The Acceptability of Food Policies
Abstract
:1. Introduction
2. A Model of Food Policy Acceptability
2.1. Topic-Level Factors
2.2. Policy-Level Factors
3. Survey
3.1. Topics
3.2. Online Survey
4. Results
4.1. Sample
4.2. Descriptive Statistics
4.3. Multivariate Analysis
4.4. Replication: Confirmatory Analysis
5. Discussion
5.1. Factors
5.2. Policies
5.3. Topics
5.4. Future Directions
5.5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Supplementary Tables
Acceptability (PCA) | ||||
---|---|---|---|---|
Sugar | Palm | Eggs | All | |
Legitimacy | 0.469 | 0.427 | 0.396 | 0.449 |
[p < 0.001] | [p < 0.001] | [p < 0.001] | [p<0.001] | |
Awareness | 0.389 | 0.326 | 0.235 | 0.207 |
[p < 0.001] | [p < 0.001] | p< 0.001 | [p < 0.001] | |
Scientific norm | 0.127 | 0.312 | 0.308 | 0.220 |
[p = 0.074] | [p < 0.001] | [p < 0.001] | [p < 0.001] | |
Social norm | 0.299 | 0.396 | 0.228 | 0.210 |
[p < 0.001] | [p < 0.001] | [p = 0.001] | [p < 0.001] |
Tax 50 | Withdrawal | |||||
---|---|---|---|---|---|---|
Sugar | PalmOil | Eggs | Sugar | PalmOil | Eggs | |
Acceptability | 3.61 | 4.33 | 4.45 | 2.88 | 4.74 | 5.09 |
Vote | 0.25 | 0.45 | 0.44 | 0.21 | 0.6 | 0.66 |
Effectiveness | 4.99 | 5.34 | 5.39 | 5.36 | 6.06 | 6.32 |
Targeting | 4.54 | 5.09 | 5.11 | 5.3 | 5.82 | 6.08 |
Coerciveness | 4.83 | 4.59 | 4.79 | 5.32 | 5.05 | 5.31 |
Majority | 2.37 | 3.05 | 2.8 | 2 | 3.13 | 3.34 |
Inequalities | 4.76 | 4.55 | 4.35 | 3.18 | 3.18 | 3.71 |
Acceptability | Hypothetical Vote | |||
---|---|---|---|---|
Linear (Original) | Ordered Probit | Linear (Original) | Probit | |
Legitimacy | 0.227 *** | 0.225 *** | 0.0314 *** | 0.182 *** |
(0.0329) | (0.0342) | (0.00630) | (0.0367) | |
Awareness | 0.0338 | 0.0410 | 0.0239 *** | 0.136 *** |
(0.0382) | (0.0397) | (0.00732) | (0.0430) | |
Scientific norm | −0.00493 | −0.0136 | 0.000300 | 0.000192 |
(0.0369) | (0.0382) | (0.00706) | (0.0406) | |
Social norm | 0.133 *** | 0.170 *** | 0.0165 ** | 0.0994 ** |
(0.0392) | (0.0409) | (0.00750) | (0.0434) | |
Effective | 0.169 *** | 0.168 *** | 0.0301 *** | 0.198 *** |
(0.0203) | (0.0189) | (0.00484) | (0.0309) | |
Targeting | 0.122 *** | 0.113 *** | 0.0132 *** | 0.0885 *** |
(0.0197) | (0.0184) | (0.00467) | (0.0288) | |
Coercive | −0.0704 *** | −0.0824 *** | −0.0129 *** | −0.0861 *** |
(0.0168) | (0.0162) | (0.00390) | (0.0243) | |
Majority | 0.498 *** | 0.425 *** | 0.0785 *** | 0.385 *** |
(0.0165) | (0.0161) | (0.00389) | (0.0240) | |
Inequalities | −0.0707 *** | −0.0801 *** | −0.0152 *** | −0.0842 *** |
(0.0159) | (0.0145) | (0.00368) | (0.0206) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | Yes | Yes | Yes |
Number of individuals | 572 | 572 | 572 | 572 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −6243.19 | −4657.26 | −1292.22 | −1214.10 |
Observations | 3432 | 3432 | 3432 | 3432 |
Label | InfoCamp | Tax 10 | Tax 30 | Tax 50 | Withdrawal | |
---|---|---|---|---|---|---|
Legitimacy | 0.0906 ** | 0.0821 ** | 0.369 *** | 0.350 *** | 0.387 *** | 0.118 ** |
(0.0420) | (0.0404) | (0.0555) | (0.0553) | (0.0581) | (0.0573) | |
Awareness | −0.120 ** | −0.0247 | −0.103 | −0.00459 | 0.112 * | 0.342*** |
(0.0490) | (0.0470) | (0.0640) | (0.0636) | (0.0670) | (0.0659) | |
Scientific norm | −0.0412 | 0.0548 | −0.0187 | −0.0289 | −0.0303 | 0.0757 |
(0.0478) | (0.0456) | (0.0615) | (0.0614) | (0.0645) | (0.0637) | |
Social norm | 0.0718 | 0.124 ** | 0.119 * | 0.169 *** | 0.164 ** | 0.171 ** |
(0.0505) | (0.0486) | (0.0660) | (0.0651) | (0.0686) | (0.0682) | |
Effective | 0.102 ** | 0.202 *** | 0.187 *** | 0.119 * | 0.248 *** | 0.195 *** |
(0.0410) | (0.0457) | (0.0545) | (0.0616) | (0.0565) | (0.0536) | |
Targeting | 0.0944 ** | 0.00719 | 0.166 *** | 0.176 *** | 0.102 ** | 0.127 ** |
(0.0389) | (0.0406) | (0.0541) | (0.0557) | (0.0498) | (0.0541) | |
Coercive | −0.0492 | −0.0243 | −0.0354 | −0.0830 * | −0.0922 ** | −0.0945 ** |
(0.0333) | (0.0287) | (0.0477) | (0.0479) | (0.0460) | (0.0376) | |
Majority | 0.474 *** | 0.419 *** | 0.330 *** | 0.446 *** | 0.456 *** | 0.476 *** |
(0.0377) | (0.0365) | (0.0424) | (0.0440) | (0.0439) | (0.0413) | |
Inequalities | −0.107 *** | −0.0872 *** | −0.145 *** | −0.101 ** | −0.168 *** | −0.0279 |
(0.0379) | (0.0327) | (0.0435) | (0.0404) | (0.0384) | (0.0335) | |
Demographics | Yes | Yes | Yes | Yes | Yes | Yes |
Topic FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 572 | 572 | 572 | 572 | 572 | 572 |
R | 0.383 | 0.350 | 0.318 | 0.359 | 0.406 | 0.521 |
Label | InfoCamp | Tax 10 | Tax 30 | Tax 50 | Withdrawal | |
---|---|---|---|---|---|---|
Legitimacy | 0.00775 | 0.00558 | 0.0544 *** | 0.0566 *** | 0.0538 *** | 0.0215 |
(0.00586) | (0.00648) | (0.0124) | (0.0150) | (0.0141) | (0.0133) | |
Awareness | −0.0135 ** | −0.0135 * | 0.00814 | 0.0402 ** | 0.0445 *** | 0.0672 *** |
(0.00684) | (0.00753) | (0.0143) | (0.0172) | (0.0162) | (0.0153) | |
Scientific norm | −0.00261 | −0.00120 | 0.00898 | −0.000777 | −0.000688 | 0.00647 |
(0.00667) | (0.00731) | (0.0138) | (0.0167) | (0.0156) | (0.0148) | |
Social norm | 0.0115 | 0.0140 * | 0.0248 * | 0.0145 | 0.0253 | 0.0330 ** |
(0.00704) | (0.00779) | (0.0148) | (0.0177) | (0.0166) | (0.0158) | |
Effective | 0.0120 ** | 0.0189 ** | 0.0435 *** | 0.0404 ** | 0.0369 *** | 0.0255** |
(0.00572) | (0.00732) | (0.0122) | (0.0167) | (0.0137) | (0.0124) | |
Targeting | 0.00122 | 0.00264 | 0.00937 | 0.0113 | 0.00736 | 0.0215 * |
(0.00542) | (0.00651) | (0.0121) | (0.0151) | (0.0121) | (0.0125) | |
Coercive | 0.00543 | 0.00216 | 0.00566 | −0.0145 | −0.0241 ** | −0.0274 *** |
(0.00464) | (0.00460) | (0.0107) | (0.0130) | (0.0111) | (0.00872) | |
Majority | 0.0281 *** | 0.0377 *** | 0.0641 *** | 0.102 *** | 0.0927 *** | 0.0878 *** |
(0.00526) | (0.00584) | (0.00952) | (0.0119) | (0.0106) | (0.00957) | |
Inequalities | −0.0118 ** | 0.00679 | −0.0185 * | −0.0287 *** | −0.0322 *** | −0.0181 ** |
(0.00529) | (0.00523) | (0.00976) | (0.0110) | (0.00931) | (0.00776) | |
Demographics | Yes | Yes | Yes | Yes | Yes | Yes |
Topic FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 572 | 572 | 572 | 572 | 572 | 572 |
R | 0.138 | 0.151 | 0.239 | 0.254 | 0.296 | 0.415 |
Descriptive Statistics | Effect Size (Cohen’s d) | ||
---|---|---|---|
and Mean Comparison (p-Values) | |||
First study | Second study | First = Second | |
Age | 34.67 | 35.81 | 0.093 |
(11.45) | (12.94) | 0.113 | |
Female | 0.73 | 0.63 | 0.215 |
(0.44) | (0.48) | 0.001 | |
Student | 0.20 | 0.20 | 0.012 |
(0.40) | (0.40) | 0.839 | |
Job | 0.72 | 0.64 | 0.173 |
(0.45) | (0.48) | 0.003 | |
BMI < 20 | 4.90% | 6.80% | |
20 ≥ BMI ≥ 24.9 | 26.92% | 31.63% | |
25 ≥ BMI ≥29.9 | 25.00% | 20.07% | |
30 ≥ BMI ≥ 34.9 | 11.36% | 8.50% | = 16.33 |
35 ≥ BMI ≥ 39.9 | 4.37% | 3.91% | 0.022 |
40 ≥ BMI | 3.85% | 1.70% | |
Don’t say | 21.50% | 25.34% | |
BMI missing | 2.10% | 2.04% | |
N | 572 | 588 |
All | Sugar | Palm Oil | Eggs | |
---|---|---|---|---|
Legitimacy | 0.170 *** | 0.242 *** | −0.0114 | 0.155 * |
(0.0423) | (0.0539) | (0.0911) | (0.0895) | |
Awareness | 0.151 *** | 0.108 | 0.222 ** | 0.165 ** |
(0.0482) | (0.102) | (0.0923) | (0.0754) | |
Scientific norm | 0.0268 | 0.0239 | 0.0889 | −0.00999 |
(0.0441) | (0.0983) | (0.0719) | (0.0716) | |
Social norm | 0.134 *** | −0.0328 | 0.219 *** | 0.110 |
(0.0510) | (0.116) | (0.0815) | (0.0817) | |
Effective | 0.218 *** | 0.186 *** | 0.188 *** | 0.234 *** |
(0.0188) | (0.0311) | (0.0318) | (0.0342) | |
Targeting | 0.110 *** | 0.126 *** | 0.137 *** | 0.109 *** |
(0.0178) | (0.0306) | (0.0296) | (0.0318) | |
Coercive | −0.101 *** | −0.107 *** | −0.0921 *** | −0.0620 ** |
(0.0159) | (0.0280) | (0.0262) | (0.0280) | |
Majority | 0.467 *** | 0.556 *** | 0.391 *** | 0.414 *** |
(0.0176) | (0.0337) | (0.0295) | (0.0296) | |
Inequalities | −0.0488 *** | −0.0424 | −0.0641 ** | −0.0758 *** |
(0.0162) | (0.0283) | (0.0272) | (0.0289) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | No | No | No |
Number of individuals | 588 | 192 | 203 | 193 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −6357.29 | −2054.31 | −2160.74 | −2073.94 |
Observations | 3528 | 1152 | 1218 | 1158 |
All | Sugar | Palm Oil | Eggs | |
---|---|---|---|---|
Legitimacy | 0.0177 ** | 0.0351 *** | −0.00898 | 0.000990 |
(0.00797) | (0.00959) | (0.0172) | (0.0182) | |
Awareness | 0.0391 *** | 0.0239 | 0.0627 *** | 0.0337 ** |
(0.00906) | (0.0181) | (0.0174) | (0.0153) | |
Scientific norm | 0.0148 * | 0.00535 | 0.0248 * | 0.00985 |
(0.00828) | (0.0173) | (0.0135) | (0.0145) | |
Social norm | 0.0138 | 0.00386 | 0.00818 | 0.0217 |
(0.00957) | (0.0205) | (0.0153) | (0.0166) | |
Effective | 0.0363 *** | 0.0300 *** | 0.0246 *** | 0.0474 *** |
(0.00466) | (0.00732) | (0.00836) | (0.00858) | |
Targeting | 0.0139 *** | 0.00850 | 0.0200 *** | 0.0201 ** |
(0.00438) | (0.00719) | (0.00767) | (0.00794) | |
Coercive | −0.0185 *** | −0.00918 | −0.0168 ** | −0.0236 *** |
(0.00383) | (0.00644) | (0.00663) | (0.00689) | |
Majority | 0.0685 *** | 0.0679 *** | 0.0592 *** | 0.0679 *** |
(0.00429) | (0.00784) | (0.00751) | (0.00730) | |
Inequalities | −0.0136 *** | −0.0187 *** | −0.0177 *** | −0.0105 |
(0.00389) | (0.00648) | (0.00677) | (0.00705) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | No | No | No |
Number of individuals | 588 | 192 | 203 | 193 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −1418.71 | −393.14 | −513.71 | −463.37 |
Observations | 3528 | 1152 | 1218 | 1158 |
Appendix A.2. Supplementary Figures
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Technical Report; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO. FAO Stats. Available online: http://www.fao.org/faostat/en/#home (accessed on 6 July 2020).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Technical Report; FAO: Rome, Italy, 2006. [Google Scholar]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Nat. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Formoso, G.; Pipino, C.; Baldassarre, M.P.A.; Del Boccio, P.; Zucchelli, M.; D’Alessandro, N.; Tonucci, L.; Cichelli, A.; Pandolfi, A.; Di Pietro, N. An Italian Innovative Small-Scale Approach to Promote the Conscious Consumption of Healthy Food. Appl. Sci. 2020, 10, 5678. [Google Scholar] [CrossRef]
- Espinosa, R. L’éléphant dans la pièce. Pour une approche économique de l’alimentation végétale et de la condition animale. Rev. Econ. Polit. 2019, 129, 287–324. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Rothgerber, H. Efforts to overcome vegetarian-induced dissonance among meat eaters. Appetite 2014, 79, 32–41. [Google Scholar] [CrossRef]
- Espinosa, R.; Stoop, J. Do People Really Want to Get Informed? Ex-ante Evaluations of Information Campaign Effectiveness. Exp. Econ. 2021, 1–25. [Google Scholar]
- Vartanian, L.R.; Herman, C.P.; Polivy, J. Consumption stereotypes and impression management: How you are what you eat. Appetite 2007, 48, 265–277. [Google Scholar] [CrossRef]
- Graça, J.; Calheiros, M.M.; Oliveira, A. Attached to meat? (Un) Willingness and intentions to adopt a more plant-based diet. Appetite 2015, 95, 113–125. [Google Scholar] [CrossRef]
- Wansink, B.; Sobal, J. Mindless eating: The 200 daily food decisions we overlook. Environ. Behav. 2007, 39, 106–123. [Google Scholar] [CrossRef] [Green Version]
- WHO & FAO. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; Technical Report; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Ungar, N.; Sieverding, M.; Schweizer, F.; Stadnitski, T. Intervention-Elicited Reactance and Its Implications. Z. Psychol. 2015. [Google Scholar] [CrossRef]
- Stok, F.M.; De Ridder, D.T.; De Vet, E.; De Wit, J.B. Don’t tell me what I should do, but what others do: The influence of descriptive and injunctive peer norms on fruit consumption in adolescents. Br. J. Psychol. 2014, 19, 52–64. [Google Scholar] [CrossRef]
- Cullerton, K.; Donnet, T.; Lee, A.; Gallegos, D. Playing the policy game: A review of the barriers to and enablers of nutrition policy change. Public Health Nutr. 2016, 19, 2643–2653. [Google Scholar] [CrossRef] [Green Version]
- Gortmaker, S.L.; Swinburn, B.A.; Levy, D.; Carter, R.; Mabry, P.L.; Finegood, D.T.; Huang, T.; Marsh, T.; Moodie, M.L. Changing the future of obesity: Science, policy, and action. Lancet 2011, 378, 838–847. [Google Scholar] [CrossRef] [Green Version]
- Mazzocchi, M.; Cagnone, S.; Bech-Larsen, T.; Niedzwiedzka, B.; Saba, A.; Shankar, B.; Verbeke, W.; Traill, W.B. What Is the Public Appetite for Health Eating Policies: Evidence from a Cross-European Survey. Health Econ. Policy Law 2015, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.; Archer, S.; Pilling, M.; Kenny, M.; Hollands, G.J.; Marteau, T. Public acceptability of nudging and taxing to reduce consumption of alcohol, tobacco, and food: A population-based survey experiment. Soc. Sci. Med. 2019, 236, 112395. [Google Scholar] [CrossRef]
- Eykelenboom, M.; Van Stralen, M.M.; Olthof, M.R.; Schoonmade, L.J.; Steenhuis, I.H.M.; Renders, C.M.; on behalf of the PEN Consortium. Political and public acceptability of a sugar-sweetened beverages tax: A mixed-method systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 78. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Stautz, K.; Pilling, M.; Van Der Linden, S.; Marteau, T. Communicating the effectiveness and ineffectiveness of government policies and their impact on public support: A systematic review with meta-Analysis. Royal Soc. Open Sci. 2020, 7, 190522. [Google Scholar] [CrossRef] [Green Version]
- Bos, C.; Lans, I.V.D.; Van Rijnsoever, F.; Van Trijp, H. Consumer acceptance of population-level intervention strategies for healthy food choices: The role of perceived effectiveness and perceived fairness. Nutrients 2015, 7, 7842–7862. [Google Scholar] [CrossRef] [Green Version]
- Hammond, R.A. Peer reviewed: Complex systems modeling for obesity research. Prev. Chronic Dis. 2009, 6, A97. [Google Scholar]
- Barnhill, A.; Palmer, A.; Weston, C.M.; Brownell, K.D.; Clancy, K.; Economos, C.D.; Gittelsohn, J.; Hammond, R.A.; Kumanyika, S.; Bennett, W.L. Grappling with complex food systems to reduce obesity: A US public health challenge. Public Health Rep. 2018, 133, 44S–53S. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Bartsch, S.M.; Mui, Y.; Haidari, L.A.; Spiker, M.L.; Gittelsohn, J. A systems approach to obesity. Nutr. Rev. 2017, 75, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E. Next Steps for Interventions Targeting Adolescent Dietary Behaviour. Nutrients 2020, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Fanzo, J.; Drewnowski, A.; Blumberg, J.; Miller, G.; Kraemer, K.; Kennedy, E. Nutrients, foods, diets, people: Promoting healthy eating. Curr. Dev. Nutr. 2020, 4, nzaa069. [Google Scholar] [CrossRef] [Green Version]
- Rutter, H.; Savona, N.; Glonti, K.; Bibby, J.; Cummins, S.; Finegood, D.T.; Greaves, F.; Harper, L.; Hawe, P.; Moore, L.; et al. The need for a complex systems model of evidence for public health. Lancet 2017, 390, 2602–2604. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.F.; Evans, R.E.; Hawkins, J.; Littlecott, H.; Melendez-Torres, G.; Bonell, C.; Murphy, S. From complex social interventions to interventions in complex social systems: Future directions and unresolved questions for intervention development and evaluation. Evaluation 2019, 25, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Diepeveen, S.; Ling, T.; Suhrcke, M.; Roland, M.; Marteau, T.M. Public acceptability of government intervention to change health-related behaviours: A systematic review and narrative synthesis. BMC Public Health 2013, 13, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagmann, D.; Siegrist, M.; Hartmann, C. Taxes, labels, or nudges? Public acceptance of various interventions designed to reduce sugar intake. Food Policy 2018, 79, 156–165. [Google Scholar] [CrossRef]
- Bos, C.; Van der Lans, I.A.; Van Rijnsoever, F.J.; Van Trijp, H.C. Understanding consumer acceptance of intervention strategies for healthy food choices: A qualitative study. BMC Public Health 2013, 13, 1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steg, L.; Dreijerink, L.; Abrahamse, W. Factors influencing the acceptability of energy policies: A test of VBN theory. J. Environ. Psychol. 2005, 25, 415–425. [Google Scholar] [CrossRef]
- Signal, L.N.; Watts, C.; Murphy, C.; Eyles, H.; Ni Mhurchu, C. Appetite for health-related food taxes: New Zealand stakeholder views. Health Promot. Int. 2018, 33, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Purtle, J.; Langellier, B.; Lê-Scherban, F. A case study of the Philadelphia sugar-sweetened beverage tax policymaking process: Implications for policy development and advocacy. J. Public. Health. Manag. Pract. 2018, 24, 4–8. [Google Scholar] [CrossRef]
- Schade, J.; Schlag, B. Acceptability of urban transport pricing strategies. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 45–61. [Google Scholar] [CrossRef]
- Traill, W.B.; Mazzocchi, M.; Shankar, B.; Hallam, D. Importance of government policies and other influences in transforming global diets. Nutr. Rev. 2014, 72, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Colchero, M.A.; Rivera-Dommarco, J.; Popkin, B.M.; Ng, S.W. In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax. Health Aff. 2017, 36, 564–571. [Google Scholar] [CrossRef]
- Ballotpedia. Washington Initiative 1634. Available online: http://web.archive.org/web/20191226010045/; https://ballotpedia.org/Washington_Initiative_1634,_Prohibit_Local_Taxes_on_Groceries_Measure_(2018) (accessed on 6 July 2020).
- Niederdeppe, J.; Shapiro, M.A.; Porticella, N. Attributions of responsibility for obesity: Narrative communication reduces reactive counterarguing among liberals. Hum. Commun. Res. 2011, 37, 295–323. [Google Scholar] [CrossRef]
- Bamberg, S.; Rölle, D. Determinants of people’s acceptability of pricing measures: Replication and extension of a causal model. Accept. Transp. Pricing Strateg. 2003, 235–248. [Google Scholar] [CrossRef]
- Steg, L.; Schuitema, G. Behavioural responses to transport pricing: A theoretical analysis. In Threats to the Quality of Urban Life from Car Traffic: Problems, Causes, and Solutions; Emerald Group Publishing Limited: Bingley, UK, 2007; pp. 347–366. [Google Scholar]
- Caraher, M.; Cowburn, G. Taxing food: Implications for public health nutrition. Public Health Nutr. 2005, 8, 1242–1249. [Google Scholar] [CrossRef] [Green Version]
- De Groot, J.I.; Schuitema, G. How to make the unpopular popular? Policy characteristics, social norms and the acceptability of environmental policies. Environ. Sci. Policy 2012, 19, 100–107. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, L.P.; Miettinen, J.; Liew, S.C.; Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Nat. Acad. Sci. USA 2011, 108, 5127–5132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russel, M. Palm Oil: Economic and Environmental Impacts; Technical Report; European Parliamentary Research Service: Brussels, Belgium, 2020. [Google Scholar]
- Yilmaz Dikmen, B.; Ipek, A.; Şahan, Ü.; Petek, M.; Sözcü, A. Egg production and welfare of laying hens kept in different housing systems (conventional, enriched cage, and free range). Poult. Sci. 2016, 95, 1564–1572. [Google Scholar] [CrossRef]
- Department for Environment, Food and Rural Affairs. United Kingdom Egg Statistics—Quarter 4, 2020; Technical Report; Department for Environment, Food and Rural Affairs: London, UK, 2021.
- Peer, E.; Brandimarte, L.; Samat, S.; Acquisti, A. Beyond the Turk: Alternative platforms for crowdsourcing behavioral research. J. Exp. Soc. Psycho. 2017, 70, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Duvendack, M.; Palmer-Jones, R.; Reed, W.R. What is meant by “replication” and why does it encounter resistance in economics? Am. Econ. Rev. 2017, 107, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Alesina, A.; Angeletos, G.M. Fairness and redistribution. Am. Econ. Rev. 2005, 95, 960–980. [Google Scholar] [CrossRef] [Green Version]
- Jalil, A.J.; Tasoff, J.; Bustamante, A.V. Eating to save the planet: Evidence from a randomized controlled trial using individual-level food purchase data. Food Policy 2020, 95, 101950. [Google Scholar] [CrossRef]
- Garnett, E.E.; Balmford, A.; Sandbrook, C.; Pilling, M.A.; Marteau, T.M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Nat. Acad. Sci. USA 2019, 116, 20923–20929. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.G.; Schilling, M.; Malthesen, M.S. Nudging healthy and sustainable food choices: Three randomized controlled field experiments using a vegetarian lunch-default as a normative signal. J. Public Health 2019, fdz154. [Google Scholar] [CrossRef] [Green Version]
- Bénabou, R. The economics of motivated beliefs. Rev. Econ. Polit. 2015, 125, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Ross, L.; Greene, D.; House, P. The “false consensus effect”: An egocentric bias in social perception and attribution processes. J. Exp. Soc. Psycho. 1977, 13, 279–301. [Google Scholar] [CrossRef]
- Espinosa, R.; Nassar, A. Data: Acceptability of Food Policies (Version v1.0). Zenodo 2021. [Google Scholar] [CrossRef]
Factor | Description |
---|---|
Awareness | The high consumption of (sugar | palm oil | cage eggs) causes serious problems for society. |
Legitimacy | It is legitimate to have collective rules that govern the consumption of (sugar | palm oil | cage eggs). |
Social norm | It is commonly accepted that (sugar | palm oil | cage eggs) consumption should be reduced. |
Scientific norm | We consume more (sugar | palm oil | cage eggs) in our society than recommended by the (most recent scientific work | the most recent environmental scientific work | most recent scientific work on preserving animal welfare). |
Effectiveness | The measure is effective in reducing the consumption of (sugar | palm oil | cage eggs). |
Coerciveness | The measure is coercive. |
Inequality | The measure will increase social inequalities. |
Targeting | The measure will affect the appropriate group of consumers and producers. |
Majority support | A majority of citizens would agree to implementing the measure. |
Policy | Description |
---|---|
Information campaign | Set up information campaigns to inform consumers about the impact of (sugar | palm oil | cage eggs) on (health | environment | animal welfare) and society. |
Label | Display labels on snacks with (high sugar content | palm oil | cage eggs). |
Tax10 | Tax the snacks with (high sugar content | palm oil | cage eggs) by GBP 0.10 (for a 30 g individual snack, such as a cereal bar). |
Tax30 | Tax the snacks with (high sugar content | palm oil | cage eggs) by GBP 0.30 (for a 30 g individual snack such as a cereal bar). |
Tax50 | Tax the snacks with (high sugar content | palm oil | cage eggs) by GBP 0.50 (for a 30 g individual snack such as a cereal bar). |
Withdrawal | Remove the snacks with (high sugar content | palm oil | cage eggs) from the market. |
Descriptive Statistics | Effect Size (Cohen’s d) and Mean Comparison (p-Values) | ||||||
---|---|---|---|---|---|---|---|
All | Sugar | Palm | Eggs | Sugar = Palm | Sugar = Eggs | Palm = Eggs | |
Age | 34.67 | 35.021 | 35.164 | 33.826 | |||
(11.45) | (10.694) | (12.973) | (10.549) | ||||
Female | 0.73 | 0.736 | 0.709 | 0.742 | |||
(0.44) | (0.442) | (0.455) | (0.439) | ||||
Student | 0.20 | 0.197 | 0.201 | 0.2 | |||
(0.40) | (0.399) | (0.402) | (0.401) | ||||
Job | 0.72 | 0.699 | 0.72 | 0.732 | |||
(0.45) | (0.46) | (0.45) | (0.444) | ||||
BMI < 20 | 4.90% | 3.63% | 5.82% | 5.26% | |||
20 ≥ BMI ≥ 24.9 | 26.92% | 28.50% | 23.28% | 28.95% | |||
25 ≥ BMI ≥ 29.9 | 25.00% | 23.83% | 25.93% | 25.26% | |||
30 ≥ BMI ≥ 34.9 | 11.36% | 10.88% | 13.23% | 10.00% | = 11.26 | ||
35 ≥ BMI ≥ 39.9 | 4.37% | 5.18% | 5.29% | 2.63% | 0.666 | ||
40 ≥ BMI | 3.85% | 3.11% | 2.12% | 6.32% | |||
Refused to share | 21.50% | 22.28% | 22.75% | 19.47% | |||
BMI missing | 2.10% | 2.59% | 1.59% | 2.11% | |||
N | 572 | 193 | 189 | 190 |
Descriptive Statistics | Effect Size (Cohen’s d) and Wilcoxon Rank-Sum Tests (p-Values) | |||||
---|---|---|---|---|---|---|
Sugar | Palm | Eggs | Sugar = Palm | Sugar = Eggs | Palm = Eggs | |
Legitimacy | 5.13 | 5.74 | 5.81 | d = 0.397 | d = 0.425 | d = 0.056 |
(1.73) | (1.25) | (1.43) | 0.001 | 0.001 | 0.193 | |
Awareness | 6.04 | 5.44 | 4.58 | d = 0.486 | d = 1.084 | d = 0.600 |
(1.13) | (1.33) | (1.54) | 0.001 | 0.001 | 0.001 | |
Scientific norm | 6.09 | 5.68 | 5.69 | d = 0.342 | d = 0.314 | d = 0.008 |
(1.17) | (1.23) | (1.37) | 0.001 | 0.002 | 0.573 | |
Social norm | 6.37 | 5.58 | 5.28 | d = 0.71 | d = 0.955 | d = 0.239 |
(0.98) | (1.23) | (1.28) | 0.001 | 0.001 | 0.019 | |
N | 200 | 200 | 200 |
Descriptive Statistics | Effect Size (Cohen’s d) and Wilcoxon Rank-Sum Tests (p-Values) | |||||
---|---|---|---|---|---|---|
Sugar | Palm | Eggs | Sugar = Palm | Sugar = Eggs | Palm = Eggs | |
Effective | 4.35 | 4.70 | 4.88 | 0.366 | 0.541 | 0.188 |
(0.98) | (0.93) | (0.98) | 0.001 | 0.001 | 0.037 | |
Targeting | 4.08 | 4.52 | 4.68 | 0.421 | 0.557 | 0.142 |
(1.07) | (1.06) | (1.08) | 0.001 | 0.001 | 0.119 | |
Coercive | 4.09 | 3.98 | 4.10 | 0.098 | 0.007 | 0.102 |
(1.11) | (1.26) | (1.20 ) | 0.489 | 0.835 | 0.375 | |
Majority | 4.03 | 4.36 | 4.30 | 0.35 | 0.287 | 0.049 |
(0.90) | (0.98) | (1.04) | 0.001 | 0.008 | 0.591 | |
Inequality | 3.21 | 3.21 | 3.21 | 0.001 | 0.001 | 0.001 |
(1.25) | (1.23) | (1.34) | 0.93 | 0.94 | 0.994 | |
N | 200 | 200 | 200 |
All | Sugar | Palm Oil | Eggs | |
---|---|---|---|---|
Legitimacy | 0.227 *** | 0.174 *** | 0.212 *** | 0.300 *** |
(0.0329) | (0.0422) | (0.0738) | (0.0647) | |
Awareness | 0.0338 | 0.167 ** | 0.0298 | −0.0490 |
(0.0382) | (0.0676) | (0.0701) | (0.0634) | |
Scientific norm | −0.00493 | −0.0589 | 0.000393 | 0.0426 |
(0.0369) | (0.0556) | (0.0693) | (0.0691) | |
Social norm | 0.133 *** | 0.0485 | 0.147 ** | 0.136 ** |
(0.0392) | (0.0661) | (0.0729) | (0.0672) | |
Effective | 0.169 *** | 0.172 *** | 0.137 *** | 0.156 *** |
(0.0203) | (0.0314) | (0.0373) | (0.0359) | |
Targeting | 0.122 *** | 0.105 *** | 0.114 *** | 0.156 *** |
(0.0197) | (0.0309) | (0.0346) | (0.0355) | |
Coercive | −0.0704 *** | −0.111 *** | −0.0355 | −0.0349 |
(0.0168) | (0.0262) | (0.0286) | (0.0309) | |
Majority | 0.498 *** | 0.511 *** | 0.467 *** | 0.435 *** |
(0.0165) | (0.0277) | (0.0272) | (0.0308) | |
Inequalities | −0.0707 *** | −0.0252 | −0.0961 *** | −0.111 *** |
(0.0159) | (0.0248) | (0.0272) | (0.0307) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | No | No | No |
Number of individuals | 572 | 193 | 189 | 190 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −6243.19 | −2034.42 | −2012.94 | −2104.98 |
Observations | 3432 | 1158 | 1134 | 1140 |
All | Sugar | Palm Oil | Eggs | |
---|---|---|---|---|
Legitimacy | 0.0314 *** | 0.0193 ** | 0.0266 * | 0.0484 *** |
(0.00630) | (0.00863) | (0.0155) | (0.0106) | |
Awareness | 0.0239 *** | 0.0362 *** | 0.0285 * | 0.0174 * |
(0.00732) | (0.0138) | (0.0148) | (0.0104) | |
Scientific norm | 0.000300 | −0.00829 | 0.00793 | −0.00503 |
(0.00706) | (0.0114) | (0.0146) | (0.0113) | |
Social norm | 0.0165 ** | −0.00762 | 0.00874 | 0.0326 *** |
(0.00750) | (0.0135) | (0.0153) | (0.0110) | |
Effective | 0.0301 *** | 0.0282 *** | 0.0281 *** | 0.0311 *** |
(0.00484) | (0.00751) | (0.00922) | (0.00842) | |
Targeting | 0.0132 *** | 0.0169 ** | 0.0104 | 0.0140 * |
(0.00467) | (0.00734) | (0.00854) | (0.00816) | |
Coercive | −0.0129 *** | −0.0232 *** | −0.00579 | −0.00387 |
(0.00390) | (0.00616) | (0.00695) | (0.00688) | |
Majority | 0.0785 *** | 0.0773 *** | 0.0703 *** | 0.0752 *** |
(0.00389) | (0.00660) | (0.00670) | (0.00695) | |
Inequalities | −0.0152 *** | −0.00634 | −0.0191 *** | −0.0224 *** |
(0.00368) | (0.00583) | (0.00665) | (0.00662) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | No | No | No |
Number of individuals | 572 | 193 | 189 | 190 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −1292.22 | −374.26 | −420.45 | −430.00 |
Observations | 3432 | 1158 | 1134 | 1140 |
Acceptability | Hypothetical Vote | |||
---|---|---|---|---|
Original | Replication | Original | Replication | |
Legitimacy | 0.227 *** | 0.170 *** | 0.0314 *** | 0.0177 ** |
(0.0329) | (0.0423) | (0.00630) | (0.00797) | |
Awareness | 0.0338 | 0.151 *** | 0.0239 *** | 0.0391 *** |
(0.0382) | (0.0482) | (0.00732) | (0.00906) | |
Scientific norm | −0.00493 | 0.0268 | 0.000300 | 0.0148 * |
(0.0369) | (0.0441) | (0.00706) | (0.00828) | |
Social norm | 0.133 *** | 0.134 *** | 0.0165 ** | 0.0138 |
(0.0392) | (0.0510) | (0.00750) | (0.00957) | |
Effective | 0.169 *** | 0.218 *** | 0.0301 *** | 0.0363 *** |
(0.0203) | (0.0188) | (0.00484) | (0.00466) | |
Targeting | 0.122 *** | 0.110 *** | 0.0132 *** | 0.0139 *** |
(0.0197) | (0.0178) | (0.00467) | (0.00438) | |
Coercive | −0.0704 *** | −0.101 *** | −0.0129 *** | −0.0185 *** |
(0.0168) | (0.0159) | (0.00390) | (0.00383) | |
Majority | 0.498 *** | 0.467 *** | 0.0785 *** | 0.0685 *** |
(0.0165) | (0.0176) | (0.00389) | (0.00429) | |
Inequalities | −0.0707 *** | −0.0488 *** | −0.0152 *** | −0.0136 *** |
(0.0159) | (0.0162) | (0.00368) | (0.00389) | |
Demographics | Yes | Yes | Yes | Yes |
Individual RE | Yes | Yes | Yes | Yes |
Policy FE | Yes | Yes | Yes | Yes |
Topic FE | Yes | Yes | Yes | Yes |
Number of individuals | 572 | 588 | 572 | 588 |
Number of policies | 6 | 6 | 6 | 6 |
Log-likelihood | −6243.19 | −6357.29 | −1292.22 | −1418.71 |
Observations | 3432 | 3528 | 3432 | 3528 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, R.; Nassar, A. The Acceptability of Food Policies. Nutrients 2021, 13, 1483. https://doi.org/10.3390/nu13051483
Espinosa R, Nassar A. The Acceptability of Food Policies. Nutrients. 2021; 13(5):1483. https://doi.org/10.3390/nu13051483
Chicago/Turabian StyleEspinosa, Romain, and Anis Nassar. 2021. "The Acceptability of Food Policies" Nutrients 13, no. 5: 1483. https://doi.org/10.3390/nu13051483
APA StyleEspinosa, R., & Nassar, A. (2021). The Acceptability of Food Policies. Nutrients, 13(5), 1483. https://doi.org/10.3390/nu13051483