased in joint hypermobility-related disorders with concomitant postural orthostatic tachycardia syndrome. Neurogastroenterol. Motil. 2020, 32, e13975. [Google Scholar] [CrossRef]
- Tomita, T.; Oshima, T.; Miwa, H. New approaches to diagnosis and treatment of functional dyspepsia. Curr. Gastroenterol. Rep. 2018, 20, 55. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.L. Physiologic, pathophysiologic, and pharmacologic regulation of gastric acid secretion. Curr. Opin. Gastroenterol. 2017, 33, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Blaser, M.J.; Ludvigsson, J.F.; Rundle, A.; Sonnenberg, A.; Genta, R.M. Decreased risk of celiac disease in patient with Helicobacter pylori colonization. Am. J. Epidemiol. 2013, 178, 1721–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, B.; Filippi, M. Migraine and literature: A narrative historical review. Neurol. Sci. 2021, 42, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Montuori, P.; Schettino, M.; Velotto, S.; Stasi, T.; Romano, R.; Cirillo, T. Level of biogenic amines in red and white wines, dietary exposure, and histamine-mediated symptoms upon wine ingestion. Molecules 2019, 24, 3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. Evaluation of the impact of storage conditions on the biogenic amines profile in opened wine bottles. Molecules 2018, 23, 1130. [Google Scholar] [CrossRef] [Green Version]
- García-Martín, E.; Martínez, C.; Serrador, M.; Alonso-Navarro, H.; Ayuso, P.; Navacerrada, F.; Agúndez, J.A.; Jiménez-Jiménez, F.J. Diamine oxidase rs10156191 and rs2052129 variants are associated with the risk for migraine. Headache 2015, 55, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Casas, J.; Comas-Basté, O.; Latorre-Moratalla, M.L.; Lorente-Gascón, M.; Duelo, A.; Vidal-Carou, M.C.; Soler-Singla, L. Low serum diamine oxidase (DAO) activity levels in patients with migraine. J. Physiol. Biochem. 2018, 74, 93–99. [Google Scholar] [CrossRef]
- Izquierdo-Casas, J.; Comas-Basté, O.; Latorre-Moratalla, M.L.; Lorente-Gascón, M.; Duelo, A.; Soler-Singla, L.; Vidal-Carou, M.C. Diamine oxidase (DAO) supplement reduces headache in episodic migraine patients with DAO deficiency: A randomized double-blind trial. Clin. Nutr. 2019, 38, 152–158. [Google Scholar] [CrossRef]
- Maykish, A.; Rex, R.; Sikalidis, A.K. Organic winemaking and its subsets; biodynamic, natural, and clean wine in California. Foods 2021, 10, 127. [Google Scholar] [CrossRef]
- Griauzdaitė, K.; Maselis, K.; Žvirblienė, A.; Vaitkus, A.; Jančiauskas, D.; Banaitytė-Baleišienė, I.; Kupčinskas, L.; Rastenytė, D. Associations between migraine, celiac disease, non-celiac gluten sensitivity and activity of diamine oxidase. Med. Hypotheses 2020, 142, 109738. [Google Scholar] [CrossRef]
- Jaros, J.; Shi, V.Y.; Katta, R. Diet and chronic urticaria: Dietary modification as a treatment strategy. Dermatol. Pract. Concept. 2020, 10, e2020004. [Google Scholar] [CrossRef]
- Wagner, N.; Dirk, D.; Peveling-Oberhag, A.; Reese, I.; Rady-Pizarro, U.; Mitzel, H.; Staubach, P.J. A popular myth-low-histamine diet improves chronic spontaneous urticaria-fact or fiction? Eur. Acad. Dermatol. Venereol. 2017, 31, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Yacoub, M.R.; Ramirez, G.A.; Berti, A.; Mercurio, G.; Breda, D.; Saporiti, N.; Burastero, S.; Dagna, L.; Colombo, G. Diamine oxidase supplementation in chronic spontaneous urticaria: A randomized, double-blind placebo-controlled study. Int. Arch. Allergy Immunol. 2018, 176, 268–271. [Google Scholar] [CrossRef]
- Schnedl, W.J.; Tillich, M.; Schenk, M.; Enko, D.; Mangge, H. Food intolerance/malabsorption may occur in rare diseases. Intractable Rare. Dis. Res. 2020, 9, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Alnouri, G.; Cha, N.; Sataloff, R.T. Histamine sensitivity: An uncommon recognized cause of living laryngopharyngeal reflux symptoms and signs-a case report. Ear Nose Throat J. 2020, 145561320951071. [Google Scholar]
- Stolze, I.; Peters, K.P.; Herbst, R.A. Histamine intolerance mimics anorexia nervosa. Hautarzt 2010, 61, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Wantke, F.; Hemmer, W.; Haglmüller, T.; Götz, M.; Jarisch, R. Histamine in wine. Bronchoconstriction after a double-blind placebo-controlled red wine provocation test. Int. Arch. Allergy Immunol. 1996, 110, 397–400. [Google Scholar] [CrossRef]
- Chung, B.Y.; Cho, S.I.; Ahn, I.S.; Lee, H.B.; Kim, H.O.; Park, C.W.; Lee, C.H. Treatment of atopic dermatitis with a low-histamine diet. Ann. Dermatol. 2011, 23, S91–S95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcik, W.; Pugin, B.; Brescó, M.S.; Westermann, P.; Rinaldi, A.; Groeger, D.; Van Elst, D.; Sokolowska, M.; Krawczyk, K.; Frei, R.; et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy 2019, 74, 899–909. [Google Scholar] [CrossRef]
- Vassilopoulou, E.; Konstantinou, G.N.; Dimitriou, A.; Manios, Y.; Koumbi, L.; Papadopoulos, N.G. The impact of food histamine intake on asthma activity: A pilot study. Nutrients 2020, 12, 3402. [Google Scholar] [CrossRef] [PubMed]
- Rafiee Zadeh, A.; Falahatian, M.; Alsahebfosoul, F. Serum levels of histamine and diamine oxidase in multiple sclerosis. Am. J. Clin. Exp. Immunol. 2018, 7, 100–105. [Google Scholar]
- Bai, T.; Wang, W.F.; Zhang, L.; Wang, H.; Qian, W.; Song, J.; Hou, X.H. Positive endoscopic and ultrasonographic findings in symptom-diagnosed functional gastrointestinal disorder patients: Data from a Chinese cross-sectional study. J. Dig. Dis. 2018, 19, 759–765. [Google Scholar] [CrossRef]
- Reese, A.T.; Pereira, F.C.; Schintlmeister, A.; Berry, D.; Wagner, M.; Hale, L.P.; Wu, A.; Jiang, S.; Durand, H.K.; Zhou, X.; et al. Microbial nitrogen limitation in the mammalian large intestine. Nat. Microbiol. 2018, 3, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Kettner, L.; Seitl, I.; Fischer, L. Evaluation of porcine diamine oxidase for the conversion of histamine in food-relevant amounts. J. Food Sci. 2020, 85, 843. [Google Scholar] [CrossRef]
- Anderegg, J.; Fischer, M.; Dürig, J.; Di, A.; Lacroix, C.; Meile, L. Detection of biogenic amines and tyramine-producing bacteria in fermented sausages from Switzerland. J. Food Prot. 2020, 83, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Moniente, M.; García-Gonzalo, D.; Ontañón, I.; Pagán, R.; Botello-Morte, L. Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamine-producing microbiota, and potential solutions. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1481–1523. [Google Scholar] [CrossRef]
- Gagic, M.; Nejdl, L.; Xhaxhiu, K.; Cernei, N.; Zitka, O.; Jamroz, E.; Svec, P.; Richtera, L.; Kopel, P.; Milosavljevic, V.; et al. Fully automated process for histamine detection based on magnetic separation and fluorescence detection. Talanta 2020, 212, 120789. [Google Scholar] [CrossRef] [PubMed]
- Solymosi, D.; Sárdy, M.; Pónyai, G. Interdisciplinary significance of food-related adverse reactions in adulthood. Nutrients 2020, 12, 3725. [Google Scholar] [CrossRef] [PubMed]
Severity of Complaints: No Symptoms (0), Mild (1) to Very Severe Complaints (5) | ||||||
---|---|---|---|---|---|---|
Gastrointestinal | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |
Abdominal pain | o | o | o | o | o | o |
Intestinal colics | o | o | o | o | o | o |
Bloating | o | o | o | o | o | o |
Diarrhea | o | o | o | o | o | o |
Constipation | o | o | o | o | o | o |
Nausea | o | o | o | o | o | o |
Belching | o | o | o | o | o | o |
Vomiting | o | o | o | o | o | o |
Postprandial fullness | o | o | o | o | o | o |
Menstrual cramps | o | o | o | o | o | o |
Skin | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |
Pruritus | o | o | o | o | o | o |
Eczema | o | o | o | o | o | o |
Reddened skin | o | o | o | o | o | o |
Swollen, reddened eye lids | o | o | o | o | o | o |
Cardiovascular | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |
Headache | o | o | o | o | o | o |
Dizziness | o | o | o | o | o | o |
Hypotonia | o | o | o | o | o | o |
Palpitations | o | o | o | o | o | o |
Collapse | o | o | o | o | o | o |
Respiration | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |
Rhinorrhea | o | o | o | o | o | o |
Nose congestion | o | o | o | o | o | o |
Sneezing | o | o | o | o | o | o |
Asthma | o | o | o | o | o | o |
Additional Complaints (Please List Symptoms that Have Not Yet Been Listed) | ||||||
0 | 1 | 2 | 3 | 4 | 5 | |
o | o | o | o | o | o | |
o | o | o | o | o | o | |
o | o | o | o | o | o |
Medications | Generic Name |
---|---|
Analgesics | Acetylsalicylic acid, Metamizole, Morphines, Nonsteroidal anti-inflammatory drugs, Pethidine |
Antiarrhythmics | Propafenon |
Antibiotics | Cefuroxime, Cefotiam, Isoniazid, Pentamidine, Clavulanic acid, Chloroquine |
Antidepressants | Amitriptylline |
Antifungal | Pentamidine |
Antihypertensives | Verapamil, Alprenolol, Dihydralazine |
Antihypotensives | Dobutamine |
Antimalarial | Chloroquine |
Broncholytics | Aminophylline |
Cytostatics | Cyclophosphamide |
Diuretics | Amiloride |
H2 receptor antagonists | Cimetidine |
Local anesthetics | Prilocaine |
Motility agents | Metoclopramide |
Mucolytics | Acetylcysteine, Ambroxol |
Muscle relaxants | Pancuronium, Alcuronium, D-Tubocurarin |
Narcotics | Thiopental |
Radiological contrast media | |
Vitamines | Ascorbic acid, Thiamine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnedl, W.J.; Enko, D. Histamine Intolerance Originates in the Gut. Nutrients 2021, 13, 1262. https://doi.org/10.3390/nu13041262
Schnedl WJ, Enko D. Histamine Intolerance Originates in the Gut. Nutrients. 2021; 13(4):1262. https://doi.org/10.3390/nu13041262
Chicago/Turabian StyleSchnedl, Wolfgang J., and Dietmar Enko. 2021. "Histamine Intolerance Originates in the Gut" Nutrients 13, no. 4: 1262. https://doi.org/10.3390/nu13041262
APA StyleSchnedl, W. J., & Enko, D. (2021). Histamine Intolerance Originates in the Gut. Nutrients, 13(4), 1262. https://doi.org/10.3390/nu13041262