What Are the Pearls and Pitfalls of the Dietary Management for Chronic Diarrhoea?
Abstract
:1. Introduction
1.1. Diet Seeking Behaviour by Patients with Gastrointestinal Symptoms
1.2. Understanding the Role of Diet in the Management of Chronic Diarrhoea
2. Dietary Management of Chronic Diarrhoea
2.1. Irritable Bowel Syndrome (IBS) and Functional Diarrhoea
2.1.1. Dietary Therapies for IBS
2.1.2. The Low FODMAP Diet
2.1.3. The Specific-Carbohydrate Diet
2.1.4. The Low-Food Chemical Diet/Low-Histamine Diet
2.2. Small Intestinal Bacteria Overgrowth (SIBO)
2.3. Lactose Intolerance
2.4. Bile acid Diarrhoea (BAD)
2.5. Sucrase-Isomaltase Deficiency (SID)
2.6. Coeliac Disease
3. Dietary Role of the Dietitian
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arasaradnam, R.P.; Brown, S.; Forbes, A.; Fox, M.R.; Hungin, P.; Kelman, L.; Major, G.; O’Connor, M.; Sanders, D.S.; Sinha, R.; et al. Guidelines for the investigation of chronic diarrhoea in adults: British Society of Gastroenterology. Gut 2018, 67, 1380–1399. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Mitsuhashi, S.; Ballou, S.; Rangan, V.; Sommers, T.; Cheng, V.; Iturrino-Moreda, J.; Friedlander, D.; Nee, J.; Lembo, A. Demographic and Dietary Associations of Chronic Diarrhea in a Representative Sample of Adults in the United States. Am. J. Gastroenterol. 2018, 113, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Talley, N.J.; O’Keefe, E.A.; Zinsmeister, A.R.; Melton III, L.J. Prevalence of gastrointestinal symptoms in the elderly: A population-based study. Gastroenterology 1992, 102, 895–901. [Google Scholar] [CrossRef]
- Gorospe, E.C.; Oxentenko, A.S. Nutritional consequences of chronic diarrhoea. Best Pract. Res. Clin. Gastroenterol. 2012, 26, 663–675. [Google Scholar] [CrossRef]
- McCoubrey, H.; Parkes, G.; Sanderson, J.; Lomer, M. Nutritional intakes in irritable bowel syndrome. J. Hum. Nutr. Diet. 2008, 21, 396–397. [Google Scholar] [CrossRef]
- Ganda Mall, J.-P.; Östlund-Lagerström, L.; Lindqvist, C.M.; Algilani, S.; Rasoal, D.; Repsilber, D.; Brummer, R.J.; Keita, A.V.; Schoultz, I. Are self-reported gastrointestinal symptoms among older adults associated with increased intestinal permeability and psychological distress? BMC Geriatr. 2018, 18, 75. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A.; Zucco, R.; Nobile, C.G.A.; Pileggi, C.; Pavia, M. Parents Seeking Health-Related Information on the Internet: Cross-Sectional Study. J. Med. Internet Res. 2013, 15, e204. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Drake, T.; Vollmer, R.L. A qualitative research study comparing nutrition advice communicated by registered Dietitian and non-Registered Dietitian bloggers. J. Commun. Health 2020, 13, 55–63. [Google Scholar] [CrossRef]
- Lenhart, A.; Ferch, C.; Shaw, M.; Chey, W.D. Use of Dietary Management in Irritable Bowel Syndrome: Results of a Survey of Over 1500 United States Gastroenterologists. J. Neurogastroenterol. Motil. 2018, 24, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Böhn, L.; Störsrud, S.; Törnblom, H.; Bengtsson, U.; Simrén, M. Self-Reported Food-Related Gastrointestinal Symptoms in IBS Are Common and Associated With More Severe Symptoms and Reduced Quality of Life. Am. J. Gastroenterol. 2013, 108, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef]
- El-Salhy, M.; Østgaard, H.; Hausken, T.; Gundersen, D. Diet and effects of diet management on quality of life and symptoms in patients with irritable bowel syndrome. Mol. Med. Rep. 2012, 5, 1382–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Card, T.R.; Canavan, C.; West, J. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Ford, A.C.; Forman, D.; Bailey, A.G.; Axon, A.T.R.; Moayyedi, P. Irritable Bowel Syndrome: A 10-Yr Natural History of Symptoms and Factors That Influence Consultation Behavior. Am. J. Gastroenterol. 2008, 103, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, Y.A.; Bowyer, R.K.; Leach, H.; Gulia, P.; Horobin, J.; O’Sullivan, N.A.; Pettitt, C.; Reeves, L.B.; Seamark, L.; Williams, M.; et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 2016, 29, 549–575. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health Clinical Excellence. Irritable Bowel Syndrome in Adults: Diagnosis and Management of IBS in Primary Care. NICE. Available online: https://www.nice.org.uk/guidance/cg61 (accessed on 8 May 2018).
- Gibson, P.R.; Skodje, G.I.; Lundin, K.E.A. Non-coeliac gluten sensitivity. J. Gastroenterol. Hepatol. 2017, 32, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Ajamian, M.; Rosella, G.; Newnham, E.D.; Biesiekierski, J.R.; Muir, J.G.; Gibson, P.R. Effect of Gluten Ingestion and FODMAP Restriction on Intestinal Epithelial Integrity in Patients with Irritable Bowel Syndrome and Self-Reported Non-Coeliac Gluten Sensitivity. Mol. Nutr. Food Res. 2021, 65, 1901269. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Peters, S.L.; Newnham, E.D.; Rosella, O.; Muir, J.G.; Gibson, P.R. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 2013, 145, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.R.; Halmos, E.P. FODMAPs and carbohydrate intolerance. In Clinical and Basic Neurogastroenterology and Motility; Academic Press: Cambridge, MA, USA, 2020; pp. 371–386. [Google Scholar] [CrossRef]
- Moayyedi, P.; Andrews, C.N.; MacQueen, G.; Korownyk, C.; Marsiglio, M.; Graff, L.; Kvern, B.; Lazarescu, A.; Liu, L.; Paterson, W.G.; et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Management of Irritable Bowel Syndrome (IBS). J. Can. Assoc. Gastroenterol. 2019, 2, 6–29. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, S.J.; Gibson, P.R. Fructose Malabsorption and Symptoms of Irritable Bowel Syndrome: Guidelines for Effective Dietary Management. J. Am. Diet. Assoc. 2006, 106, 1631–1639. [Google Scholar] [CrossRef]
- McIntosh, K.; Reed, D.E.; Schneider, T.; Dang, F.; Keshteli, A.H.; De Palma, G.; Madsen, K.; Bercik, P.; Vanner, S. FODMAPs alter symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut 2016, 66, 1241–1251. [Google Scholar] [CrossRef]
- Böhn, L.; Störsrud, S.; Liljebo, T.; Collin, L.; Lindfors, P.; Törnblom, H.; Simrén, M. Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome as Well as Traditional Dietary Advice: A Randomized Controlled Trial. Gastroenterology 2015, 149, 1399–1407.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staudacher, H.M.; Lomer, M.C.E.; Anderson, J.L.; Barrett, J.S.; Muir, J.G.; Irving, P.M.; Whelan, K. Fermentable Carbohydrate Restriction Reduces Luminal Bifidobacteria and Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome. J. Nutr. 2012, 142, 1510–1518. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Lomer, M.C.; Farquharson, F.M.; Louis, P.; Fava, F.; Franciosi, E.; Scholz, M.; Tuohy, K.M.; Lindsay, J.O.; Irving, P.M.; et al. A Diet Low in FODMAPs Reduces Symptoms in Patients With Irritable Bowel Syndrome and A Probiotic Restores Bifidobacterium Species: A Randomized Controlled Trial. Gastroenterology 2017, 153, 936–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswaran, S.L.; Chey, W.D.; Han-Markey, T.; Ball, S.; Jackson, K. A Randomized Controlled Trial Comparing the Low FODMAP Diet vs. Modified NICE Guidelines in US Adults with IBS-D. Am. J. Gastroenterol. 2016, 111, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome. Gastroenterology 2014, 146, 67–75.e5. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, M.J.; Behrouz, V.; Azimi, M. Low fermentable oligo-di-mono-saccharides and polyols diet versus general dietary advice in patients with diarrhea-predominant irritable bowel syndrome: A randomized controlled trial. J. Gastroenterol. Hepatol. 2018, 33, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.; Eslick, E.M.; Eslick, G.D. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur. J. Nutr. 2016, 55, 897–906. [Google Scholar] [CrossRef]
- Schumann, D.; Klose, P.; Lauche, R.; Dobos, G.; Langhorst, J.; Cramer, H. Low fermentable, oligo-, di-, mono-saccharides and polyol diet in the treatment of irritable bowel syndrome: A systematic review and meta-analysis. Nutrition 2018, 45, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP Diet Improves Irritable Bowel Syndrome Symptoms: A Meta-Analysis. Nutrients 2017, 9, 940. [Google Scholar] [CrossRef]
- Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Áron, V.; Balaskó, M.; Pár, G.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS ONE 2017, 12, e0182942. [Google Scholar] [CrossRef]
- Brown, S.C.; Whelan, K.; Gearry, R.B.; Day, A.S. Low FODMAP diet in children and adolescents with functional bowel disorder: A clinical case note review. JGH Open 2020, 4, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, L.; Skidmore, P.; Wall, C.; Wilkinson, T.; Muir, J.; Frampton, C.; Gearry, R. A Low FODMAP Diet Is Nutritionally Adequate and Therapeutically Efficacious in Community Dwelling Older Adults with Chronic Diarrhoea. Nutrients 2020, 12, 3002. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The low FODMAP diet in the management of irritable bowel syndrome: An evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuck, C.; Barrett, J. Re-challenging FODMAPs: The low FODMAP diet phase two. J. Gastroenterol. Hepatol. 2017, 32, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuck, C.J.; Reed, D.E.; Muir, J.G.; Vanner, S.J. Implementation of the low FODMAP diet in functional gastrointestinal symptoms: A real-world experience. Neurogastroenterol. Motil. 2019, 32, e13730. [Google Scholar] [CrossRef]
- Mitchell, H.; Porter, J.; Gibson, P.R.; Barrett, J.; Garg, M. Review article: Implementation of a diet low in FODMAPs for patients with irritable bowel syndrome—directions for future research. Aliment. Pharmacol. Ther. 2019, 49, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.R.; Halmos, E.P.; Muir, J.G. Review article: FODMAPS, prebiotics and gut health-the FODMAP hypothesis revisited. Aliment. Pharmacol. Ther. 2020, 52, 233–246. [Google Scholar] [CrossRef]
- Harer, K.N. Irritable Bowel Syndrome, Disordered Eating, and Eating Disorders. Gastroenterol. Hepatol. 2019, 15, 280–282. [Google Scholar]
- Murray, H.B.; Kuo, B.; Eddy, K.T.; Breithaupt, L.; Becker, K.R.; Ba, M.J.D.; Thomas, J.J.; Staller, K. Disorders of gut–brain interaction common among outpatients with eating disorders including avoidant/restrictive food intake disorder. Int. J. Eat. Disord. 2020, 1–7. [Google Scholar] [CrossRef]
- Halmos, E.P.; Gibson, P.R. Controversies and reality of the FODMAP diet for patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 2019, 34, 1134–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarlata, K.; Catsos, P.; Smith, J. From a Dietitian’s Perspective, Diets for Irritable Bowel Syndrome Are Not One Size Fits All. Clin. Gastroenterol. Hepatol. 2020, 18, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Varney, J.; Barrett, J.; Scarlata, K.; Catsos, P.; Gibson, P.R.; Muir, J.G. FODMAPs: Food composition, defining cutoff values and international application. J. Gastroenterol. Hepatol. 2017, 32, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Vindigni, S.M.; Zisman, T.L.; Suskind, D.L.; Damman, C.J. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: A tripartite pathophysiological circuit with implications for new therapeutic directions. Ther. Adv. Gastroenterol. 2016, 9, 606–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakodkar, S.; Farooqui, A.J.; Mikolaitis, S.L.; Mutlu, E.A. The Specific Carbohydrate Diet for Inflammatory Bowel Disease: A Case Series. J. Acad. Nutr. Diet. 2015, 115, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Suskind, D.L.; Wahbeh, G.; Cohen, S.A.; Damman, C.J.; Klein, J.; Braly, K.; Shaffer, M.; Lee, D. Patients Perceive Clinical Benefit with the Specific Carbohydrate Diet for Inflammatory Bowel Disease. Dig. Dis. Sci. 2016, 61, 3255–3260. [Google Scholar] [CrossRef]
- Nakayuenyongsuk, W.; Christofferson, M.; Nguyen, K.; Burgis, J.; Park, K.T. Diet to the Rescue: Cessation of Pharmacotherapy After Initiation of Exclusive Enteral Nutrition (EEN) Followed by Strict and Liberalized Specific Carbohydrate Diet (SCD) in Crohn’s Disease. Dig. Dis. Sci. 2017, 62, 2686–2689. [Google Scholar] [CrossRef]
- Vincenzi, M.; Del Ciondolo, I.; Pasquini, E.; Gennai, K.; Paolini, B. Effects of a low FODMAP diet and specific carbohydrate diet on symptoms and nutritional adequacy of patients with irritable bowel syndrome: Preliminary results of a single-blinded randomized trial. J. Transl. Intern. Med. 2017, 5, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Braly, K.; Williamson, N.; Shaffer, M.L.; Lee, D.; Wahbeh, G.; Klein, J.; Giefer, M.; Suskind, D.L. Nutritional Adequacy of the Specific Carbohydrate Diet in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 533–538. [Google Scholar] [CrossRef]
- Wilson, A.S.; Koller, K.R.; Ramaboli, M.C.; Nesengani, L.T.; Ocvirk, S.; Chen, C.; Flanagan, C.A.; Sapp, F.R.; Merritt, Z.T.; Bhatti, F.; et al. Diet and the Human Gut Microbiome: An International Review. Dig. Dis. Sci. 2020, 65, 723–740. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Carbonero, F.; Zoetendal, E.G.; Delany, J.P.; Wang, M.; Newton, K.; Gaskins, H.R.; O’Keefe, S.J.D. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 2013, 98, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Je, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch. Cardiovasc. Dis. 2016, 109, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, K.M.; McNaughton, S.A. Dietary patterns by reduced rank regression are associated with obesity and hypertension in Australian adults. Br. J. Nutr. 2017, 117, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [Green Version]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A.M.; Lobley, G.E.; Wallace, R.J.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.J.; Scarlata, K. Mast Cell Activation Syndrome-What it Is and Isn’t. Pract. Gastroenterol. 2020, 44, 26–32. [Google Scholar]
- Malakar, S. Bioactive food chemicals and gastrointestinal symptoms: A focus of salicylates. J. Gastroenterol. Hepatol. 2017, 32, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Hayder, H.; Mueller, U.; Bartholomaeus, A. Review of Intolerance Reactions to Food and Food Additives. Int. Food Risk Anal. J. 2011, 1, 23–32. [Google Scholar] [CrossRef]
- Seneviratne, S.L.; Maitland, A.; Afrin, L. Mast cell disorders in Ehlers-Danlos syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2017, 175, 226–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, L.; Swain, A.; Faulkner-Hogg, K. Food allergy and intolerance. Aust. Fam. Physician 2009, 38, 705–707. [Google Scholar] [PubMed]
- Clarke, L.; McQueen, J.; Samild, A.; Swain, A. Dietary management of food allergy and food intolerance in children and adults. AJND 1996, 53, 3. [Google Scholar]
- Lomer, M.C.E. Review article: The aetiology, diagnosis, mechanisms and clinical evidence for food intolerance. Aliment. Pharmacol. Ther. 2015, 41, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C.J.; Biesiekierski, J.R.; Schmid-Grendelmeier, P.; Pohl, D. Food Intolerances. Nutrients 2019, 11, 1684. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.R.; Clancy, R.L. AN AUSTRALIAN EXCLUSION DIET. Med. J. Aust. 1978, 1, 290–292. [Google Scholar] [CrossRef]
- Skypala, I. Adverse Food Reactions—An Emerging Issue for Adults. J. Am. Diet. Assoc. 2011, 111, 1877–1891. [Google Scholar] [CrossRef]
- Skypala, I.J.; Williams, M.; Reeves, L.; Meyer, R.; Venter, C. Sensitivity to food additives, vaso-active amines and salicylates: A review of the evidence. Clin. Transl. Allergy 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hospital RPA. RPA Allergy Research. 2021. Available online: https://www.slhd.nsw.gov.au/rpa/allergy/research/students/default.html (accessed on 14 January 2021).
- Swain, A.R.; Soutter, V.L.; Loblay, R.H. RPAH Elimination Diet Handbook: With Food & Shopping Guide; Allergy Unit, Royal Prince Alfred Hospital: Sydney, Australia, 2011. [Google Scholar]
- Barrett, J.S.; Gibson, P.R. Fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and nonallergic food intolerance: FODMAPs or food chemicals? Ther. Adv. Gastroenterol. 2012, 5, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Raithel, M.; Baenkler, H.W.; Naegel, A.; Buchwald, F.; Schultis, H.W.; Backhaus, B.; Kimpel, S.; Koch, H.; Mach, K.; Hahn, E.G.; et al. Significance of salicylate intolerance in diseases of the lower gastrointestinal tract. J. Physiol. Pharm. 2005, 5, 89–102. [Google Scholar]
- Zito, F.P.; Sarnelli, G.; Cuomo, R.; Andreozzi, P.; Passananti, V.; De Carlo, G. Irritable bowel syndrome and food interaction. World J. Gastroenterol. 2014, 20, 8837–8845. [Google Scholar]
- Komericki, P.; Klein, G.; Reider, N.; Hawranek, T.; Strimitzer, T.; Lang, R.; Kranzelbinder, B.; Aberer, W. Histamine intolerance: Lack of reproducibility of single symptoms by oral provocation with histamine: A randomised, double-blind, placebo-controlled cross-over study. Wien. Klin. Wochenschr. 2010, 123, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Malakar, S.; Gibson, P.R.; Barrett, J.S.; Muir, J.G. Naturally occurring dietary salicylates: A closer look at common Australian foods. J. Food Compos. Anal. 2017, 57, 31–39. [Google Scholar] [CrossRef]
- De Roest, R.H.; Dobbs, B.R.; Chapman, B.A.; O'Brien, L.A.; Leeper, J.A.; Hebblethwaite, C.R.; Gearry, R.B. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: A prospective study. Int. J. Clin. Pract. 2013, 67, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Dukowicz, A.C.; Lacy, B.E.; Levine, G.M. Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterol. Hepatol. 2007, 3, 112–122. [Google Scholar]
- Quigley, E.M.; Murray, J.A.; Pimentel, M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth: Expert Review. Gastroenterology 2020, 159, 1526–1532. [Google Scholar] [CrossRef]
- Bohm, M.; Siwiec, R.M.; Wo, J.M. Diagnosis and Management of Small Intestinal Bacterial Overgrowth. Nutr. Clin. Pract. 2013, 28, 289–299. [Google Scholar] [CrossRef]
- Pimentel, M.; Soffer, E.E.; Chow, E.J.; Kong, Y.; Lin, H.C. Lower Frequency of MMC Is Found in IBS Subjects with Abnormal Lactulose Breath Test, Suggesting Bacterial Overgrowth. Dig. Dis. Sci. 2002, 47, 2639–2643. [Google Scholar] [CrossRef]
- Teo, M.; Chung, S.; Chitti, L.; Tran, C.; Kritas, S.; Butler, R.; Cummins, A. Small bowel bacterial overgrowth is a common cause of chronic diarrhea. J. Gastroenterol. Hepatol. 2004, 19, 904–909. [Google Scholar] [CrossRef]
- Yao, C.K.; Tuck, C.J. The clinical value of breath hydrogen testing. J. Gastroenterol. Hepatol. 2017, 32, 20–22. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Saad, R.J.; Long, M.D.; Rao, S.S.C. ACG Clinical Guideline: Small Intestinal Bacterial Overgrowth. Am. J. Gastroenterol. 2020, 115, 165–178. [Google Scholar] [CrossRef]
- Gatta, L.; Scarpignato, C. Systematic review with meta-analysis: Rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth. Aliment. Pharmacol. Ther. 2017, 45, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Furnari, M.; Parodi, A.; Gemignani, L.; Giannini, E.G.; Marenco, S.; Savarino, V.; Assandri, L.; Fazio, V.; Bonfanti, D.; Inferrera, S. Clinical trial: The combination of rifaximin with partially hydrolysed guar gum is more effective than rifaximin alone in eradicating small intestinal bacterial overgrowth. Aliment. Pharmacol. Ther. 2010, 32, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, E.C.; Gabrielli, M.; Scarpellini, E.; Lupascu, A.; Novi, M.; Sottili, S.; Vitale, G.; Cesario, V.; Serricchio, M.; Cammarota, G.; et al. Small Intestinal Bacterial Overgrowth Recurrence after Antibiotic Therapy. Am. J. Gastroenterol. 2008, 103, 2031–2035. [Google Scholar] [CrossRef]
- Chedid, V.; Dhalla, S.; Clarke, J.O.; Roland, B.C.; Dunbar, K.B.; Koh, J.; Justino, E.; Tomakin, R.E.; Mullin, G.E. Herbal Therapy is Equivalent to Rifaximin for the Treatment of Small Intestinal Bacterial Overgrowth. Glob. Adv. Health Med. 2014, 3, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Constantino, T.; Kong, Y.; Bajwa, M.; Rezaei, A.; Park, S. A 14-Day Elemental Diet Is Highly Effective in Normalizing the Lactulose Breath Test. Dig. Dis. Sci. 2004, 49, 73–77. [Google Scholar] [CrossRef]
- Deng, Y.; Misselwitz, B.; Dai, N.; Fox, M. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients 2015, 7, 8020–8035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swallow, D.M. Genetics of Lactase Persistence and Lactose Intolerance. Annu. Rev. Genet. 2003, 37, 197–219. [Google Scholar] [CrossRef] [PubMed]
- Varjú, P.; Gede, N.; Szakács, Z.; Hegyi, P.; Cazacu, I.M.; Pécsi, D.; Fábián, A.; Szepes, Z.; Áron, V.; Tenk, J.; et al. Lactose intolerance but not lactose maldigestion is more frequent in patients with irritable bowel syndrome than in healthy controls: A meta-analysis. Neurogastroenterol. Motil. 2018, 31, e13527. [Google Scholar] [CrossRef]
- Lomer, M.C.E.; Parkes, G.C.; Sanderson, J.D. Review article: Lactose intolerance in clinical practice—myths and realities. Aliment. Pharmacol. Ther. 2007, 27, 93–103. [Google Scholar] [CrossRef]
- Shaukat, A.; Levitt, M.D.; Taylor, B.C.; MacDonald, R.; Shamliyan, T.A.; Kane, R.L.; Wilt, T.J. Systematic Review: Effective Management Strategies for Lactose Intolerance. Ann. Intern. Med. 2010, 152, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.D.; Davies, G.J. Lactose intolerance: Problems in diagnosis and treatment. J. Clin. Gastroenterol. 1999, 28, 208–216. [Google Scholar] [CrossRef]
- Misselwitz, B.; Butter, M.; Verbeke, K.; Fox, M.R. Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut 2019, 68, 2080–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger-Grübel, C.; Hutter, S.; Hiestand, M.; Brenner, I.; Güsewell, S.; Borovicka, J. Treatment efficacy of a low FODMAP diet compared to a low lactose diet in IBS patients: A randomized, cross-over designed study. Clin. Nutr. ESPEN 2020, 40, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Suarez, F.L.; Savaiano, D.A.; Levitt, M.D. A Comparison of Symptoms after the Consumption of Milk or Lactose-Hydrolyzed Milk by People with Self-Reported Severe Lactose Intolerance. N. Engl. J. Med. 1995, 333, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Vernia, P.; Di Camillo, M.; Marinaro, V. Lactose malabsorption, irritable bowel syndrome and self-reported milk intolerance. Dig. Liver Dis. 2001, 33, 234–239. [Google Scholar] [CrossRef]
- Zheng, X.; Chu, H.; Cong, Y.; Deng, Y.; Long, Y.; Zhu, Y.; Pohl, D.; Fried, M.; Dai, N.; Fox, M. Self-reported lactose intolerance in clinic patients with functional gastrointestinal symptoms: Prevalence, risk factors, and impact on food choices. Neurogastroenterol. Motil. 2015, 27, 1138–1146. [Google Scholar] [CrossRef]
- Suchy, F.J.; Brannon, P.M.; Carpenter, T.O.; Fernandez, J.R.; Gilsanz, V.; Gould, J.B.; Hall, K.; Hui, S.L.; Lupton, J.; Mennella, J.; et al. National Institutes of Health Consensus Development Conference: Lactose Intolerance and Health. Ann. Intern. Med. 2010, 152, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.F. Chronic diarrhea caused by idiopathic bile acid malabsorption: An explanation at last. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Bajor, A.; Törnblom, H.; Rudling, M.; Ung, K.-A.; Simrén, M. Increased colonic bile acid exposure: A relevant factor for symptoms and treatment in IBS. Gut 2014, 64, 84–92. [Google Scholar] [CrossRef]
- Gracie, D.J.; Kane, J.S.; Mumtaz, S.; Scarsbrook, A.F.; Chowdhury, F.U.; Ford, A.C. Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea. Neurogastroenterol. Motil. 2012, 24, 983-e538. [Google Scholar] [CrossRef]
- Crooks, B.; Limdi, J.K.; McLaughlin, J. How to manage chronic diarrhoea in the elderly? Front. Gastroenterol. 2019, 10, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Bañares, F.; Esteve, M.; Salas, A.; Forné, M.; Espinós, J.C.; Martín-Comín, J.; Viver, J.M. Bile Acid Malabsorption in Microscopic Colitis and in Previously Unexplained Functional Chronic Diarrhea. Dig. Dis. Sci. 2001, 46, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.; Lalji, A.; Bodla, S.; Muls, A.; Andreyev, H.J.N.; Shaw, C. Management of bile acid malabsorption using low-fat dietary interventions: A useful strategy applicable to some patients with diarrhoea-predominant irritable bowel syndrome? Clin. Med. 2015, 15, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, J.R.; Pattni, S.S. Managing bile acid diarrhoea. Ther. Adv. Gastroenterol. 2010, 3, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Ravisankar, P.; Reddy, A.A.; Nagalakshmi, B.; Koushik, O.S.; Kumar, B.V.; Anvith, P.S. The comprehensive review on fat soluble vitamins. IOSR J. Pharm. 2015, 5, 12–28. [Google Scholar]
- Borel, P.; Desmarchelier, C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu. Rev. Nutr. 2018, 38, 69–96. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, D.C.; Camilleri, M.; Chey, W.D.; Leontiadis, G.I.; Marshall, J.K.; Shaffer, E.A.; Tse, F.; Walters, J.R. Canadian Association of Gastroenterology Clinical Practice Guideline on the Management of Bile Acid Diarrhea. Clin. Gastroenterol. Hepatol. 2020, 18, 24–41.e1. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, I.A.; Gill, S.; Wilcox, M.D.; Pearson, J.P.; Chater, P.I. Starch digestion in the upper gastrointestinal tract of humans. Starch-Stärke 2018, 70, 1700111. [Google Scholar] [CrossRef]
- Treem, W.R. Clinical Aspects and Treatment of Congenital Sucrase-Isomaltase Deficiency. J. Pediatr. Gastroenterol. Nutr. 2012, 55, S7–S13. [Google Scholar] [CrossRef]
- Bin Kim, S.; Calmet, F.H.; Garrido, J.; Garcia-Buitrago, M.T.; Moshiree, B. Sucrase-Isomaltase Deficiency as a Potential Masquerader in Irritable Bowel Syndrome. Dig. Dis. Sci. 2019, 65, 534–540. [Google Scholar] [CrossRef]
- Viswanathan, L.; Rao, S.S.C.; Kennedy, K.; Sharma, A.; Yan, Y.; Jimenez, E. Prevalence of Disaccharidase Deficiency in Adults With Unexplained Gastrointestinal Symptoms. J. Neurogastroenterol. Motil. 2020, 26, 384–390. [Google Scholar] [CrossRef]
- Zheng, T.; Eswaran, S.; Photenhauer, A.L.; Merchant, J.L.; Chey, W.D.; D’Amato, M. Reduced efficacy of low FODMAPs diet in patients with IBS-D carrying sucrase-isomaltase (SI) hypomorphic variants. Gut 2020, 69, 397–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Etxebarria, K.; Zheng, T.; Bonfiglio, F.; Bujanda, L.; Dlugosz, A.; Lindberg, G.; Schmidt, P.T.; Karling, P.; Ohlsson, B.; Simren, M.; et al. Increased Prevalence of Rare Sucrase-isomaltase Pathogenic Variants in Irritable Bowel Syndrome Patients. Clin. Gastroenterol. Hepatol. 2018, 16, 1673–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henström, M.; Diekmann, L.; Bonfiglio, F.; Hadizadeh, F.; Kuech, E.-M.; Von Köckritz-Blickwede, M.; Thingholm, L.B.; Zheng, T.; Assadi, G.; Dierks, C.; et al. Functional variants in the sucrase–isomaltase gene associate with increased risk of irritable bowel syndrome. Gut 2018, 67, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Nilholm, C.; Larsson, E.; Roth, B.; Gustafsson, R.; Ohlsson, B. Irregular Dietary Habits with a High Intake of Cereals and Sweets Are Associated with More Severe Gastrointestinal Symptoms in IBS Patients. Nutrients 2019, 11, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMeans, A.R. Congenital sucrase-isomaltase deficiency: Diet assessment and education guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, S37–S39. [Google Scholar] [CrossRef] [PubMed]
- Nilholm, C.; Roth, B.; Ohlsson, B. A Dietary Intervention with Reduction of Starch and Sucrose Leads to Reduced Gastrointestinal and Extra-Intestinal Symptoms in IBS Patients. Nutrients 2019, 11, 1662. [Google Scholar] [CrossRef] [Green Version]
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef]
- Rubio-Tapia, A.; Hill, I.D.; Kelly, C.P.; Calderwood, A.H.; Murray, J.A. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Am. J. Gastroenterol. 2013, 108, 656–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreutz, J.M.; Adriaanse, M.P.M.; Van Der Ploeg, E.M.C.; Vreugdenhil, A.C.E. Narrative Review: Nutrient Deficiencies in Adults and Children with Treated and Untreated Celiac Disease. Nutrients 2020, 12, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villafuerte-Galvez, J.; Vanga, R.R.; Dennis, M.; Hansen, J.; Leffler, D.A.; Kelly, C.P.; Mukherjee, R. Factors governing long-term adherence to a gluten-free diet in adult patients with coeliac disease. Aliment. Pharmacol. Ther. 2015, 42, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Dana, Z.Y.; Lena, B.; Vered, R.; Haim, S.; Efrat, B. Factors associated with non adherence to a gluten free diet in adult with celiac disease: A survey assessed by BIAGI score. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Zarkadas, M.; Dubois, S.; MacIsaac, K.; Cantin, I.; Rashid, M.; Roberts, K.C.; La Vieille, S.; Godefroy, S.; Pulido, O.M. Living with coeliac disease and a gluten-free diet: A Canadian perspective. J. Hum. Nutr. Diet. 2012, 26, 10–23. [Google Scholar] [CrossRef]
- Halmos, E.P.; Deng, M.; Knowles, S.R.; Sainsbury, K.; Mullan, B.; Tye-Din, J.A. Food knowledge and psychological state predict adherence to a gluten-free diet in a survey of 5310 Australians and New Zealanders with coeliac disease. Aliment. Pharmacol. Ther. 2018, 48, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E.A. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
- Hall, N.; Rubin, G.; Charnock, A. Systematic review: Adherence to a gluten-free diet in adult patients with coeliac disease. Aliment. Pharmacol. Ther. 2009, 30, 315–330. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Lomer, M.C.E. Who should deliver the low FODMAP diet and what educational methods are optimal: A review. J. Gastroenterol. Hepatol. 2017, 32, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, S.J.; Parker, F.C.; Muir, J.G.; Gibson, P.R. Dietary Triggers of Abdominal Symptoms in Patients With Irritable Bowel Syndrome: Randomized Placebo-Controlled Evidence. Clin. Gastroenterol. Hepatol. 2008, 6, 765–771. [Google Scholar] [CrossRef]
Rome IV Criteria for Irritable Bowel Syndrome–D, M | Rome IV Criteria for Functional Diarrhoea |
---|---|
Abdominal pain on average at least 1 day/week in the last 3 months that is associated with at least 2 of the following | Not usually associated with pain |
| Loose or watery stools at least 25% of the time |
Duration of more than three months | Duration of more than three months |
Common Causes of Chronic Diarrhoea | Mechanism | Dietary Management |
---|---|---|
Predominantly pharmaceutical responsive | ||
Pancreatic insufficiency | Insufficient secretion of pancreatic digestive enzymes into the small intestine | Teaching patients sources of fat so they are able to titrate digestive enzymes effectively |
Microscopic colitis | Inflammation occurring at a microscopic level in the lining of the large intestine | N/A |
Combination of pharmaceutical and dietary responsive | ||
Short-bowel syndrome | Reduced mucosal surface due to removal or damage of part of the small intestine | Dietary manipulation to enhance absorption such as small frequent meals, higher protein and less refined sugar |
Inflammatory bowel diseases | Chronic intestinal inflammation occurring throughout the gastrointestinal tract | Dietary and nutrition therapies to manage inflammation and promote maintenance of remission |
Small intestinal bacterial overgrowth | Overgrowth of colonic bacteria in the small intestine | Restriction of fermentable carbohydrates (the low FODMAP diet) or an elemental diet may reduce overgrowth if antibiotics have not been responsive |
Bile acid diarrhoea | Excess bile acids entering the large intestine | A low-fat diet may reduce the production of bile acids |
Predominantly dietary responsive | ||
Irritable bowel syndrome | Mechanisms are not clearly understood but could be due to increased gut transit, visceral hypersensitivity or altered gut microbiome | Dietary strategies could include: reducing portion sizes, regular eating, reducing fermentable carbohydrates or reducing natural food chemicals |
Lactose intolerance | Reduced lactase enzyme activity in the small intestine | Limiting lactose-containing milk and milk products |
Sucrase-isomaltase intolerance | Reduced enzyme activity of sucrase and or isomaltase in the small intestine | Reducing dietary intake of foods containing sucrose, isomaltose and maltose |
Coeliac disease | Genetic condition resulting in damage to the lining of the small intestine when gluten is consumed | A strict lifelong gluten-free diet resolves symptoms and results in healing the lining of the small intestine |
Disease | Dietary Therapy | Pearls | Pitfalls |
---|---|---|---|
Irritable bowel syndrome (IBS) | Low FODMAP diet | The most studied dietary intervention across all age groups. | The long length of time to establish likely trigger foods. |
There are multiple resources; designated websites, apps, recipes, Facebook pages, books, magazines. | Obsolete and outdated information is likely; resources need regular review by qualified health professionals. | ||
Comprehensive dietitian training is available. | FODMAP content differs by country. Individual tolerance may differ. | ||
Commercial product FODMAP testing is available increases consumer choice. | Phase 1 may restrict prebiotic food intake. | ||
A modified version can be used with those at high risk. | Restrictive diets may contribute to disordered eating patterns. | ||
Small amounts of wheat are allowed so a gluten-free diet is not required. | Phase 1 may reduce abundance of multiple bacterial species. | ||
High-lactose dairy is avoided. A dairy free diet is not required. | |||
Specific-carbohydrate diet | Breaking the Vicious Cycle book provides detailed instruction. | Limited evidence of mechanisms, food composition and efficacy. | |
Online support is available. | Long length of time to achieve improvements. | ||
No evidence of impact on diet adequacy, quality of life and mental health. | |||
Limited and conflicting guidance on use of the diet and reintroducing foods. | |||
Restrictive diets may contribute to disordered eating patterns. | |||
Likely restricts prebiotic food intake and nutrient intake. | |||
The low-food chemical/low-histamine diet | The Royal Prince Alfred Hospital provides detailed instruction for the low-food chemical diet. | Limited evidence of efficacy. | |
There are multiple resources; designated websites, apps, recipes, Facebook pages, books. | Limited and conflicting food chemical content data. | ||
Relatively short elimination period. | Triggers may be non-diet related. | ||
A modified version can be used with those at high risk. | Likely restricts prebiotic and nutrient intake. | ||
May address a wider range of intolerances. | Restrictive diets may contribute to disordered eating patterns. | ||
Small intestinal bacteria overgrowth (SIBO) | Low FODMAP diet | Excellent support information available. | Online information is prevalence, but given the lack of evidence in this field, it is likely to lack any validity. |
Dietary changes may not be needed if antibiotics are effective | Reoccurrence of SIBO is common, risking nutritional deficiencies if repeated dietary restriction is conducted. | ||
Elemental diet | Nutritional complete | Provides no fibre and restricts prebiotics. | |
Patients may not require any dietary restrictions. | May not be palatable and therefore poorly tolerated. | ||
Lactose intolerance | Low-lactose diet | Credible methods for diagnosing are available. | Lactose-free products or lactase enzymes may not be easily available or affordable for all. |
Suitable alternatives are available providing nutrition in similar amounts. | Risk of low intake of calcium and vitamin D. | ||
High-lactose dairy is avoided. A dairy free diet is not required. | |||
Bile acid diarrhoea | Low-fFat diet | May be better tolerated than bile acid sequestrants. | Risk of inadequate intake of fat-soluble vitamins and reduction in overall energy intake leading to unintended weight loss. |
Dietary changes may not be needed if bile acid sequestrants are effective | A variety of low-fat products are readily available at same cost to the full fat varieties. | ||
Sucrase-isomaltase deficiency (SID) | Low-sucrose/starch diet | There are multiple resources; designated websites, apps, recipes, Facebook pages, books. | Limited research on the long-term management of dietary changes. |
Oral enzymes are available to allowing for a broader range of foods to be eaten. | Sucrose enzymes are not available in all countries. | ||
With good planning the diet can still provide adequate fibre. | May restrict prebiotic food intake. | ||
Limited research on the long-term management of dietary changes. | |||
Coeliac disease | Gluten-free diet | Gold standards for diagnosis. | Lifelong avoidance of all gluten-containing food is required. |
Gluten-free food alternatives are readily available. | Cross contamination can occur. | ||
There are multiple resources; designated websites, apps, recipes, Facebook pages, books. | Gluten-free alternatives can be more expensive, reducing diet compliance for some. |
Potential Pitfall | Management Strategy |
---|---|
Unnecessary use of restrictive diet | Rule out other potential causes such as IBD, coeliac disease, diverticular disease, colorectal cancer [17] |
Consider general lifestyle and dietary advice first such as the NICE guidelines [17] | |
Diagnostic testing to rule out SIBO and lactose malabsorption if available | |
Nutritional deficiencies | Review oral intake prior to commencing diet to determine if any already existing nutrient deficiencies |
Discuss suitable food alternatives | |
Consider nutritional supplements for likely nutrient deficits | |
Diet restrictiveness | Consider lifestyle and general dietary advice first, e.g., NICE guidelines [17] |
Consider a modified version of the diet [44,45] | |
Discuss food swaps where examples of food alternatives are given for each suggested eliminated food | |
Develop a personalised plan during dietary eliminations [78] | |
Provide shopping lists of suitable alternatives | |
Provide recipe ideas and discuss meal planning | |
Reintroduce restricted foods in a timely manner if improvements with symptoms or advise return to usual diet if not improvement was experienced | |
Develop a personalised plan to include previously restricted foods that have been tolerated during the reintroduction phase | |
Encourage frequent reintroduction of identified trigger foods, if appropriate, to test if threshold tolerance has increased | |
Changes in the microbiome | Promote diet diversity to prevent reducing fermentable fibre [79], encourage allowed foods that may not have been eaten before starting the diet |
Encourage vegetables or fruit at all meal times, pectin-containing fruit and vegetables may be better tolerated prebiotics [79] | |
Encourage a fibre supplement if fibre intake is likely to be low [22] |
Pre-Dietary Intervention |
---|
Remain up to date in the dietary management of chronic diarrhoea |
A thorough assessment of current dietary adequacy |
Review of medical history, gastroenterologist reports, blood tests, medications |
In consultation with the patient, determine which dietary intervention is most appropriate |
Careful instruction on how to follow the diet considering the pitfalls of the recommended dietary therapy (Table 4) |
Determining if nutritional deficiencies are likely |
Dietary Support |
Explanation of the mechanisms of the diet and why dietary changes are required |
Provision of recipes and menu plans if needed |
Provision of diet alternatives than can replace nutrients from restricted foods |
Post-Dietary Intervention |
Review of effectiveness of dietary change |
Review of diet adequacy |
Instruction on how to reintroduce restricted foods if appropriate |
Instruction on how to modify the diet for long term use, if needed |
Instruction on ensuring diet diversity to minimise any likely nutrient deficiencies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Brien, L.; Wall, C.L.; Wilkinson, T.J.; Gearry, R.B. What Are the Pearls and Pitfalls of the Dietary Management for Chronic Diarrhoea? Nutrients 2021, 13, 1393. https://doi.org/10.3390/nu13051393
O’Brien L, Wall CL, Wilkinson TJ, Gearry RB. What Are the Pearls and Pitfalls of the Dietary Management for Chronic Diarrhoea? Nutrients. 2021; 13(5):1393. https://doi.org/10.3390/nu13051393
Chicago/Turabian StyleO’Brien, Leigh, Catherine L. Wall, Tim J. Wilkinson, and Richard B. Gearry. 2021. "What Are the Pearls and Pitfalls of the Dietary Management for Chronic Diarrhoea?" Nutrients 13, no. 5: 1393. https://doi.org/10.3390/nu13051393
APA StyleO’Brien, L., Wall, C. L., Wilkinson, T. J., & Gearry, R. B. (2021). What Are the Pearls and Pitfalls of the Dietary Management for Chronic Diarrhoea? Nutrients, 13(5), 1393. https://doi.org/10.3390/nu13051393