Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic and Lifestyle Information
2.3. Anthropometry and Dietary Information
2.4. Assessment of the Handgrip Strength
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Troen, B.R. The biology of aging. Mt. Sinai J. Med. 2003, 70, 3–22. [Google Scholar]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990s–991s. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Grimby, G.; Saltin, B. The ageing muscle. Clin. Physiol. 1983, 3, 209–218. [Google Scholar] [CrossRef]
- Yakabe, M.; Ogawa, S.; Akishita, M. Clinical manifestations and pathophysiology of sarcopenia. Biomed. Sci. 2015, 1, 10–17. [Google Scholar] [CrossRef]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyère, O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Korean Statistical Information Service. Population Projections for Korea; Statistics Korea: Daejeon, Korea, 2019. [Google Scholar]
- Pinedo-Villanueva, R.; Westbury, L.D.; Syddall, H.E.; Sanchez-Santos, M.T.; Dennison, E.M.; Robinson, S.M.; Cooper, C. Health care costs associated with muscle weakness: A UK population-based estimate. Calcif. Tissue Int. 2019, 104, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Savino, E.; Sioulis, F.; Guerra, G.; Cavalieri, M.; Zuliani, G.; Guralnik, J.M.; Volpato, S. Potential prognostic value of handgrip strength in older hospitalized patients. J. Frailty Aging 2012, 1, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the prospective urban rural epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Bohannon, R.W. Hand-grip dynamometry predicts future outcomes in aging adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.M.; Clark, B.C. Dynapenia and aging: An update. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 28–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyère, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Loiacono, C.; Palermi, S.; Massa, B.; Belviso, I.; Romano, V.; Gregorio, A.D.; Sirico, F.; Sacco, A.M. Tendinopathy: Pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review. Medicina 2019, 55, 447. [Google Scholar] [CrossRef] [Green Version]
- Di Meglio, F.; Sacco, A.; Belviso, I.; Romano, V.; Sirico, F.; Loiacono, C.; Palermi, S.; Pempinello, C.; Montagnani, S.; Nurzynska, D. Influence of supplements and drugs used for the treatment of musculoskeletal disorders on adult human tendon-derived stem cells. Muscles Ligaments Tendons J. 2020, 10, 376–384. [Google Scholar] [CrossRef]
- Komar, B.; Schwingshackl, L.; Hoffmann, G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: A systematic review and meta-analysis. J. Nutr. Health Aging 2015, 19, 437–446. [Google Scholar] [CrossRef]
- Uojima, H.; Sakurai, S.; Hidaka, H.; Kinbara, T.; Sung, J.H.; Ichita, C.; Tokoro, S.; Masuda, S.; Sasaki, A.; Koizumi, K.; et al. Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2017, 29, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Matsunaga, Y.; Kanbara, M.; Kamono, A.; Masuda, T.; Watanabe, M.; Nakanishi, R.; Jinno, T. Effect of exercise therapy combined with branched-chain amino acid supplementation on muscle strength in elderly women after total hip arthroplasty: A randomized controlled trial. Asia Pac. J. Clin. Nutr. 2019, 28, 720–726. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, N.; Choi, Y.J.; Lee, Y.; Yun, J.; Park, Y.K.; Park, S.J.; Park, H.S.; Chung, Y.S. Leucine-enriched protein supplementation increases lean body mass in healthy Korean adults aged 50 years and older: A randomized, double-blind, placebo-controlled trial. Nutrients 2020, 12, 1816. [Google Scholar] [CrossRef] [PubMed]
- Ratmawati, R.; Fatimah-Muis, S.; Sofro, M.A.U. Leucine intake as determinant of muscle strength and gait speed in the elderly. Jurnal Gizi dan Pangan 2020, 15, 19–26. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Park, H.A. Adequacy of protein intake among Korean elderly: An analysis of the 2013–2014 Korea national health and nutrition examination survey data. Korean J. Fam. Med. 2018, 39, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigg, D. The pattern of world protein consumption. Geoforum 1995, 26, 1–17. [Google Scholar] [CrossRef]
- Kweon, S.H.; Kim, Y.A.; Jang, M.J.; Kim, Y.J.; Kim, K.R.; Choi, S.H.; Chun, C.M.; Khang, Y.H.; Oh, K.W. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Korea Disease Control and Prevention Agency. Implementation state of Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/knhanes/sub01/sub01_02.do (accessed on 8 June 2020).
- Korea Disease Control and Prevention Agency. Guidelines for the Use of Raw Data for Korea National Health and Nutrition Examination Survey; Korea Disease Control and Prevention Agency: Osong, Korea, 2018. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Guidelines for Examination and Inspection. Available online: https://knhanes.kdca.go.kr/knhanes/sub04/sub04_02_02.do?classType=4 (accessed on 12 February 2020).
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Available online: https://apps.who.int/iris/bitstream/handle/10665/206936/0957708211_eng.pdf?sequence=1&isAllowed=y (accessed on 22 December 2020).
- Rural Development Administration National Institute of Rural Agricultural Sciences. Korean Food Composition Table 9.1; Rural Development Administration National Institute of Rural Agricultural Sciences: Jeonju-si, Korea, 2019. [Google Scholar]
- The Korean Nutrition Society. Computer Aided Nutritional Analysis Program 5.0; The Korean Nutrition Society: Seoul, Korea, 2015. [Google Scholar]
- Korea Disease Control and Prevention Agency. Details of the Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/knhanes/sub02/sub02_03.do (accessed on 2 November 2020).
- Damayanthi, H.; Moy, F.M.; Abdullah, K.L.; Dharmaratne, S.D. Handgrip strength and its associated factors among community-dwelling elderly in Sri Lanka: A cross-sectional study. Asian Nurs. Res. 2018, 12, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.; Grabovac, I. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass-a narrative review. Wiener klinische Wochenschrift 2019, 131, 244–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, M.O.; Hoekstra, T.; Twisk, J.W. The longitudinal relation between smoking and muscle strength in healthy adults. Eur. Addict. Res. 2012, 18, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Samson, M.M.; Meeuwsen, I.B.; Crowe, A.; Dessens, J.A.; Duursma, S.A.; Verhaar, H.J. Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing 2000, 29, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H. Cultural perspectives and current consumption changes of cooked rice in Korean diet. Nutr. Res. Pract. 2007, 1, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Jeong, O.-Y.; Park, H.-S.; Baek, M.-K.; Kim, W.-J.; Lee, G.-M.; Lee, C.-M.; Bombay, M.; Ancheta, M.B.; Lee, J.-H. Review of rice in Korea: Current status, future prospects, and comparisons with rice in other countries. J. Crop Sci. Biotechnol. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant- versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The health, aging, and body composition (Health ABC) study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [Green Version]
- McLean, R.R.; Mangano, K.M.; Hannan, M.T.; Kiel, D.P.; Sahni, S. Dietary protein intake is protective against loss of grip strength among older adults in the Framingham offspring cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 356–361. [Google Scholar] [CrossRef] [Green Version]
- The Korea Health Industry Development Institute (KHIDI). Main Food Sources According to the Nutrients. Available online: https://www.khidi.or.kr/kps/dhraStat/result7?menuId=MENU01659&gubun=age1&year=2018 (accessed on 15 February 2021).
- Kwon, Y.S.; Yang, Y.Y.; Park, Y.; Park, Y.K. Dietary assessment and factors according to fruits and vegetables intake in Korean elderly people: Analysis of data from the Korea national health and nutrition examination survey, 2013–2018. Nutrients 2020, 12, 3492. [Google Scholar] [CrossRef] [PubMed]
- De Bandt, J.P. Leucine and mammalian target of rapamycin-dependent activation of muscle protein synthesis in aging. J. Nutr. 2016, 146, 2616s–2624s. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.; Phillips, S.M. Branched-Chain Amino Acids (Leucine, Isoleucine, and Valine) and Skeletal Muscle; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–298. [Google Scholar]
- Fitschen, P.J.; Wilson, G.J.; Wilson, J.M.; Wilund, K.R. Efficacy of β-hydroxy-β-methylbutyrate supplementation in elderly and clinical populations. Nutrition 2013, 29, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Le, W.D. Autophagy and ubiquitin-proteasome system. Adv. Exp. Med. Biol. 2019, 1206, 527–550. [Google Scholar] [CrossRef]
- Ramirez, M.L.G.; Salvesen, G.S. A primer on caspase mechanisms. Semin. Cell Dev. Biol. 2018, 82, 79–85. [Google Scholar] [CrossRef]
- Berton, L.; Bano, G.; Carraro, S.; Veronese, N.; Pizzato, S.; Bolzetta, F.; de Rui, M.; Valmorbida, E.; de Ronch, I.; Perissinotto, E.; et al. Effect of oral beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical performance in healthy old women over 65 years: An open label randomized controlled trial. PLoS ONE 2015, 10, e0141757. [Google Scholar] [CrossRef] [Green Version]
- Din, U.S.U.; Brook, M.S.; Selby, A.; Quinlan, J.; Boereboom, C.; Abdulla, H.; Franchi, M.; Narici, M.V.; Phillips, B.E.; Williams, J.W.; et al. A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clin. Nutr. 2019, 38, 2071–2078. [Google Scholar] [CrossRef] [Green Version]
BCAA Intake Levels (g/d) | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
n | 1213 | 1213 | 1213 | 1213 |
BCAA intake, range (median) | 0.44–4.13 (3.18) | 4.14–5.95 (5.03) | 5.96–8.43 (7.04) | 8.44–45.70 (10.69) |
Isoleucine intake | 0.70 ± 0.01 | 1.17 ± 0.01 | 1.68 ± 0.01 | 2.82 ± 0.01 |
Leucine intake | 1.41 ± 0.02 | 2.31 ± 0.02 | 3.24 ± 0.02 | 5.37 ± 0.02 |
Valine intake | 0.96 ± 0.02 | 1.55 ± 0.02 | 2.18 ± 0.02 | 3.53 ± 0.02 |
Total energy intake (kcal) | 1088.26 ± 13.81 | 1461.26 ± 13.81 | 1773.66 ± 13.81 | 2389.64 ± 13.81 |
Handgrip strength (kg) | 20.02 ± 0.24 | 22.64 ± 0.24 | 24.80 ± 0.24 | 27.77 ± 0.24 |
Age (years) | 74.18 ± 0.14 | 73.17 ± 0.14 | 72.18 ± 0.14 | 71.23 ± 0.14 |
Sex | ||||
Men | 306 (25.2) | 457 (37.7) | 584 (48.2) | 777 (64.1) |
Women | 907 (74.8) | 756 (62.3) | 629 (51.9) | 436 (35.9) |
Education level | ||||
Less than high school graduation | 940 (87.0) | 876 (79.5) | 797 (70.7) | 653 (57.1) |
High school graduation or higher | 140 (13.0) | 226 (20.5) | 331 (29.3) | 490 (42.9) |
Household income | ||||
Low | 730 (60.4) | 629 (52.3) | 537 (44.6) | 388 (32.2) |
Mid-low | 283 (23.4) | 339 (28.2) | 316 (26.3) | 368 (30.5) |
Mid-high | 127 (10.5) | 132 (11.0) | 199 (16.5) | 248 (20.6) |
High | 68 (5.6) | 102 (8.5) | 152 (12.6) | 202 (16.8) |
Physical activity level 1 | ||||
Low | 444 (41.1) | 363 (32.9) | 339 (30.0) | 276 (24.2) |
Mid | 365 (33.8) | 397 (36.0) | 404 (35.8) | 401 (35.1) |
High | 271 (25.1) | 342 (31.0) | 386 (34.2) | 464 (40.7) |
Body mass index (kg/m2) | ||||
<23 | 454 (37.8) | 442 (36.7) | 470 (38.8) | 436 (36.0) |
23–<25 | 301 (25.0) | 332 (27.6) | 292 (24.1) | 343 (28.4) |
≥25 | 447 (37.2) | 429 (35.7) | 448 (37.0) | 431 (35.6) |
Dietary supplement | ||||
Non-users | 716 (59.0) | 614 (50.6) | 613 (50.5) | 550 (45.4) |
Users | 497 (41.0) | 599 (49.4) | 600 (49.5) | 662 (54.6) |
Alcohol consumption | ||||
Non-drinkers | 709 (62.1) | 590 (50.9) | 529 (44.9) | 410 (34.7) |
Drinkers | 432 (37.9) | 569 (49.1) | 649 (55.1) | 772 (65.3) |
Smoking status | ||||
Non-smokers | 1051 (92.1) | 1055 (91.1) | 1064 (90.7) | 1048 (88.7) |
Current smokers | 90 (7.9) | 103 (8.9) | 109 (9.3) | 134 (11.3) |
Food Groups | Contribution (%) | Intake (g/d) 1 |
---|---|---|
BCAA | ||
Grains and grain products | 42.58 | 2.53 ± 1.3 |
Meat and meat products | 21.87 | 1.90 ± 2.3 |
Legumes and legume products | 13.34 | 0.93 ± 1.1 |
Fish and shellfish | 8.75 | 0.70 ± 1.4 |
Vegetables | 8.56 | 0.52 ± 0.4 |
Other food groups 2 | 19.21 | 1.33 ± 1.4 |
Isoleucine | ||
Grains and grain products | 39.84 | 0.55 ± 0.3 |
Meat and meat products | 23.61 | 0.49 ± 0.6 |
Legumes and legume products | 14.17 | 0.23 ± 0.3 |
Fish and shellfish | 9.44 | 0.18 ± 0.4 |
Vegetables | 8.96 | 0.13 ± 0.1 |
Other food groups 2 | 19.44 | 0.32 ± 0.3 |
Leucine | ||
Grains and grain products | 43.02 | 1.17 ± 0.6 |
Meat and meat products | 21.74 | 0.86 ± 1.0 |
Legumes and legume products | 14.16 | 0.46 ± 0.5 |
Fish and shellfish | 8.77 | 0.32 ± 0.6 |
Vegetables | 8.04 | 0.22 ± 0.2 |
Other food groups 2 | 18.82 | 0.59 ± 0.6 |
Valine | ||
Grains and grain products | 44.14 | 0.81 ± 0.4 |
Meat and meat products | 20.78 | 0.55 ± 0.7 |
Legumes and legume products | 11.61 | 0.24 ± 0.3 |
Vegetables | 9.06 | 0.17 ± 0.1 |
Fish and shellfish | 8.22 | 0.20 ± 0.4 |
Other food groups 2 | 19.58 | 0.42 ± 0.4 |
Q1 | Q2 | Q3 | Q4 | p for Trend | |
---|---|---|---|---|---|
n = 1213 | n = 1213 | n = 1213 | n = 1213 | ||
BCAA (g/d) | |||||
Grains and grain products | 61.63 ± 0.84 | 47.60 ± 0.61 | 36.96 ± 0.47 | 22.89 ± 0.56 | <0.001 |
Meat and meat products | 8.76 ± 0.89 | 18.18 ± 0.72 | 21.94 ± 0.69 | 31.23 ± 0.98 | <0.001 |
Legumes and legume products | 12.95 ± 0.60 | 12.65 ± 0.49 | 12.80 ± 0.41 | 14.37 ± 0.63 | 0.07 |
Fish and shellfish | 4.13 ± 0.51 | 7.11 ± 0.42 | 9.59 ± 0.49 | 15.21 ± 0.80 | <0.001 |
Vegetables | 11.57 ± 0.31 | 9.26 ± 0.22 | 7.80 ± 0.18 | 5.67 ± 0.20 | <0.001 |
Other food groups 1 | 14.86 ± 0.65 | 19.28 ± 0.58 | 21.61 ± 0.58 | 21.27 ± 0.66 | <0.001 |
Isoleucine (g/d) | |||||
Grains and grain products | 60.26 ± 0.83 | 44.84 ± 0.58 | 33.93 ± 0.43 | 19.52 ± 0.51 | <0.001 |
Meat and meat products | 8.62 ± 0.91 | 18.89 ± 0.72 | 24.05 ± 0.70 | 34.08 ± 0.96 | <0.001 |
Legumes and legume products | 13.79 ± 0.63 | 13.90 ± 0.52 | 13.41 ± 0.44 | 14.87 ± 0.65 | 0.24 |
Fish and shellfish | 4.38 ± 0.55 | 7.50 ± 0.43 | 10.46 ± 0.53 | 16.40 ± 0.83 | <0.001 |
Vegetables | 12.41 ± 0.33 | 9.79 ± 0.23 | 8.10 ± 0.18 | 5.63 ± 0.20 | <0.001 |
Other food groups 1 | 15.44 ± 0.65 | 19.93 ± 0.60 | 21.66 ± 0.59 | 20.93 ± 0.65 | <0.001 |
Leucine (g/d) | |||||
Grains and grain products | 61.83 ± 0.84 | 47.32 ± 0.61 | 37.68 ± 0.45 | 23.84 ± 0.57 | <0.001 |
Meat and meat products | 9.43 ± 0.90 | 17.61 ± 0.73 | 22.17 ± 0.68 | 30.92 ± 0.98 | <0.001 |
Legumes and legume products | 13.51 ± 0.64 | 13.55 ± 0.51 | 13.23 ± 0.41 | 15.84 ± 0.68 | 0.01 |
Fish and shellfish | 4.19 ± 0.52 | 7.07 ± 0.42 | 9.56 ± 0.50 | 15.24 ± 0.79 | <0.001 |
Vegetables | 10.91 ± 0.31 | 8.80 ± 0.22 | 7.24 ± 0.17 | 5.23 ± 0.19 | <0.001 |
Other food groups 1 | 14.77 ± 0.63 | 19.46 ± 0.61 | 21.03 ± 0.55 | 20.18 ± 0.66 | <0.001 |
Valine (g/d) | |||||
Grains and grain products | 62.08 ± 0.84 | 49.68 ± 0.60 | 38.92 ± 0.49 | 24.61 ± 0.57 | <0.001 |
Meat and meat products | 8.42 ± 0.86 | 17.61 ± 0.69 | 20.55 ± 0.65 | 30.08 ± 0.96 | <0.001 |
Legumes and legume products | 12.42 ± 0.60 | 10.96 ± 0.42 | 10.92 ± 0.36 | 11.70 ± 0.57 | 0.82 |
Fish and shellfish | 3.94 ± 0.51 | 6.76 ± 0.39 | 9.17 ± 0.46 | 14.08 ± 0.77 | <0.001 |
Vegetables | 11.78 ± 0.32 | 9.80 ± 0.21 | 8.39 ± 0.19 | 6.33 ± 0.21 | <0.001 |
Other food groups 1 | 14.25 ± 0.68 | 18.54 ± 0.57 | 22.07 ± 0.58 | 23.74 ± 0.74 | <0.001 |
Q1 | Q2 | Q3 | Q4 | p for Trend | |
---|---|---|---|---|---|
n = 1213 | n = 1213 | n = 1213 | n = 1213 | ||
β-Coefficient ± SE | β-Coefficient ± SE | β-Coefficient ± SE | |||
BCAA (g/d) | |||||
Model 1 | ref | 0.304 ± 0.270 | 0.694 ± 0.294 | 0.907 ± 0.359 | 0.01 |
Model 2 | ref | 0.131 ± 0.281 | 0.468 ± 0.297 | 0.585 ± 0.368 | 0.09 |
Model 3 | ref | 0.137 ± 0.288 | 0.572 ± 0.307 | 0.623 ± 0.379 | 0.07 |
Isoleucine (g/d) | |||||
Model 1 | ref | 0.488 ± 0.265 | 0.653 ± 0.292 | 0.914 ± 0.351 | 0.02 |
Model 2 | ref | 0.295 ± 0.274 | 0.433 ± 0.296 | 0.612 ± 0.358 | 0.11 |
Model 3 | ref | 0.290 ± 0.280 | 0.551 ± 0.309 | 0.663 ± 0.371 | 0.08 |
Leucine (g/d) | |||||
Model 1 | ref | 0.325 ± 0.273 | 0.729 ± 0.297 | 1.086 ± 0.362 | 0.002 |
Model 2 | ref | 0.140 ± 0.280 | 0.539 ± 0.300 | 0.749 ± 0.372 | 0.03 |
Model 3 | ref | 0.192 ± 0.287 | 0.625 ± 0.309 | 0.796 ± 0.381 | 0.03 |
Valine (g/d) | |||||
Model 1 | ref | 0.281 ± 0.278 | 0.734 ± 0.296 | 0.644 ± 0.380 | 0.08 |
Model 2 | ref | 0.110 ± 0.287 | 0.538 ± 0.298 | 0.373 ± 0.390 | 0.28 |
Model 3 | ref | 0.089 ± 0.296 | 0.621 ± 0.306 | 0.361 ± 0.406 | 0.29 |
Q1 | Q2 | Q3 | Q4 | p for Trend | |
---|---|---|---|---|---|
β-Coefficient ± SE | β-Coefficient ± SE | β-Coefficient ± SE | |||
Grains and grain products | |||||
BCAA (g/d) | |||||
Model 1 | ref | −0.405 ± 0.255 | −0.825 ± 0.275 | −1.247 ± 0.322 | <0.001 |
Model 2 | ref | −0.262 ± 0.253 | −0.656 ± 0.279 | −0.779 ± 0.326 | 0.01 |
Model 3 | ref | −0.109 ± 0.256 | −0.515 ± 0.283 | −0.641 ± 0.326 | 0.03 |
Isoleucine (g/d) | |||||
Model 1 | ref | −0.279 ± 0.253 | −0.763 ± 0.273 | −1.030 ± 0.318 | <0.001 |
Model 2 | ref | −0.175 ± 0.255 | −0.656 ± 0.279 | −0.618 ± 0.321 | 0.03 |
Model 3 | ref | −0.045 ± 0.257 | −0.543 ± 0.282 | −0.534 ± 0.320 | 0.05 |
Leucine (g/d) | |||||
Model 1 | ref | −0.405 ± 0.252 | −0.885 ± 0.272 | −1.120 ± 0.332 | <0.001 |
Model 2 | ref | −0.287 ± 0.252 | −0.769 ± 0.275 | −0.695 ± 0.338 | 0.03 |
Model 3 | ref | −0.121 ± 0.256 | −0.648 ± 0.280 | −0.593 ± 0.339 | 0.047 |
Valine (g/d) | |||||
Model 1 | ref | −0.384 ± 0.256 | −0.859 ± 0.275 | −1.271 ± 0.325 | <0.001 |
Model 2 | ref | −0.331 ± 0.254 | −0.686 ± 0.280 | −0.828 ± 0.331 | 0.01 |
Model 3 | ref | −0.186 ± 0.257 | −0.557 ± 0.286 | −0.668 ± 0.331 | 0.03 |
Non-grain food groups 1 | |||||
BCAA (g/d) | |||||
Model 1 | ref | 0.650 ± 0.263 | 0.632 ± 0.283 | 1.203 ± 0.314 | <0.001 |
Model 2 | ref | 0.479 ± 0.267 | 0.216 ± 0.296 | 0.805 ± 0.335 | 0.03 |
Model 3 | ref | 0.419 ± 0.278 | 0.315 ± 0.302 | 0.832 ± 0.339 | 0.02 |
Isoleucine (g/d) | |||||
Model 1 | ref | 0.722 ± 0.261 | 0.619 ± 0.282 | 1.262 ± 0.322 | <0.001 |
Model 2 | ref | 0.582 ± 0.268 | 0.209 ± 0.294 | 0.845 ± 0.342 | 0.04 |
Model 3 | ref | 0.543 ± 0.278 | 0.298 ± 0.302 | 0.850 ± 0.347 | 0.03 |
Leucine (g/d) | |||||
Model 1 | ref | 0.547 ± 0.265 | 0.686 ± 0.279 | 1.260 ± 0.319 | <0.001 |
Model 2 | ref | 0.402 ± 0.268 | 0.355 ± 0.291 | 0.843 ± 0.337 | 0.02 |
Model 3 | ref | 0.334 ± 0.276 | 0.413 ± 0.295 | 0.872 ± 0.339 | 0.01 |
Valine (g/d) | |||||
Model 1 | ref | 0.666 ± 0.265 | 0.614 ± 0.286 | 1.287 ± 0.321 | <0.001 |
Model 2 | ref | 0.484 ± 0.268 | 0.228 ± 0.298 | 0.850 ± 0.341 | 0.03 |
Model 3 | ref | 0.433 ± 0.278 | 0.302 ± 0.305 | 0.896 ± 0.349 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Chae, M.; Park, H.; Park, K. Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults. Nutrients 2021, 13, 1522. https://doi.org/10.3390/nu13051522
Park S, Chae M, Park H, Park K. Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults. Nutrients. 2021; 13(5):1522. https://doi.org/10.3390/nu13051522
Chicago/Turabian StylePark, Seonghee, Minjeong Chae, Hyoungsu Park, and Kyong Park. 2021. "Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults" Nutrients 13, no. 5: 1522. https://doi.org/10.3390/nu13051522
APA StylePark, S., Chae, M., Park, H., & Park, K. (2021). Higher Branched-Chain Amino Acid Intake Is Associated with Handgrip Strength among Korean Older Adults. Nutrients, 13(5), 1522. https://doi.org/10.3390/nu13051522