Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sargassum siliquosum Biomass Collection
2.2. Genetic Barcoding
2.3. Compositional Analyses
2.4. Rats and Diets
2.5. Rat Measurements
3. Results
3.1. Sargassum siliquosum Identification and Compositional Analyses
3.2. Physiological Parameters
3.3. Gut Structure and Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mouritsen, O.G.; Rhatigan, P.; Pérez-Lloréns, J.L. The rise of seaweed gastronomy: Phycogastronomy. Bot. Mar. 2019, 62, 195–209. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Kothale, D.; Verma, U.; Dewangan, N.; Jana, P.; Jain, A.; Jain, D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv. 2020, 17, 755–775. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Anim. Nutr. (Berl.) 2021. [Google Scholar] [CrossRef] [PubMed]
- Greetham, D.; Adams, J.M.; Du, C. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Sci. Rep. 2020, 10, 9728. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant. Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, L.P.; Cechinel, M.A.P.; de Souza, S.; Boaventura, R.A.R.; Vilar, V.J.P. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. J. Environ. Manag. 2018, 223, 215–253. [Google Scholar] [CrossRef] [PubMed]
- Keleszade, E.; Patterson, M.; Trangmar, S.; Guinan, K.J.; Costabile, A. Clinical efficacy of brown seaweeds Ascophyllum nodosum and Fucus vesiculosus in the prevention or delay progression of the metabolic syndrome: A review of clinical trials. Molecules 2021, 26, 714. [Google Scholar] [CrossRef]
- Yip, Z.T.; Quek, R.Z.B.; Huang, D. Historical biogeography of the widespread macroalga Sargassum (Fucales, Phaeophyceae). J. Phycol. 2020, 56, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef]
- Byeon, S.Y.; Oh, H.J.; Kim, S.; Yun, S.H.; Kang, J.H.; Park, S.R.; Lee, H.J. The origin and population genetic structure of the ‘golden tide’ seaweeds, Sargassum horneri, in Korean waters. Sci. Rep. 2019, 9, 7757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, D.; Simister, R.; Campbell, S.; Marston, M.; Bose, S.; McQueen-Mason, S.J.; Gomez, L.D.; Gallimore, W.A.; Tonon, T. Biomass composition of the golden tide pelagic seaweeds Sargassum fluitans and S. natans (morphotypes I and VIII) to inform valorisation pathways. Sci. Total Environ. 2021, 762, 143134. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.K.; Park, C.S. Seaweed cultivation and utilization of Korea. Algae 2020, 35, 107–121. [Google Scholar] [CrossRef]
- Ayyad, S.E.; Ezmirly, S.T.; Basaif, S.A.; Alarif, W.M.; Badria, A.F.; Badria, F.A. Antioxidant, cytotoxic, antitumor, and protective DNA damage metabolites from the red sea brown alga Sargassum sp. Pharmacogn. Res. 2011, 3, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, X.; Tang, Y.; Mao, J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohydr. Polym. 2020, 228, 115381. [Google Scholar] [CrossRef]
- Atlas of Living Australia. Sargassum siliquosum J. Agardh. Available online: https://bie.ala.org.au/species/54105062 (accessed on 29 March 2021).
- Brown, L.; Poudyal, H.; Panchal, S.K. Functional foods as potential therapeutic options for metabolic syndrome. Obes. Rev. 2015, 16, 914–941. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yende, S.R.; Harle, U.N.; Chaugule, B.B. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 2014, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.-S.; Athukorala, Y.; Jeon, Y.-J.; Senevirathne, M.; Cho, K.-R.; Kim, S.-H. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. Prev. Nutr. Food Sci. 2007, 12, 65–73. [Google Scholar] [CrossRef]
- Dar, A.; Baig, H.; Saifullah, S.; Ahmad, V.; Yasmeen, S.; Nizamuddin, M. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. J. Exp. Mar. Biol. Ecol. 2007, 351, 1–9. [Google Scholar] [CrossRef]
- Abidov, M.; Ramazanov, Z.; Seifulla, R.; Grachev, S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 2010, 12, 72–81. [Google Scholar] [CrossRef]
- Maeda, H.; Fukuda, S.; Izumi, H.; Saga, N. Anti-oxidant and fucoxanthin contents of brown alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Mar. Drugs 2018, 16, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Orazio, N.; Gemello, E.; Gammone, M.A.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxanthin: A treasure from the sea. Mar. Drugs 2012, 10, 604–616. [Google Scholar] [CrossRef] [Green Version]
- du Preez, R.; Paul, N.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Carrageenans from the red seaweed Sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar. Drugs 2020, 18, 97. [Google Scholar] [CrossRef] [Green Version]
- du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Caulerpa lentillifera (sea grapes) improves cardiovascular and metabolic health of rats with diet-induced metabolic syndrome. Metabolites 2020, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Iyer, A.; Nazer, R.; Alam, A.; Diwan, V.; Kauter, K.; Sernia, C.; Campbell, F.; Ward, L.; et al. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol. 2011, 57, 611–624. [Google Scholar] [CrossRef] [PubMed]
- May-Lin, B.Y.; Ching-Lee, W. Seasonal growth rate of Sargassum species at Teluk Kemang, Port Dickson, Malaysia. J. Appl. Phycol. 2013, 25, 805–814. [Google Scholar] [CrossRef]
- Lyu, M.; Wang, Y.F.; Fan, G.W.; Wang, X.Y.; Xu, S.Y.; Zhu, Y. Balancing herbal medicine and functional food for prevention and treatment of cardiometabolic diseases through modulating gut microbiota. Front. Microbiol. 2017, 8, 2146. [Google Scholar] [CrossRef] [Green Version]
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Dalamaga, M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives. Curr. Obes. Rep. 2019, 8, 317–332. [Google Scholar] [CrossRef]
- Zuccarello, G.C.; Lokhorst, G.M. Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data: Monophyly of morphologically simple algal species. Phycologia 2005, 44, 384–392. [Google Scholar] [CrossRef]
- Lane, C.; Lindstrom, S.; Saunders, G. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 2007, 44, 634–648. [Google Scholar] [CrossRef] [PubMed]
- Robic, A.; Rondeau-Mouro, C.; Sassi, J.F.; Lerat, Y.; Lahaye, M. Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydr. Polym. 2009, 77, 206–216. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, X.; Ren, L.; Xue, Y.; Li, C.; Yu, G.; Guan, H. Determination of M/G ratio of propylene glycol alginate sodium sulfate by HPLC with pre-column derivatization. Carbohydr. Polym. 2014, 104, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Wanyonyi, S.; du Preez, R.; Brown, L.; Paul, N.A.; Panchal, S.K. Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats. Nutrients 2017, 9, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosch, B.J.; Magnusson, M.; Paul, N.A.; de Nys, R. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Glob. Change Biol. Bioenergy 2012, 4, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Sekar, S.; Shafie, S.R.; Prasadam, I.; Crawford, R.; Panchal, S.K.; Brown, L.; Xiao, Y. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 2017, 7, 46457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.A.; Brown, L. Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev. Endocr. Metab. Disord. 2013, 14, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Lee, H.G.; Kim, H.S.; Song, K.M.; Chun, Y.G.; Lee, M.H.; Kim, B.K.; Jeon, Y.J. Anti-obesity effects of Sargassum thunbergii via downregulation of adipogenesis gene and upregulation of thermogenic genes in high-fat diet-induced obese mice. Nutrients 2020, 12, 3325. [Google Scholar] [CrossRef]
- Motshakeri, M.; Ebrahimi, M.; Goh, Y.M.; Othman, H.H.; Hair-Bejo, M.; Mohamed, S. Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of type 2 diabetic rat model. Evid. Based Complement. Alternat. Med. 2014, 2014, 379407. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S.A. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2012, 142, 591–619. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Chapter 8-Carbohydrates from Seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 223–274. [Google Scholar] [CrossRef]
- Jensen, G.M.; Pedersen, C.; Kristensen, M.; Frost, G.; Astrup, A. Review: Efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: Evidence from animal and human studies. Obes. Rev. 2013, 14, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.M.; Kristensen, M.; Belza, A.; Knudsen, J.C.; Astrup, A. Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects. Obesity (Silver Spring) 2012, 20, 1851–1858. [Google Scholar] [CrossRef]
- Jensen, G.M.; Kristensen, M.; Astrup, A. Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Sibusiso, L.; Hou, L.; Jiang, H.; Chen, P.; Zhang, X.; Wu, M.; Tong, H. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice. Int. J. Biol. Macromol. 2019, 131, 1162–1170. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, J.; Yan, L.; Cheng, Y.; Li, Q.; Wu, S.; Chen, L.; Thring, R.W.; Yang, Y.; Gao, Y.; et al. Sargassum fusiforme fucoidan alleviates high-fat diet-induced obesity and insulin resistance associated with the improvement of hepatic oxidative stress and gut microbiota profile. J. Agric. Food Chem. 2020, 68, 10626–10638. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, M.; Zhang, P.; Fan, S.; Huang, J.; Yu, S.; Zhang, C.; Li, H. Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition 2019, 65, 50–59. [Google Scholar] [CrossRef]
- Chater, P.I.; Wilcox, M.D.; Houghton, D.; Pearson, J.P. The role of seaweed bioactives in the control of digestion: Implications for obesity treatments. Food Funct. 2015, 6, 3420–3427. [Google Scholar] [CrossRef]
- Nagappan, H.; Pee, P.P.; Kee, S.H.Y.; Ow, J.T.; Yan, S.W.; Chew, L.Y.; Kong, K.W. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Res. Int. 2017, 99, 950–958. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Li, C.; Fu, Y.; Cai, F.; Chen, Q.; Li, D. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch. Biochem. Biophys. 2012, 519, 59–65. [Google Scholar] [CrossRef]
- Poudyal, H.; Panchal, S.K.; Ward, L.C.; Brown, L. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J. Nutr. Biochem. 2013, 24, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Galvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B.; et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormerod, K.L.; Wood, D.L.; Lachner, N.; Gellatly, S.L.; Daly, J.N.; Parsons, J.D.; Dal’Molin, C.G.; Palfreyman, R.W.; Nielsen, L.K.; Cooper, M.A.; et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.J.; Miller, R.A.; Ericsson, A.C.; Harrison, D.C.; Strong, R.; Schmidt, T.M. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019, 19, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibai, M.; Altuntas, E.; Yildirim, B.; Ozturk, G.; Yildirim, S.; Demircan, T. Microbiome and longevity: High abundance of longevity-linked Muribaculaceae in the gut of the long-living rodent Spalax leucodon. OMICS 2020, 24, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from seaweeds: An ocean of opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, G.; Shang, Q.; Chen, X.; Liu, W.; Pi, X.; Zhu, L.; Yin, Y.; Yu, G.; Wang, X. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 2016, 39, 19–25. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Liu, B.; He, N. Unsaturated alginate oligosaccharides attenuated obesity-related metabolic abnormalities by modulating gut microbiota in high-fat-diet mice. Food Funct. 2020, 11, 4773–4784. [Google Scholar] [CrossRef]
- Fu, X.; Cao, C.; Ren, B.; Zhang, B.; Huang, Q.; Li, C. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydr. Polym. 2018, 183, 230–239. [Google Scholar] [CrossRef]
Lipid | Protein (Sum Amino Acids) | Ash | Moisture | Carbohydrate * | Dietary Fibre | ||
---|---|---|---|---|---|---|---|
Total | Soluble | Insoluble | |||||
1.7 ± 0.4 | 4.02 ± 0.1 | 27.7 ± 1.3 | 9.1 ± 0.5 | 57.8 ± 0.5 | 40.2, 42.6 | 5.36, 11.0 | 34.9, 31.6 |
C | H | N | S | I |
---|---|---|---|---|
29.00 ± 0.33 | 4.31 ± 0.09 | 0.91 ± 0.02 | 1.18 ± 0.05 | 0.038 ± 0.002 |
Variables | C | CS | H | HS | p Value | ||
---|---|---|---|---|---|---|---|
Diet | Treatment | Interaction | |||||
Physiological variables | |||||||
Body weight 0 weeks, g | 337 ± 1 | 338 ± 1 | 339 ± 1 | 338 ± 1 | 0.38 | 1.00 | 0.38 |
Body weight 8 weeks, g | 366 ± 7 b | 369 ± 5 b | 445 ± 10 a | 461 ± 13 a | <0.0001 | 0.39 | 0.55 |
Body weight 16 weeks, g | 388 ± 10 c | 384 ± 10 c | 547 ± 14 a | 490 ±16 b | <0.0001 | 0.047 | 0.08 |
Lean mass 16 weeks, g | 292 ± 15 | 282 ± 6 | 299 ± 12 | 281 ± 10 | 0.78 | 0.20 | 0.71 |
Fat mass 16 weeks, g | 75 ± 15 c | 86 ± 8 c | 248 ± 27 a | 193 ± 19 b | <0.0001 | 0.24 | 0.08 |
Food intake 0–8 weeks, g/day | 43.2 ± 2.2 a | 44.2 ± 1.0 a | 26.6 ± 1.1 b | 26.4 ± 1.0 b | <0.0001 | 0.76 | 0.65 |
Food intake 9–16 weeks, g/day | 44.0 ± 1.2 a | 41.1 ± 0.9 a | 23.9 ± 0.9 b | 22.3 ± 0.6 b | <0.0001 | 0.022 | 0.49 |
Xanthophylls intake (total), mg/kg/day | - | 0.40 ± 0.01 | - | 0.17 ± 0.01 | - | - | - |
Fucoxanthin intake, mg/kg/day | - | 0.031 ± 0.001 | - | 0.013 ± 0.001 | - | - | - |
Alginate intake, mg/kg/day | - | 1764 ± 15 | - | 749 ± 9 | - | - | - |
Fucoidan intake, mg/kg/day | - | 80.2 ± 0.8 | - | 34.1 ± 10.4 | - | - | - |
Iodine, mg/kg/day | - | 41 ± 1 | - | 17 ± 1 | - | - | - |
Polyunsaturated fatty acid intake, mg/kg/day | - | 26.2 ± 0.2 | - | 11.1 ± 0.1 | - | - | - |
Water intake 0–8 weeks, g/day | 31.8 ± 1.6 | 31.8 ± 2.0 | 32.4 ± 1.4 | 29.1 ± 1.2 | 0.57 | 0.37 | 0.37 |
Water intake 9–16 weeks, g/day | 21.7 ± 1.4 c | 28.5 ± 0.7 b | 28.8 ± 1.3 b | 34.8 ± 1.4 a | <0.0001 | <0.0001 | 0.76 |
Energy intake 0–8 weeks, kJ/day | 485 ± 25 b | 496 ± 11 b | 607 ± 19 a | 584 ± 20 a | <0.0001 | 0.76 | 0.39 |
Energy intake 9–16 weeks, kJ/day | 470 ± 13 b | 457 ± 6 b | 536 ± 15 a | 534 ± 13 a | <0.0001 | 0.55 | 0.66 |
Feed efficiency 9–16 weeks, g/kJ | 0.05 ± 0.01 b | 0.03 ± 0.01 b | 0.19 ± 0.02 a | 0.05 ± 0.01 b | 0.0001 | 0.08 | 0.042 |
Abdominal circumference 16 weeks, cm | 18.7 ± 0.5 b | 18.5 ± 0.2 b | 21.5 ± 0.2 a | 22.0 ± 0.5 a | <0.0001 | 0.73 | 0.42 |
Body mass index, g/cm2 | 0.61 ± 0.03 b | 0.65 ± 0.01 b | 0.81 ± 0.02 a | 0.75 ± 0.02 a | <0.0001 | 0.62 | 0.019 |
Retroperitoneal fat, mg/mm | 210 ± 20 c | 218 ± 13 c | 673 ± 54 a | 495 ± 50 b | <0.0001 | 0.052 | 0.034 |
Epididymal fat, mg/mm | 89 ± 11 b | 65 ± 7 b | 250 ± 36 a | 115 ± 15 b | <0.0001 | <0.0001 | 0.003 |
Omental fat, mg/mm | 139 ± 14 b | 165 ± 9 b | 325 ± 34 a | 272 ± 22 a | <0.0001 | 0.53 | 0.07 |
Total abdominal fat, mg/mm | 437 ± 42 c | 448 ± 25 c | 1107 ± 57 a | 907 ± 71 b | <0.0001 | 0.12 | 0.08 |
Visceral adiposity, % | 5.2 ± 0.5 b | 5.3 ± 0.2 b | 9.3 ± 1.1 a | 8.3 ± 0.6 a | <0.0001 | 0.47 | 0.38 |
Liver wet weight, mg/mm | 261 ± 11 b | 244 ± 10 b | 380 ± 12 a | 376 ± 14 a | <0.0001 | 0.44 | 0.63 |
Cardiovascular variables | |||||||
Systolic blood pressure 8 weeks, mmHg | 125 ± 4 b | 121 ± 2 b | 137 ± 3 a | 134 ± 3 a | 0.0003 | 0.27 | 0.87 |
Systolic blood pressure 16 weeks, mmHg | 123 ± 2 b | 122 ± 2 b | 138 ± 3 a | 135 ± 4 a | 0.0003 | 0.57 | 0.77 |
Left ventricle + septum, mg/mm | 22.9 ± 1.1 | 22.8 ± 0.7 | 25.2 ± 1.1 | 23.0 ± 0.7 | 0.17 | 0.20 | 0.25 |
Right ventricle, mg/mm | 4.5 ± 0.7 | 3.9 ± 0.3 | 5.3 ± 0.2 | 5.3 ± 0.2 | 0.004 | 0.41 | 0.41 |
Left ventricular diastolic stiffness, κ | 22.1 ± 0.8 b | 22.9 ± 0.7 b | 30.5 ± 1.2 a | 29.4 ± 1.3 a | <0.0001 | 0.90 | 0.42 |
Left ventricular collagen area, % | 10 ± 2 b | 11 ± 3 b | 33 ± 3 a | 29 ± 5 a | 0.0003 | 0.67 | 0.49 |
Metabolic variables | |||||||
Plasma total cholesterol, mmol/L | 1.56 ± 0.08 | 1.68 ± 0.06 | 1.57 ± 0.10 | 1.86 ± 0.19 | 0.53 | 0.18 | 0.57 |
Plasma triglycerides, mmol/L | 0.43 ± 0.02 b | 0.42 ± 0.04 b | 1.88 ± 0.31 a | 1.54 ± 0.28 a | <0.0001 | 0.40 | 0.43 |
Alanine transaminase, U/L | 34 ± 4 | 53 ± 6 | 38 ± 2 | 48 ± 6 | 0.94 | 0.028 | 0.48 |
Aspartate transaminase, U/L | 116 ± 2 | 150 ± 19 | 120 ± 12 | 142 ± 20 | 0.92 | 0.18 | 0.77 |
Liver inflammatory cells, cells/200 µm2 | 6 ± 1 b | 7 ± 1 b | 25 ± 2 a | 26 ± 3 a | <0.0001 | 0.62 | 1.00 |
Liver fat vacuoles area, fat vacuoles/200 µm2 | 13.1 ± 1.7 c | 15.6 ± 2.4 c | 88.6 ± 3.4 a | 55.2 ± 2.9 b | <0.0001 | <0.0001 | <0.0001 |
Oral glucose tolerance test | |||||||
Basal blood glucose 0 weeks, mmol/L | 2.6 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.2 | 2.7 ± 0.1 | 0.70 | 0.70 | 0.70 |
Area under the curve 0 weeks, mmol/L × minute | 632 ± 30 | 594 ± 20 | 606 ± 19 | 552 ± 12 | 0.11 | 0.033 | 0.70 |
Basal blood glucose 8 weeks, mmol/L | 2.9 ± 0.2 b | 2.6 ± 0.1 b | 3.3 ± 0.1 a | 3.5 ± 0.1 a | <0.0001 | 0.70 | 0.058 |
120-minute blood glucose 8 weeks, mmol/L | 3.5 ± 0.2 b | 3.7 ± 0.1 b | 5.0 ± 0.1 a | 5.2 ± 0.2 a | <0.0001 | 0.27 | 1.00 |
Area under the curve 8 weeks, mmol/L × minute | 530 ± 15 b | 537 ± 9 b | 657 ± 22 a | 682 ± 15 a | <0.0001 | 0.31 | 0.57 |
Basal blood glucose 16 weeks, mmol/L | 2.8 ± 0.2 | 3.0 ± 0.2 | 3.3 ± 0.2 | 3.4 ± 0.1 | 0.55 | 0.84 | 0.95 |
120-minute blood glucose 16 weeks, mmol/L | 3.9 ± 0.2 b | 3.7 ± 0.1 b | 4.8 ± 0.3 a | 4.5 ± 0.1 a | <0.0001 | 0.13 | 0.76 |
Area under the curve 16 weeks, mmol/L × minute | 501 ± 21 b | 523 ± 14 b | 617 ± 25 a | 604 ± 9 a | <0.0001 | 0.79 | 0.29 |
Insulin tolerance test | |||||||
120-minute blood glucose 8 weeks, mmol/L | 2.9 ± 0.4 b | 2.7 ± 0.2 b | 4.5 ± 0.3 a | 4.4 ± 0.2 a | <0.0001 | 0.58 | 0.85 |
Area under the curve 8 weeks, mmol/L × minute | 247 ± 58 b | 234 ± 32 b | 408 ± 21 a | 390 ± 18 a | <0.0001 | 0.65 | 0.94 |
120-minute blood glucose 16 weeks, mmol/L | 2.7 ± 0.3 b | 3.3 ± 0.2 b | 4.5 ± 0.4 a | 4.3 ± 0.2 a | <0.0001 | 0.46 | 0.14 |
Area under the curve 16 weeks, mmol/L × minute | 208 ± 37 b | 168 ± 27 b | 404 ± 54 a | 420 ± 28 a | <0.0001 | 0.74 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
du Preez, R.; Magnusson, M.; Majzoub, M.E.; Thomas, T.; Praeger, C.; Glasson, C.R.K.; Panchal, S.K.; Brown, L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021, 13, 1754. https://doi.org/10.3390/nu13061754
du Preez R, Magnusson M, Majzoub ME, Thomas T, Praeger C, Glasson CRK, Panchal SK, Brown L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients. 2021; 13(6):1754. https://doi.org/10.3390/nu13061754
Chicago/Turabian Styledu Preez, Ryan, Marie Magnusson, Marwan E. Majzoub, Torsten Thomas, Christina Praeger, Christopher R. K. Glasson, Sunil K. Panchal, and Lindsay Brown. 2021. "Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats" Nutrients 13, no. 6: 1754. https://doi.org/10.3390/nu13061754
APA Styledu Preez, R., Magnusson, M., Majzoub, M. E., Thomas, T., Praeger, C., Glasson, C. R. K., Panchal, S. K., & Brown, L. (2021). Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients, 13(6), 1754. https://doi.org/10.3390/nu13061754