Elite Male Volleyball Players Are at Risk of Insufficient Energy and Carbohydrate Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Experimental Design
2.3. Measured Resting Metabolic Rate
2.4. Dietary 4-Day Intake Records
2.5. Dual-Energy X-ray Absorptiometry Scans
2.6. Surface Anthropometry
2.7. Blood Samples
2.8. Victorian Institute of Sport Assessment Questionnaire—Patellar Tendon (VISA-P)
2.9. Three-Factor Eating Questionnaire R-18 (TFEQ-R18)
2.10. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mendes, B.; Palao, J.M.; Silvério, A.; Owen, A.; Carriço, S.; Calvete, F.; Clemente, F.M. Daily and weekly training load and wellness status in preparatory, regular and congested weeks: A season-long study in elite volleyball players. Res. Sports Med. 2018, 26, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Gabbett, T.J.; Stanganelli, L.-C.R. An Analysis of Playing Positions in Elite Men’s Volleyball: Considerations for Competition Demands and Physiologic Characteristics. J. Strength Cond. Res. 2008, 23, 1858–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Close, G.L.; Sale, C.; Baar, K.; Bermon, S. Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A Systematic Review, Meta-Analysis and Meta-Regression of the Effect of Protein Supplementation on Resistance Training-Induced Gains in Muscle Mass and Strength in Healthy Adults. Br. J. Sports Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.K.; Burke, L.M.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.K.; Meyer, N.L.; et al. IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Br. J. Sports Med. 2018, 52, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Erdman, K.A.; Tunnicliffe, J.; Lun, V.M.; Reimer, R.A. Eating Patterns and Composition of Meals and Snacks in Elite Canadian Athletes. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 210–219. [Google Scholar] [CrossRef]
- Beals, K.A. Eating Behaviours, Nutritional Status, and Menstrual Function in Elite Female Adolescent Volleyball Players. J. Am. Diet. Assoc. 2002, 102, 1293–1296. [Google Scholar] [CrossRef]
- Hassapidou, M. Dietary Assessment of Five Male Sports Teams in Greece. Nutr. Food Sci. 2001, 31, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Mielgo-Ayuso, J.; Zourdos, M.C.; Calleja-González, J.; Urdampilleta, A.; Ostojic, S.M. Dietary Intake Habits and Controlled Training on Body Composition and Strength in Elite Female Volleyball Players during the Season. Appl. Physiol. Nutr. Metab. 2015, 40, 827–834. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Papadopoulou, S.D.; Gallos, G.K. Macro- and Micro-Nutrient Intake of Adolescent Greek Female Volleyball Players. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 73–80. [Google Scholar] [CrossRef] [Green Version]
- De Lauzon, B.; Romon, M.; Deschamps, V.; Lafay, L.; Borys, J.-M.; Karlsson, J.; Ducimetière, P.; Charles, M.A. The Fleurbaix Laventie Ville Sante (FLVS) Study Group. The Three-Factor Eating Questionnaire-R18 Is Able to Distinguish among Different Eating Patterns in a General Population. J. Nutr. 2004, 134, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.T.; Harris, M.; Berning, J.R.; Meyer, N.L. Energy Availability and Dietary Patterns of Adult Male and Female Competitive Cyclists with Lower Than Expected Bone Mineral Density. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 594–602. [Google Scholar] [CrossRef]
- Caia, J.; Weiss, L.W.; Chiu, L.Z.F.; Schilling, B.K.; Paquette, M.R.; Relyea, G.E. Do Lower-Body Dimensions and Body Composition Explain Vertical Jump Ability? J. Strength Cond. Res. 2016, 30, 3073–3083. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. (Eds.) DRI, Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Lian, Ø.B.; Engebretsen, L.; Bahr, R. Prevalence of Jumper’s Knee among Elite Athletes from Different Sports: A Cross-Sectional Study. Am. J. Sports Med. 2005, 33, 561–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kettunen, J.A.; Kvist, M.; Alanen, E.; Kujala, U.M. Long-Term Prognosis for Jumper’s Knee in Male Athletes: Prospective Follow-up Study. Am. J. Sports Med. 2002, 30, 689–692. [Google Scholar] [CrossRef]
- Janke, E.A.; Jones, E.; Hopkins, C.M.; Ruggieri, M.; Hruska, A. Catastrophizing and Anxiety Sensitivity Mediate the Relationship between Persistent Pain and Emotional Eating. Appetite 2016, 103, 64–71. [Google Scholar] [CrossRef]
- Black, A. The Sensitivity and Specicity of the Goldberg Cut-off for EI:BMR for Identifying Diet Reports of Poor Validity. Eur. J. Clin. Nutr. 2000, 54, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Cole, T.J.; Dauncey, M.J.; Marrs, R.W.; Murgatroyd, P.R. Analysis of gaseous exchange in open-circuit indirect calorimetry. Med. Biol. Eng. Comput. 1984, 22, 333–338. [Google Scholar] [CrossRef]
- Péronnet, F.; Massicotte, D. Table of Nonprotein Respiratory Quotient: An Update. Can. J. Sport Sci. 1991, 16, 23–29. [Google Scholar]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology Review: Using Dual-Energy X-Ray Absorptiometry (DXA) for the Assessment of Body Composition in Athletes and Active People. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef] [PubMed]
- VanItallie, T.B.; Yang, M.U.; Heymsfield, S.B.; Funk, R.C.; Boileau, R.A. Height-Normalized Indices of the Body’s Fat-Free Mass and Fat Mass: Potentially Useful Indicators of Nutritional Status. Am. J. Clin. Nutr. 1990, 52, 953–959. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.D.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Lower Hutt, New Zealand, 2011; pp. 1–112. [Google Scholar]
- Slater, G.J.; Duthie, G.; Pyne, D.; Hopkins, W. Validation of a Skinfold Based Index for Tracking Proportional Changes in Lean Mass. Br. J. Sports Med. 2006, 40, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Norton, K.; Olds, T. Somatotyping. In Anthropometrica; University of the New South Wales Press: Randwick, Australia, 1996; pp. 148–170. [Google Scholar]
- Visentini, P.J.; Khan, K.M.; Cook, J.L.; Kiss, Z.S.; Harcourt, P.R.; Wark, J.D. The VISA Score: An Index of Severity of Symptoms in Patients with Jumper’s Knee (Patellar Tendinosis). J. Sci. Med. Sport. 1998, 1, 22–28. [Google Scholar] [CrossRef]
- Hernandez-Sanchez, S.; Hidalgo, M.D.; Gomez, A. Responsiveness of the VISA-P Scale for Patellar Tendinopathy in Athletes. Br. J. Sports Med. 2014, 48, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef]
- Basiotis, P.P.; Welsh, S.O.; Cronin, F.J.; Kelsay, J.L.; Mertz, W. Number of Days of Food Intake Records Required to Estimate Individual and Group Nutrient Intakes with Defined Confidence. J. Nutr. 1987, 117, 1638–1641. [Google Scholar] [CrossRef]
- Martinsen, M.; Bratland-Sanda, S.; Eriksson, A.K.; Sundgot-Borgen, J. Dieting to Win or to Be Thin? A Study of Dieting and Disordered Eating among Adolescent Elite Athletes and Non-Athlete Controls. Br. J. Sports Med. 2010, 44, 70–76. [Google Scholar] [CrossRef]
- O’Loughlin, I.; Newton-John, T.R.O. ‘Dis-Comfort Eating’: An Investigation into the Use of Food as a Coping Strategy for the Management of Chronic Pain. Appetite 2019, 140, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.; Georgieff, B. Physiological and Anthropometric Characteristics of Australian Junior National, State and Novice Volleyball Players. J. Strength Cond. Res. 2007, 21, 902–908. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Newton, R.U. Long-Term Training Adaptations in Elite Male Volleyball Players. J. Strength Cond. Res. 2012, 26, 2180–2184. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, M.; Elliott-Sale, K.J.; Parsons, A.; Tang, J.C.Y.; Greeves, J.P.; Fraser, W.D.; Sale, C. Effects of Reduced Energy Availability on Bone Metabolism in Women and Men. Bone 2017, 105, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braakhuis, A.J.; Meredith, K.; Cox, G.R.; Hopkins, W.G.; Burke, L.M. Variability in Estimation of Self-Reported Dietary Intake Data from Elite Athletes Resulting from Coding by Different Sports Dietitians. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Capling, L.; Beck, K.; Gifford, J.; Slater, G.; Flood, V.; O’Connor, H. Validity of Dietary Assessment in Athletes: A Systematic Review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torstveit, M.K.; Fahrenholtz, I.L.; Lichtenstein, M.B.; Stenqvist, T.B.; Melin, A.K. Exercise Dependence, Eating Disorder Symptoms and Biomarkers of Relative Energy Deficiency in Sports (RED-S) among Male Endurance Athletes. BMJ Open 2019, 5, e000439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Variables | µ ± SD |
---|---|---|
Demographic | Age (years) | 25.8 ± 3.2 |
Metabolism | Measured Resting Metabolic Rate (kcal) | 2419 ± 393 |
Knee Health | VISA-P Score | 80.8 ± 14.6 |
Physique Traits | Standing Height (cm) | 197.2 ± 8.1 |
Body Mass (kg) | 93.3 ± 8.8 | |
∑8 Skinfolds (mm) | 74.2 ± 15.4 | |
Lean mass index (mm∙kg−0.14) | 52.6 ± 5.2 | |
Fat free mass (kg) | 77.5 ± 7.7 | |
Fat mass (kg) | 15.9 ± 2.6 | |
Body Fat (%) | 17.0 ± 2.2 | |
Fat free mass Index (kg/m2) | 19.9 ± 1.1 | |
Fat mass Index (kg/m2) | 4.1 ± 0.6 | |
Body Mass Index (kg/m2) | 24.0 ± 1.2 | |
Endomorphy a | 2.0 ± 0.5 | |
Mesomorphy a | 4.7 ± 0.7 | |
Ectomorphy a | 3.3 ± 0.7 | |
Eating Behaviours | Emotional Eating | 14.4 ± 14.6 |
Cognitive Restraint Eating | 30.6 ± 17.1 |
Nutrients | µ ± SD | Min | Max | Below DRI, % (n) | DRI or Sport Nutrition Reference |
---|---|---|---|---|---|
Energy (kcal/day) | 3034 ± 1345 | 1965 | 4835 | - | - |
Energy (kcal/kg/day) | 33 ± 15 | 21 | 50 | 78 (14) | 40–70 e |
Carbohydrate (g/day) | 325 ± 105 | 179 | 560 | - | - |
Carbohydrate (g/kg/day) | 3.5 ± 1.3 | 1.9 | 6.1 | 83 (15) | 5–7 b |
Carbohydrate (% total energy) | 42 ± 8 | 28 | 56 | 72 (13) | 45–65 d |
Fiber (g/day) | 40 ± 17 | 15 | 81 | 61 (11) | 38 a |
Protein (g/day) | 161 ± 34 | 112 | 240 | - | - |
Protein (g/kg/day) | 1.7 ± 0.4 | 1.2 | 2.6 | 33 (6) | 1.6 c |
Protein (% total energy) | 22 ± 4 | 16 | 29 | 0 (0) | 10–35 d |
Fat (g/day) | 119 ± 37 | 68 | 238 | - | - |
Fat (g/kg/day) | 1.2 ± 0.3 | 0.8 | 2.2 | - | - |
Fat (% total energy) | 35 ± 7 | 22 | 44 | 0 (0) | 20–35 d |
Saturated Fat (g/day) | 33 ± 16 | 17 | 51 | - | - |
Saturated Fat (% total energy) | 10 ± 5 | 5 | 15 | - | - |
Omega 3 (g/day) | 2 ± 3 | 1 | 11 | - | - |
Omega 3 (% total energy) | 1 ± 1 | 0 | 2 | - | - |
Nutrients | Intake, µ ± SD | Intake, % DRI, µ ± SD | Below DRI, % (n) | Below EAR, % (n) | DRI a |
---|---|---|---|---|---|
Thiamin (mg/day) | 1.3 ± 0.4 | 111 ± 35 | 44 (8) | 28 (5) | 1.2 |
Riboflavin (mg/day) | 2.1 ± 0.7 | 160 ± 54 | 11 (2) | 6 (1) | 1.3 |
Niacin (mg/day) | 21 ± 6 | 131 ± 40 | 28 (5) | 11 (2) | 16 |
Vitamin B6 (mg/day) | 2.3 ± 0.8 | 175 ± 59 | 5 (1) | 0 (0) | 1.3 |
Vitamin B12 (mcg/day) | 4.6 ± 3.7 | 192 ± 153 | 28 (5) | 28 (5) | 2.4 |
Folate (mcg/day) | 438 ± 150 | 110 ± 37 | 56 (10) | 22 (4) | 400 |
Vitamin A (mcg/day) | 813 ± 341 | 90 ± 38 | 67 (12) | 22 (4) | 900 |
Vitamin D (IU/day) | 296 ± 264 | 148 ± 132 | 39 (7) | - | 200 b |
Vitamin C (mg/day) | 241 ± 334 | 268 ± 371 | 11 (2) | 6 (1) | 90 |
Vitamin E (mg/day) | 14 ± 9 | 90 ± 62 | 56 (10) | 50 (9) | 15 |
Calcium (mg/day) | 1256 ± 493 | 126 ± 49 | 22 (4) | - | 1000 b |
Iron (mg/day) | 24 ± 9 | 297 ± 108 | - | 0 (0) | 8 |
Magnesium (mg/day) | 413 ± 217 | 103 ± 54 | 56 (10) | 44 (8) | 400 |
Zinc (mg/day) | 11 ± 5 | 100 ± 44 | 61 (11) | 44 (8) | 11 |
Water (g/day) | 4433 ± 1098 | 120 ± 30 | 28 (5) | - | 3700 |
Water (g/kg/day) | 48.4 ± 13.3 | - | - | - | - |
Parameters | µ ± SD | Below Normal Range, % (n) | Reference Value a | Clinically Significant Values |
---|---|---|---|---|
Red blood cell count (×1012/L) | 4.86 ± 0.56 | 9 (2) | 4.50–6.00 | Athlete 1 = 4.42 Athlete 2 = 4.42 |
Hemoglobin (g/L) | 150.2 ± 8.9 | 9 (2) | 135–175 | Athlete 1 = 128 |
Hematocrit (L/L) | 0.440 ± 0.050 | 5 (1) | 0.400–0.500 | Athlete 1 = 0.384 |
MCV (fL) | 89.4 ± 3.0 | 0 (0) | 80–100 | |
MCH (pg) | 30.3 ± 1.4 | 5 (1) | 27.5–33.0 | Athlete 3 = 27.3 |
Fasting blood glucose (mmol/L) | 4.8 ± 0.4 | 0 (0) | 3.6–6.0 | |
Vitamin B12 (pmol/L) | 317.5 ± 113.4 | 0 (0) | 138–652 | |
Ferritin (µg/L) | 109.0 ± 34.7 | 0 (0) | 22–275 | |
c-Reactive Protein (mg/L) | 1.6 ± 4.1 | 5 (1) | <5.0 | Athlete 4 = 19.3 |
25-hydroxyvitamin D (nmol/L) | 96.7 ± 27.9 | 14 (3) | 75–250 | Athlete 4 = 64 Athlete 5 = 69 Athlete 6 = 72 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
---|---|---|---|---|---|---|---|---|---|
1 | Emotional Eating | ||||||||
2 | Cognitive Restraint Eating | 0.35 | |||||||
3 | VISA-P Score | −0.48 * | −0.09 | ||||||
4 | Fat free mass Index (kg/m2) | 0.25 | 0.37 * | −0.48 * | |||||
5 | Fat mass Index (kg/m2) | 0.00 | 0.25 | 0.08 | 0.14 | ||||
6 | Body Mass Index (kg/m2) | 0.18 | 0.38 * | −0.37 * | 0.89 | 0.52 | |||
7 | Endomorphy a | 0.13 | 0.30 | 0.17 | 0.24 | 0.65 | 0.48 * | ||
8 | Mesomorphy a | 0.25 | 0.29 | −0.12 | 0.57 | 0.35 | 0.68 | 0.62 | |
9 | Ectomorphy a | −0.23 | −0.40 * | 0.03 | −0.63 | −0.50 * | −0.77 | −0.68 | −0.78 |
Emotional Eating (µ ± SD) | Cognitive Restraint Eating (µ ± SD) | |||||
---|---|---|---|---|---|---|
Low | High | ES | Low | High | ES | |
Eating Behaviour Score | 2.3 ± 10.4 | 26.5 ± 10.4 * | 2.33 | 18.0 ± 7.2 | 43.9 ± 13.0 * | 2.46 |
VISA-P | 85.6 ± 12.5 | 76.0 ± 15.4 | 0.68 | 82.7 ± 12.5 | 79.2 ± 16.5 | 0.24 |
Fat-Free Mass Index (kg/m2) | 19.6 ± 0.9 | 20.2 ± 1.2 | 0.57 | 19.4 ± 0.8 | 20.2 ± 1.2 | 0.78 |
Fat Mass Index (kg/m2) | 4.1 ± 0.8 | 4.1 ± 0.5 | 0.00 | 3.9 ± 0.7 | 4.1 ± 0.6 | 0.31 |
Endomorphy a | 1.9 ± 0.6 | 2.1 ± 0.5 | 0.36 | 1.8 ± 0.4 | 2.2 ± 0.6 | 0.78 |
Mesomorphy a | 4.4 ± 0.7 | 4.9 ± 0.7 | 0.71 | 4.3 ± 0.7 | 4.9 ± 0.7 * | 0.86 |
Ectomorphy a | 3.5 ± 0.6 | 3.1 ± 0.8 | 0.57 | 3.7 ± 0.6 | 3.0 ± 0.7 * | 1.07 |
Energy (kcal/kg/d) b | 32.5 ± 8.9 | 33.4 ± 8.3 | 0.10 | 33.9 ± 8.4 | 32.5 ± 8.6 | 0.16 |
Protein (g/kg/d) b | 1.6 ± 0.3 | 1.8 ± 0.4 | 0.57 | 1.7 ± 0.3 | 1.8 ± 0.4 | 0.28 |
Carbohydrate (g/kg/d) b | 3.5 ± 1.1 | 3.5 ± 1.6 | 0.00 | 3.6 ± 1.2 | 3.5 ± 1.5 | 0.07 |
Fat (g/kg/d) b | 1.3 ± 0.4 | 1.2 ± 0.2 | 0.31 | 1.4 ± 0.4 | 1.2 ± 0.3 | 0.57 |
Fiber (g/d) b | 40.9 ± 18.7 | 38.6 ± 17.3 | 0.13 | 40.7 ± 8.2 | 38.9 ± 15.4 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sesbreno, E.; Dziedzic, C.E.; Sygo, J.; Blondin, D.P.; Haman, F.; Leclerc, S.; Brazeau, A.-S.; Mountjoy, M. Elite Male Volleyball Players Are at Risk of Insufficient Energy and Carbohydrate Intake. Nutrients 2021, 13, 1435. https://doi.org/10.3390/nu13051435
Sesbreno E, Dziedzic CE, Sygo J, Blondin DP, Haman F, Leclerc S, Brazeau A-S, Mountjoy M. Elite Male Volleyball Players Are at Risk of Insufficient Energy and Carbohydrate Intake. Nutrients. 2021; 13(5):1435. https://doi.org/10.3390/nu13051435
Chicago/Turabian StyleSesbreno, Erik, Christine E. Dziedzic, Jennifer Sygo, Denis P. Blondin, François Haman, Suzanne Leclerc, Anne-Sophie Brazeau, and Margo Mountjoy. 2021. "Elite Male Volleyball Players Are at Risk of Insufficient Energy and Carbohydrate Intake" Nutrients 13, no. 5: 1435. https://doi.org/10.3390/nu13051435
APA StyleSesbreno, E., Dziedzic, C. E., Sygo, J., Blondin, D. P., Haman, F., Leclerc, S., Brazeau, A. -S., & Mountjoy, M. (2021). Elite Male Volleyball Players Are at Risk of Insufficient Energy and Carbohydrate Intake. Nutrients, 13(5), 1435. https://doi.org/10.3390/nu13051435