Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric and Preliminary Testing
2.3. Main Trials
2.4. Exercise
2.5. Breakfast
2.6. Blood Glucose
2.7. Academic Tests
2.8. Cognitive Tests
2.9. Hunger, Satiety, Fullness and Appetite
2.10. Motivation, Arousal, Feeling and Mental Effort
2.11. Statistical Analysis
3. Results
3.1. Participants
3.2. Exercise
3.3. ICCs
3.4. Blood Glucose
3.5. Academic Tests
3.6. Cognitive Tests
3.7. Hunger, Satiety, Fullness and Appetite
3.8. Motivation, Arousal, Feeling and Mental Effort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
F-S (n = 21) | B-S (n = 21) | F-E (n = 20) | B-E (n = 20) | |
---|---|---|---|---|
Hunger (mm): | ||||
Pre-test1 | 52.4 (25.1) | 53.2 (23.0) | 51.6 (27.3) | 60.8 (25.5) 4,5 |
Pre-test2 | 69.2 (22.5) | 67.8 (25.4) | 61.4 (23.1) | 70.1 (24.9) |
Post-test1 | 64.4 (23.1) | 17.5 (26.4) | 62.6 (30.2) | 16.8 (17.2) 1,3 |
Post-test2 | 72.8 (19.7) | 13.6 (19.4) | 66.3 (29.0) | 17.4 (18.9) |
Post-test3 | 71.0 (24.8) | 25.4 (23.0) | 64.2 (36.5) | 25.9 (23.3) |
Post-test4 | 70.5 (26.5) | 57.7 (28.9) | 57.0 (25.7) | 54.6 (31.9) 1,3 |
Satiety (mm): | ||||
Pre-test1 | 26.7 (25.2) | 23.5 (20.4) | 28.6 (21.9) | 16.9 (17.0) 4,5 |
Pre-test2 | 17.1 (18.1) | 16.1 (18.3) | 21.4 (19.6) | 10.8 (14.4) |
Post-test1 | 13.6 (16.3) | 62.4 (24.6) | 20.4 (20.6) | 73.2 (19.6) 1,3 |
Post-test2 | 13.1 (14.7) | 56.7 (28.3) | 18.3 (17.7) | 69.2 (23.4) |
Post-test3 | 10.8 (13.2) | 52.8 (26.8) | 13.8 (16.6) | 61.7 (26.7) |
Post-test4 | 10.8 (15.5) | 44.3 (21.5) | 13.3 (15.0) | 53.4 (24.8) 1,3 |
Fullness (mm): | ||||
Pre-test1 | 15.5 (17.9) | 12.0 (16.9) | 21.9 (24.2) | 7.6 (11.1) 4,5 |
Pre-test2 | 17.8 (20.1) | 13.9 (20.0) | 17.9 (15.4) | 8.0 (15.6) |
Post-test1 | 10.1 (15.5) | 62.8 (25.6) | 25.1 (27.8) | 69.3 (25.5) 1,3 |
Post-test2 | 13.6 (15.4) | 63.8 (29.6) | 19.9 (25.2) | 73.1 (21.4) |
Post-test3 | 10.5 (13.3) | 51.8 (24.4) | 16.8 (21.5) | 54.5 (26.8) |
Post-test4 | 12.4 (18.6) | 47.3 (27.8) | 23.1 (30.7) | 55.5 (28.7) 1,3 |
Appetite (mm): | ||||
Pre-test1 | 55.9 (23.0) | 69.5 (24.2) | 67.8 (26.7) | 71.6 (24.5) 4 |
Pre-test2 | 59.2 (25.1) | 64.3 (29.6) | 64.5 (31.3) | 71.8 (22.8) |
Post-test1 | 71.5 (21.5) | 34.5 (28.8) | 66.6 (31.3) | 26.5 (18.7) 1,3 |
Post-test2 | 75.3 (18.9) | 38.6 (33.5) | 67.2 (30.5) | 26.9 (21.4) |
Post-test3 | 76.7 (20.2) | 38.3 (28.7) | 74.0 (25.4) | 39.0 (23.7) |
Post-test4 | 80.2 (18.9) | 50.2 (31.1) | 73.8 (25.2) | 39.1 (24.9) 1,3 |
Appendix B
F-S (n = 21) | B-S (n = 21) | F-E (n = 20) | B-E (n = 20) | |
---|---|---|---|---|
Motivation: | ||||
Pre-test1 | 6.48 (1.37) | 6.48 (1.44) | 6.80 (1.70) | 6.90 (1.41) |
Post-test1 | 6.24 (1.79) | 5.95 (1.96) | 6.25 (2.38) | 7.25 (1.77) |
Post-test3 | 5.67 (2.13) | 5.76 (2.26) | 5.45 (2.31) | 7.05 (1.79) |
Arousal: | ||||
Pre-test1 | 2.57 (0.98) | 2.76 (1.00) | 2.86 (0.88) | 2.80 (1.11) |
Pre-test2 | 3.52 (1.17) | 2.86 (1.42) | 3.65 (1.35) | 3.60 (1.54) |
Post-test1 | 3.05 (1.16) | 3.57 (1.12) | 3.75 (1.16) | 4.25 (1.12) |
Post-test2 | 3.19 (1.03) | 2.86 (1.11) | 3.05 (1.54) | 3.60 (1.57) |
Post-test3 | 2.81 (1.03) | 3.10 (1.26) | 3.00 (1.21) | 3.60 (1.23) |
Post-test4 | 3.00 (1.00) | 2.81 (1.29) | 3.20 (1.44) | 3.60 (1.27) |
Feeling: | ||||
Pre-test1 | 0.90 (1.61) | 1.33 (1.46) | 1.35 (1.69) | 1.25 (1.89) |
Pre-test2 | 1.24 (1.61) | 0.81 (1.75) | 1.45 (1.67) | 1.20 (1.64) |
Post-test1 | 0.90 (1.55) | 1.76 (1.67) | 1.80 (1.80) | 2.90 (1.29) 1,2,3 |
Post-test2 | 0.67 (1.32) | 1.10 (1.79) | 0.80 (2.33) | 1.75 (1.65) |
Post-test3 | 0.62 (1.66) | 1.38 (1.83) | 1.45 (1.85) | 1.85 (1.79) |
Post-test4 | 0.38 (1.53) | 1.43 (1.91) | 1.30 (1.98) | 2.00 (1.78) |
Mental effort: | ||||
Pre-test2 | 69.2 (22.5) | 67.8 (25.4) | 61.4 (23.1) | 70.1 (24.9) |
Post-test2 | 69.7 (25.6) | 57.8 (16.8) | 62.4 (26.5) | 59.3 (31.6) 3 |
Post-test4 | 70.5 (26.5) | 57.5 (29.0) | 57.0 (25.7) | 54.6 (31.9) |
References
- Adolphus, K.; Lawton, C.L.; Champ, C.L.; Dye, L. The Effects of Breakfast and Breakfast Composition on Cognition in Children and Adolescents: A Systematic Review. Adv. Nutr. 2016, 7, 590S–612S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, D.; Maconie, A.; Williams, C. The influence of the glycaemic load of breakfast on the behaviour of children in school. Physiol. Behav. 2007, 92, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Ingwersen, J.; Defeyter, M.A.; Kennedy, D.O.; Wesnes, K.A.; Scholey, A.B. A low glycaemic index breakfast cereal preferentially prevents children’s cognitive performance from declining throughout the morning. Appetite 2007, 49, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, C.R.; Taylor, H.A.; Kanarek, R.B.; Samuel, P. Effect of breakfast composition on cognitive processes in elementary school children. Physiol. Behav. 2005, 85, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesnes, K.A.; Pincock, C.; Richardson, D.; Helm, G.; Hails, S. Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite 2003, 41, 329–331. [Google Scholar] [CrossRef]
- Edefonti, V.C.; Rosato, V.; Parpinel, M.; Nebbia, G.; Fiorica, L.; Fossali, E.; Ferraroni, M.; DeCarli, A.; Agostoni, C. The effect of breakfast composition and energy contribution on cognitive and academic performance: A systematic review. Am. J. Clin. Nutr. 2014, 100, 626–656. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, R.; Hall, S.; Green, H.; Korzec-Ramirez, D.; Patton, K.; Pagano, M.; Murphy, J. Diet, Breakfast, and Academic Performance in Children. Ann. Nutr. Metab. 2002, 46, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.B.; Bandelow, S.; Nute, M.L.; Morris, J.G.; Nevill, M.E. Breakfast glycaemic index and cognitive function in adolescent school children. Br. J. Nutr. 2011, 107, 1823–1832. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.A.; Walker, S.P.; Chang, S.M.; Grantham-McGregor, S.M. Nutrition and education: A randomized trial of the effects of breakfast in rural primary school children. Am. J. Clin. Nutr. 1998, 68, 873–879. [Google Scholar] [CrossRef]
- Littlecott, H.J.; Moore, G.F.; Moore, L.; Lyons, R.A.; Murphy, S. Association between breakfast consumption and educational outcomes in 9–11-year-old children. Public Health Nutr. 2015, 19, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Labban, J.; Gapin, J.; Etnier, J. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Lambourne, K.; Okumura, M.S. Physical activity interventions and children’s mental function: An introduction and overview. Prev. Med. 2011, 52, S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.-T.; Kamijo, K. Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D.; Naglieri, J.A. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018.
- Spruit, A.; Assink, M.; van Vugt, E.; van der Put, C.; Stams, G.J. The effects of physical activity interventions on psychosocial outcomes in adolescents: A meta-analytic review. Clin. Psychol. Rev. 2016, 45, 56–71. [Google Scholar] [CrossRef]
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef]
- Li, J.W.; O’Connor, H.; O’Dwyer, N.; Orr, R. The effect of acute and chronic exercise on cognitive function and academic performance in adolescents: A systematic review. J. Sci. Med. Sport 2017, 20, 841–848. [Google Scholar] [CrossRef]
- Marques, A.; Santos, D.A.; Hillman, C.H.; Sardinha, L.B. How does academic achievement relate to cardiorespiratory fitness, self-reported physical activity and objectively reported physical activity: A systematic review in children and adolescents aged 6–18 years. Br. J. Sports Med. 2018, 52, 1039. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Booth, J.N.; Laird, Y.; Sproule, J.; Reilly, J.J.; Saunders, D.H. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst. Rev. 2018, 3, CD009728. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ariza, A.; Grao-Cruces, A.; De Loureiro, N.E.M.; Martínez-López, E.J. Influence of physical fitness on cognitive and academic performance in adolescents: A systematic review from 2005–2015. Int. Rev. Sport Exerc. Psychol. 2016, 10, 108–133. [Google Scholar] [CrossRef]
- Budde, H.; Voelcker-Rehage, C.; Pietraßyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 2008, 441, 219–223. [Google Scholar] [CrossRef]
- Cooper, S.B.; Bandelow, S.; Nute, M.L.; Morris, J.G.; Nevill, M.E. Breakfast glycaemic index and exercise: Combined effects on adolescents’ cognition. Physiol. Behav. 2015, 139, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health (Singapore). Health Hub Web Site. Available online: https://www.healthhub.sg/live-healthy/745/differencesbetweenchildandadultbmi (accessed on 10 January 2021).
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Borg, G.A. Perceived exertion: A note on "history" and methods. Med. Sci. Sports 1973, 5, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, H.; Williams, S.; Brown, R.; Venn, B. Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am. J. Clin. Nutr. 2011, 94, 992–996. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Individual Achievement Test, 3rd ed.; Pearson: San Antonio, TX, USA, 2009. [Google Scholar]
- Etnier, J.L. Cognitive measures related to exercise and physical activity. In Measurement in Sport and Exercise Psychology; Tenenbaum, G., Eklund, R., Kamata, A., Eds.; Human Kinetics: Champaign, IL, USA, 2012; pp. 179–189. [Google Scholar]
- Wechsler, D. Wechsler Memory Scale, 3rd ed.; They Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Fillmore, M.T.; Rush, C.R.; Hays, L. Acute effects of cocaine in two models of inhibitory control: Implications of non-linear dose effects. Addiction 2006, 101, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Svebak, S.; Murgatroyd, S. Metamotivational dominance: A multimethod validation of reversal theory constructs. J. Pers. Soc. Psychol. 1985, 48, 107–116. [Google Scholar] [CrossRef]
- Hardy, C.J.; Rejeski, W.J. Not What, but How One Feels: The Measurement of Affect during Exercise. J. Sport Exerc. Psychol. 1989, 11, 304–317. [Google Scholar] [CrossRef]
- Zijlstra, F.R.H. Efficiency in Work Behavior: A Design Approach for Modern Tools; Delft University Press: Delft, The Netherlands, 1993. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S.; Congon, R. HLM 7: Hierarchical Linear and Nonlinear Modeling [Computer Software]; Scientific Software International, Inc.: Lincolnwood, IL, USA, 2011. [Google Scholar]
- Lee, V.E. Using Hierarchical Linear Modeling to Study Social Contexts: The Case of School Effects. Educ. Psychol. 2000, 35, 125–141. [Google Scholar] [CrossRef]
- Vereecken, C.; the HBSC Eating & Dieting Focus Group; Dupuy, M.; Rasmussen, M.; Kelly, C.; Nansel, T.R.; Al Sabbah, H.; Baldassari, D.; Jordan, M.D.; Maes, L.; et al. Breakfast consumption and its socio-demographic and lifestyle correlates in schoolchildren in 41 countries participating in the HBSC study. Int. J. Public Health 2009, 54, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Hoyland, A.; McWilliams, K.A.; Duff, R.J.; Walton, J.L. Breakfast consumption in UK schoolchildren and provision of school breakfast clubs. Nutr. Bull. 2012, 37, 232–240. [Google Scholar] [CrossRef]
- Tee, E.S.; Nurliyana, A.R.; Norimah, A.K.; Mohamed, H.J.B.J.; Tan, S.Y.; Appukutty, M.; Hopkins, S.; Thielecke, F.; Ong, M.K.; Ning, C.; et al. Breakfast consumption among Malaysian primary and secondary school children and relationship with body weight status—Findings from the MyBreakfast Study. Asia Pac. J. Clin. Nutr. 2018, 27, 421–432. [Google Scholar] [CrossRef]
- Lindner, K.J. The Physical Activity Participation–Academic Performance Relationship Revisited: Perceived and Actual Performance and the Effect of Banding (Academic Tracking). Pediatr. Exerc. Sci. 2002, 14, 155–169. [Google Scholar] [CrossRef]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Lambourne, K.; Tomporowski, P. The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef]
- Martín, M.A.; Goya, L.; De Pascual-Teresa, S. Effect of Cocoa and Cocoa Products on Cognitive Performance in Young Adults. Nutrients 2020, 12, 3691. [Google Scholar] [CrossRef]
Characteristic | F-S | B-S | F-E | B-E |
---|---|---|---|---|
n | 21 | 21 | 20 | 20 |
Sex (M/F) | 4/17 | 5/16 | 6/14 | 3/17 |
Age (years) | 16.0 (1.3) | 16.1 (0.8) | 16.1 (0.9) | 15.9 (1.2) |
Body mass index (kg∙m−2) | 20.4 (2.4) | 20.8 (2.9) | 20.9 (1.8) | 20.0 (2.6) |
Waist circumference (cm) | 69.5 (4.8) | 70.3 (7.5) | 70.3 (4.7) | 67.8 (7.2) |
Peak oxygen uptake (mL∙kg−1∙min−1) | 40.3 (5.8) | 39.1 (5.1) | 39.1 (5.4) | 37.3 (3.8) |
F-S (n = 21) | B-S (n = 21) | F-E (n = 20) | B-E (n = 20) | |
---|---|---|---|---|
Congruent | ||||
Reaction time (ms): | ||||
Test-series1 | 750 (107) | 800 (226) | 830 (214) | 787 (219) |
Test-series2 | 697 (120) | 735 (159) | 713 (133) | 665 (150) 1 |
Test-series3 | 649 (80) | 661 (134) | 653 (88) | 656 (128) 1,2 |
Correct answers (no.): | ||||
Test-series1 | 97 (4) | 97 (4) | 95 (5) | 96 (4) |
Test-series2 | 97 (3) | 98 (3) | 96 (5) | 97 (2) |
Test-series3 | 96 (4) | 97 (3) | 96 (5) | 95 (4) |
Incongruent | ||||
Reaction time (ms): | ||||
Test-series1 | 888 (170) | 1003 (308) | 1040 (302) | 989 (336) |
Test-series2 | 848 (210) | 905 (256) | 855 (196) | 831 (207) 1 |
Test-series3 | 766 (113) | 834 (235) | 788 (161) | 780 (174) |
Correct answers (no.): | ||||
Test-series1 | 88 (8) | 89 (6) | 91 (6) | 91 (7) |
Test-series2 | 91 (6) | 94 (5) | 93 (6) | 94 (5) |
Test-series3 | 92 (7) | 93 (3) | 91 (7) | 93 (6) |
Control | ||||
Reaction time (ms): | ||||
Test-series1 | 765 (120) | 803 (206) | 818 (216) | 814 (215) |
Test-series2 | 720 (147) | 757 (154) | 748 (134) | 702 (147) 1 |
Test-series3 | 671 (103) | 690 (144) | 685 (94) | 664 (111) |
Correct answers (no.): | ||||
Test-series1 | 95 (4) | 97 (3) | 96 (5) | 97 (3) |
Test-series2 | 97 (3) | 96 (3) | 96 (4) | 97 (4) |
Test-series3 | 96 (4) | 96 (4) | 94 (6) | 95 (5) |
F-S (n = 21) | B-S (n = 21) | F-E (n = 20) | B-E (n = 20) | |
---|---|---|---|---|
Digit-Span Test | ||||
Forward (no.): | ||||
Test-series1 | 8.2 (1.7) | 8.5 (1.1) | 8.5 (1.0) | 8.7 (1.3) |
Test-series2 | 9.0 (1.7) | 8.9 (0.9) | 8.9 (1.2) | 8.8 (0.9) |
Test-series3 | 8.9 (1.3) | 8.9 (1.2) | 9.7 (1.4) | 9.3 (0.9) |
Backward (no.): | ||||
Test-series1 | 7.7 (1.9) | 7.8 (1.5) | 7.8 (1.3) | 8.0 (1.2) |
Test-series2 | 8.2 (1.6) | 8.1 (1.2) | 8.3 (1.2) | 8.7 (1.3) |
Test-series3 | 8.7 (1.6) | 8.3 (1.3) | 8.9 (1.3) | 8.9 (1.4) |
Go/No-Go Task | ||||
Reaction time (ms): | ||||
Test-series1 | 357 (42) | 354 (27) | 352 (32) | 345 (22) |
Test-series2 | 345 (39) | 356 (39) | 362 (45) | 335 (30) 3 |
Test-series3 | 344 (45) | 345 (36) | 347 (35) | 332 (27) 3 |
357 (42) | 354 (27) | 352 (32) | 345 (22) | |
Errors (overall): | ||||
Test-series1 | 0.012 (0.017) | 0.023 (0.031) | 0.036 (0.108) | 0.007 (0.010) |
Test-series2 | 0.010 (0.011) | 0.022 (0.028) | 0.034 (0.089) | 0.011 (0.019) |
Test-series3 | 0.015 (0.018) | 0.013 (0.019) | 0.015 (0.017) | 0.012 (0.023) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabata, M.; Lee, K.; Choo, H.-C.; Burns, S.F. Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents. Nutrients 2021, 13, 1278. https://doi.org/10.3390/nu13041278
Kawabata M, Lee K, Choo H-C, Burns SF. Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents. Nutrients. 2021; 13(4):1278. https://doi.org/10.3390/nu13041278
Chicago/Turabian StyleKawabata, Masato, Kerry Lee, Hui-Cheng Choo, and Stephen F. Burns. 2021. "Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents" Nutrients 13, no. 4: 1278. https://doi.org/10.3390/nu13041278
APA StyleKawabata, M., Lee, K., Choo, H. -C., & Burns, S. F. (2021). Breakfast and Exercise Improve Academic and Cognitive Performance in Adolescents. Nutrients, 13(4), 1278. https://doi.org/10.3390/nu13041278