Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Design
2.2. Sociodemographic Data, Lifestyle Information, and Anthropometric Measurements
2.3. Iron Status and Anemia
2.4. Dietary Iron Intake and Iron Supplement Use
2.5. Foods and Beverages That Contribute to Iron Intake
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Levi, M.; Simonetti, M.; Marconi, E.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Heiman, F.; Cricelli, C.; Lapi, F. Gender differences in determinants of iron-deficiency anemia: A population-based study conducted in four European countries. Ann. Hematol. 2019, 98, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention, and Control. A Guide for Programme Managers; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- World Health Organization. Assessing the Iron Status of Populations: Including Literature Review, 2nd ed.; WHO Library: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Petry, N.; Olofin, I.; Hurrell, R.F.; Boy, E.; Wirth, J.P.; Moursi, M.; Donahue Angel, M.; Rohner, F. The Proportion of Anemia Associated with Iron Deficiency in Low, Medium, and High Human Development Index Countries: A Systematic Analysis of National Surveys. Nutrients 2016, 8, 693. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Person, B.; Szomstein, S.; Rosenthal, R.J. Nutritional deficiencies in morbidly obese patients: A new form of malnutrition? Part B: Minerals. Obes. Surg. 2008, 18, 1028–1034. [Google Scholar] [CrossRef]
- Batista Filho, M.; Souza, A.I.; Miglioli, T.C.; Santos, M.C. Anemia and obesity: A paradox of the nutritional transition in Brazil. Cad. Saude Publica 2008, 24 (Suppl. 2), S247–S257. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Becker, C.; Orozco, M.; Solomons, N.W.; Schümann, K. Iron metabolism in obesity: How interaction between homoeostatic mechanisms can interfere with their original purpose. Part I: Underlying homoeostatic mechanisms of energy storage and iron metabolisms and their interaction. J. Trace Elem. Med. Biol. 2015, 30, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Strenghtening Partnerships, Results, and Innovations in Nutrition Globally (SPRING). Changing the Way We Think about Micronutrient Assessment and Anemia Programming. Findings from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project; SPRING: Arlington, VA, USA, 2017. [Google Scholar]
- De Benoist, B.; McLean, E.; Egli, I.; Cogswell, M. (Eds.) Worldwide Prevalence of Anaemia 1993–2005. WHO Global Database on Anaemia; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Eckhardt, C.L.; Torheim, L.E.; Monterrubio, E.; Barquera, S.; Ruel, M.T. The overlap of overweight and anaemia among women in three countries undergoing the nutrition transition. Eur. J. Clin. Nutr. 2008, 62, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Traissac, P.; Montenegro, R.; El Ati, J.; Gartner, A.; Ben Gharbia, H.; Bour, A.; Delpeuch, F. In a nutrition transition context in North Africa, is the co-occurrence of excess adiposity and iron deficiency or anemia independent, aggravating or protective? Curr. Dev. Nutr. 2020, 4, 287. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução de Diretoria Colegiada—RDC N° 344, de 13 de Dezembro de 2002; Diário Oficial da União: Brasília, Brazil, 2002. Available online: http://189.28.128.100/nutricao/docs/ferro/resolucao_rdc344_2002.pdf (accessed on 23 May 2021).
- Brasil. Ministério da Saúde. Gabinete do Ministro. Portaria n° 1793, de 11 de Agosto de 2009. Institui a Comissão Interinstitucional para Implementação, Acompanhamento e Monitoramento das Ações de Fortificação de Farinhas de Trigo, de Milho e de seus Subprodutos; Diário Oficial da União: Brasília, Brazil, 2009.
- Buzzo, M.; Carvalho, M.; Tiglea, P.; Arauz, L.; Arakaki, E.; Matsuzaki, R. Monitoring the wheat and corn flours enriched with iron. Rev. Do Inst. Adolfo Lutz 2012, 71, 645–649. [Google Scholar]
- Kira, C.S.; Buzzo, M.L.; Carvalho, M.d.F.H.; Duran, M.C.; Sakuma, A.M. Evaluation of iron content in fortified wheat flour, São Paulo, Brazil. Rev. Do Inst. Adolfo Lutz 2006, 65, 181–185. [Google Scholar]
- Vieira, D.A.d.S.; Steluti, J.; Verly, E.; Marchioni, D.M.; Fisberg, R.M. Brazilians’ experiences with iron fortification: Evidence of effectiveness for reducing inadequate iron intakes with fortified flour policy. Public Health Nutr. 2017, 20, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, Q.; Nilson, E.A.; Verly Junior, E.; Sichieri, R. An evaluation of the effectiveness of the flour iron fortification programme in Brazil. Public Health Nutr. 2015, 18, 1670–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assunção, M.C.; Santos, I.S.; Barros, A.J.; Gigante, D.P.; Victora, C.G. Flour fortification with iron has no impact on anaemia in urban Brazilian children. Public Health Nutr. 2012, 15, 1796–1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szarfarc, S.C. Public policies to control iron deficiency in Brazil. Rev. Bras. Hematol. Hemoter. 2010, 32, 2–7. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Sales, C.H.; Fontanelli, M.M.; Pereira, J.L.; Alves, M.C.G.P.; Escuder, M.M.L.; César, C.L.G.; Goldbaum, M. 2015 Health Survey of São Paulo with Focus in Nutrition: Rationale, Design, and Procedures. Nutrients 2018, 10, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, M.C.G.P.; Escuder, M.M.L.; Goldbaum, M.; Barros, M.B.A.; Fisberg, R.M.; Cesar, C.L.G. Sampling plan in health surveys, city of São Paulo, Brazil, 2015. Rev. Saude Publica 2018, 52, 81. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. Lei n° 8069, de 13 de Julho de 1990. Dispõe Sobre o Estatuto da Criança e do Adolescente e dá Outras Providências; Diário Oficial da União: Brasília, Brazil, 1990.
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos. Lei n° 10741, de 1° de Outubro de 2003. Dispõe Sobre o Estatuto do Idoso e dá Outras Providências; Diário Oficial da União: Brasília, Brazil, 2003.
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1435–1445. [Google Scholar] [CrossRef] [Green Version]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation (WHO Technical Report Series 894); World Health Organization: Geneva, Switzerland, 2000; p. 252. [Google Scholar]
- Lebrão, M.L.; Duarte, Y.A.d.O. SABE-Saúde, Bem-Estar e Envelhecimento-O Projeto Sabe no município de São Paulo: Uma Abordagem Inicial; Organização Pan-Americana da Saúde: Brasília, Brazil, 2003; p. 255. [Google Scholar]
- Yamanishi, H.; Iyama, S.; Yamaguchi, Y.; Kanakura, Y.; Iwatani, Y. Total iron-binding capacity calculated from serum transferrin concentration or serum iron concentration and unsaturated iron-binding capacity. Clin. Chem. 2003, 49, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Gartner, A.; Berger, J.; Bour, A.; El Ati, J.; Traissac, P.; Landais, E.; El Kabbaj, S.; Delpeuch, F. Assessment of iron deficiency in the context of the obesity epidemic: Importance of correcting serum ferritin concentrations for inflammation. Am. J. Clin. Nutr. 2013, 98, 821–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namaste, S.M.; Aaron, G.J.; Varadhan, R.; Peerson, J.M.; Suchdev, P.S.; Group, B.W. Methodologic approach for the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106, 333S–347S. [Google Scholar] [CrossRef]
- Grotto, H.Z.W. Laboratory diagnosis of iron deficiency anemia. Rev. Bras. Hematolgia Hemoter. 2010, 32, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s Dietary Intake Data System. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Núcleo de Estudos e Pesquisas em Alimentação. Universidade Estadual de Campinas. Universidade Estadual de Campinas. Tabela Brasileira de Composição de Alimentos—TACO; NEPA-UNICAMP: Campinas, Brazil, 2011. [Google Scholar]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; Consortium, E. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S87–S91. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (US). Subcommitte on Criteria for Dietary Evaluation. Nutrient Adequacy: Assessment Using Food Consumption Surveys; National Academies Press (US): Washington, DC, USA, 1986. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US): Washington, DC, USA, 2001. [Google Scholar]
- National Research Council (US). List of WWEIA Food Categories. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/dmr-food-categories/ (accessed on 18 October 2019).
- Fisberg, R.M.; Leme, A.C.B.; Previdelli, Á.; Mello, A.V.; Arroyo, A.M.; Sales, C.H.; Gómez, G.; Kovalskys, I.; Herrera-Cuenca, M.; Sanabria, L.Y.C.; et al. Contribution of food groups to energy, grams and nutrients-to-limit: The Latin American Study of Nutrition and Health/Estudio Latino Americano de Nutrición y Salud (ELANS). Public Health Nutr. 2021, 1–34. [Google Scholar] [CrossRef]
- Stata Corp LP. Stata Survey Data Reference Manual: Release 13; Stata Corp LP: College Station, TX, USA, 2013. [Google Scholar]
- Newson, R. Confidence intervals for rank statistics: Percentile slopes, differences, and ratios. Stata J. 2006, 6, 497–520. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, R.B.; Belanger, A.; D’Agostino, R.B., Jr. A suggestion for using powerful and informative tests of normality. Am. Stat. 1990, 44, 316–321. [Google Scholar]
- Royston, P. Comment on sg3.4 and an improved D’Agostino test. Stata Tech. Bull. 1992, 1, 1–28. [Google Scholar]
- De Andrade Cairo, R.C.; Rodrigues Silva, L.; Carneiro Bustani, N.; Ferreira Marques, C.D. Iron deficiency anemia in adolescents; a literature review. Nutr. Hosp. 2014, 29, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Minstério da Saúde. Agência Nacional de Vigilância Sanitária. Diretoria Colegiada. Resolução RDC n° 150 de 13 de Abril de 2017. Requisitos Para o Enriquecimento de Farinhas de Trigo e de Milho Com Ferro e Ácido Fólico; Diário Oficial da União: Brasília, Brazil, 2017.
- Brasil. Ministério da Economia. Instituto Brasileiro de Geografia e Estatística. Diretoria de Pesquisas. Coordenação de Trabalho e Rendimentos. Pesquisa de Orçamentos Familiares 2017–2018: Avaliação da Disponibilidade Domiciliar de Alimentos no Brasil; IBGE: Rio de Janeiro, Brazil, 2020.
- Bouri, S.; Martin, J. Investigation of iron deficiency anaemia. Clin. Med. 2018, 18, 242–244. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.D.; Hayter, A.K.; Baker, C.P.; Prabhakaran, P.; Gupta, V.; Kulkarni, B.; Smith, G.D.; Ben-Shlomo, Y.; Krishna, K.V.; Kumar, P.U.; et al. The co-occurrence of awasnemia and cardiometabolic disease risk demonstrates sex-specific sociodemographic patterning in an urbanizing rural region of southern India. Eur. J. Clin. Nutr. 2016, 70, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiciński, M.; Liczner, G.; Cadelski, K.; Kołnierzak, T.; Nowaczewska, M.; Malinowski, B. Anemia of Chronic Diseases: Wider Diagnostics-Better Treatment? Nutrients 2020, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Machado, Í.E.; Malta, D.C.; Bacal, N.S.; Rosenfeld, L.G.M. Prevalence of anemia in Brazilian adults and elderly. Rev. Bras. Epidemiol. 2019, 22, E190008. [Google Scholar] [CrossRef]
- Santos, M.T.L.D.; Costa, K.M.M.; Bezerra, I.M.P.; Santos, E.F.S.; Szarfarc, S.C.; Rocha Pereira, M.J.F.D.; Abreu, L.C.; Venancio, D.P. Anemia and iron deficiency in primigent parturients in a municipality of Brazilian west Amazon. Medicine 2020, 99, e22909. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, H.d.S.; Bezerra, M.K.d.A.; de Assunção, M.L.; de Menezes, R.C.E. Prevalence of and factors associated with anemia in school children from Maceió, northeastern Brazil. BMC Public Health 2016, 16, 380. [Google Scholar] [CrossRef] [Green Version]
- Lício, J.S.A.; Fávaro, T.R.; Chaves, C.R.M.d.M. Anemia in indigenous women and children in Brazil: A systematic review. Ciência Saúde Coletiva 2016, 21, 2571–2581. [Google Scholar] [CrossRef] [Green Version]
- Vieira, R.C.d.S.; do Livramento, A.R.S.; Calheiros, M.S.C.; Ferreira, C.M.X.; dos Santos, T.R.; de Assunção, M.L.; Ferreira, H.d.S. Prevalence and temporal trend (2005–2015) of anemia among children in Northeast Brazil. Public Health Nutr. 2017, 21, 868–876. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Intermittent Iron and Folic Acid Supplementation in Menstruating Women; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Fisberg, M.; Tosatti, A.M. Enrichment of iron and folic acid: The real need and the dangers of this initiative. Rev. Bras. Hematol. Hemoter. 2011, 33, 94–95. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.M. Considerations on the food fortification policy in Brazil. Rev. Bras. Hematol. Hemoter. 2011, 33, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Cançado, R.D.; Chiattone, C.S. Current approach to hereditary hemochromatosis. Rev. Bras. Hematol. Hemoter. 2010, 32, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Mainous, A.G.; Tanner, R.J.; Coates, T.D.; Baker, R. Prediabetes, elevated iron and all-cause mortality: A cohort study. BMJ Open 2014, 4, e006491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, D.A.d.S.; Sales, C.H.; Cesar, C.L.G.; Marchioni, D.M.; Fisberg, R.M. Influence of Haem, Non-Haem, and Total Iron Intake on Metabolic Syndrome and Its Components: A Population-Based Study. Nutrients 2018, 10, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönnerdal, B. Excess iron intake as a factor in growth, infections, and development of infants and young children. Am. J. Clin. Nutr. 2017, 106, 1681S–1687S. [Google Scholar] [CrossRef] [PubMed]
- Paganini, D.; Zimmermann, M.B. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review. Am. J. Clin. Nutr. 2017, 106, 1688S–1693S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Norwitz, S.G.; Norwitz, E.R. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. Int. J. Mol. Sci. 2019, 20, 3283. [Google Scholar] [CrossRef] [Green Version]
- Swanson, C.A. Iron intake and regulation: Implications for iron deficiency and iron overload. Alcohol 2003, 30, 99–102. [Google Scholar] [CrossRef]
- Brissot, P.; Troadec, M.B.; Loréal, O.; Brissot, E. Pathophysiology and classification of iron overload diseases; update 2018. Transfus. Clin. Biol. 2019, 26, 80–88. [Google Scholar] [CrossRef]
- Basuli, D.; Stevens, R.G.; Torti, F.M.; Torti, S.V. Epidemiological associations between iron and cardiovascular disease and diabetes. Front. Pharm. 2014, 5, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Iso, H.; Ohira, T.; Date, O.C.; Tanabe, N.; Kikuchi, S.; Tamakoshi, A. Associations of dietary iron intake with mortality from cardiovascular disease: The JACC study. J. Epidemiol. 2012, 22, 484–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skikne, B.S.; Punnonen, K.; Caldron, P.H.; Bennett, M.T.; Rehu, M.; Gasior, G.H.; Chamberlin, J.S.; Sullivan, L.A.; Bray, K.R.; Southwick, P.C. Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: A prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index. Am. J. Hematol. 2011, 86, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Yanoff, L.B.; Menzie, C.M.; Denkinger, B.; Sebring, N.G.; McHugh, T.; Remaley, A.T.; Yanovski, J.A. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 2007, 31, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B. Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int. J. Vitam. Nutr. Res. 2010, 80, 263–270. [Google Scholar] [CrossRef]
- Cepeda-Lopez, A.C.; Osendarp, S.J.; Melse-Boonstra, A.; Aeberli, I.; Gonzalez-Salazar, F.; Feskens, E.; Villalpando, S.; Zimmermann, M.B. Sharply higher rates of iron deficiency in obese Mexican women and children are predicted by obesity-related inflammation rather than by differences in dietary iron intake. Am. J. Clin. Nutr. 2011, 93, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Hernández, C.; Pelegrí, D.; Simó, R. Factors accounting for high ferritin levels in obesity. Int. J. Obes. 2008, 32, 1665–1669. [Google Scholar] [CrossRef] [Green Version]
- González-Domínguez, Á.; Visiedo-García, F.M.; Domínguez-Riscart, J.; González-Domínguez, R.; Mateos, R.M.; Lechuga-Sancho, A.M. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci. 2020, 21, 5529. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Eisenstaedt, R.S.; Ferrucci, L.; Klein, H.G.; Woodman, R.C. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, J. Mitochondria: Sovereign of inflammation? Eur. J. Immunol. 2011, 41, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, K.M.; Gasche, C. Management of Iron Deficiency Anaemia in Inflammatory Bowel Disease. Acta Haematol. 2019, 142, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Salas, G.G.; Sanabria, A.R.; Oreamuno, A.S.; Chinnock, A.; Previdelli, A.N.; Sales, C.H.; Quesada, D.Q. Prevalencia de ingesta inadecuada de micronutrientes en la población urbana de Costa Rica. Arch. Latinoam. Nutr. 2019, 69, 221–232. [Google Scholar]
- Rhodes, E.C.; Suchdev, P.S.; Narayan, K.M.V.; Cunningham, S.; Weber, M.B.; Tripp, K.; Mapango, C.; Ramakrishnan, U.; Hennink, M.; Williams, A.M. The co-occurrence of overweight and micronutrient deficiencies or anemia among women of reprodutive age in Malawi. J. Nutr. 2020, 150, 1554–1565. [Google Scholar] [CrossRef]
- De Carvalho, A.M.; César, C.L.; Fisberg, R.M.; Marchioni, D.M. Excessive meat consumption in Brazil: Diet quality and environmental impacts. Public Health Nutr. 2013, 16, 1893–1899. [Google Scholar] [CrossRef] [Green Version]
- Low, M.S.; Speedy, J.; Styles, C.E.; De-Regil, L.M.; Pasricha, S.R. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst. Rev. 2016, 4, CD009747. [Google Scholar] [CrossRef]
Characteristics | Hemoglobin (g/dL) | Anemia * | Serum Ferritin (μg/L) † | Iron Stores Classification ‡ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Median | Interquartile Range | p-Value ‖ | % | 95%CI | p-Value § | n | Median | Interquartile Range | p-Value ‖ | Depleted Iron Stores | Severe Risk of Iron Overload | p-Value § | |||
% | 95%CI | % | 95%CI | |||||||||||||
Entire sample | 897 | 14.8 | 13.6–16.0 | - | 6.7 | 5.0–8.7 | - | 899 | 74.2 | 37.1–147.5 | - | 5.1 | 3.7–6.9 | 18.8 | 15.9–22.2 | - |
Age groups | ||||||||||||||||
Adolescents; 12–19 y | 290 | 14.4 | 13.5–15.6 | 0.243 | 3.8 | 2.2–6.7 | 0.028 | 289 | 37.6 | 23.5–60.7 | <0.001 | 9.0 | 6.0–13.2 | 2.2 | 1.0–4.7 | <0.001 |
Adults; 20–59 y | 302 | 15.0 | 13.8–16.2 | 6.2 | 3.9–9.9 | 302 | 97.3 | 45.9–182.7 | 4.6 | 2.7–7.8 | 26.9 | 21.7–32.7 | ||||
Older adults; ≥60 y | 305 | 14.7 | 13.6–16.0 | 10.2 | 7.1–14.3 | 308 | 103.0 | 57.5–163.9 | 1.9 | 0.8–4.3 | 18.6 | 14.3–23.8 | ||||
Age groups and sex | ||||||||||||||||
Male adolescents | 140 | 15.1 | 14.3–16.1 | <0.001 | 0.8 | 0.1–5.4 | 0.015 | 140 | 48.3 | 34.9–72.8 | <0.001 | 1.3 | 0.3–5.3 | 4.6 | 2.2–9.5 | <0.001 |
Female adolescents | 150 | 13.8 | 13.0–14.7 | 6.7 | 3.7–11.9 | 149 | 29.0 | 16.5–44.4 | 16.2 | 10.8–23.7 | NO | |||||
Male adults | 153 | 15.7 | 14.8–16.4 | <0.001 | 4.4 | 2.0–9.6 | 0.198 | 153 | 150.1 | 100.7–245.3 | <0.001 | NO | 50.6 | 42.2–59.0 | <0.001 | |
Female adults | 149 | 14.0 | 12.9–15.0 | 8.4 | 4.7–14.6 | 149 | 43.1 | 26.7–83.2 | 9.9 | 5.8–16.2 | NO | |||||
Male older adults | 151 | 15.1 | 14.0–16.5 | <0.001 | 9.4 | 5.5–15.6 | 0.665 | 152 | 134.1 | 67.4–190.9 | 0.001 | 2.0 | 0.6–6.1 | 35.8 | 28.0–44.3 | <0.001 |
Female older adults | 154 | 14.0 | 12.8–15.3 | 10.9 | 6.8–17.1 | 156 | 88.2 | 51.9–143.3 | 1.8 | 0.6–5.6 | NO | |||||
Family income per capita ¶ | ||||||||||||||||
1st tertile | 269 | 14.4 | 13.4–15.9 | 0.002 | 7.0 | 4.2–11.5 | 0.783 | 269 | 61.5 | 33.2–120.2 | <0.001 | 7.7 | 4.8–12.0 | 14.6 | 10.1–20.7 | 0.182 |
2nd tertile | 244 | 14.7 | 13.6–16.2 | 6.1 | 3.5–10.5 | 245 | 80.7 | 34.2–152.0 | 5.7 | 3.1–10.2 | 20.1 | 14.8–26.6 | ||||
3rd tertile | 240 | 15.0 | 14.0–16.4 | 5.3 | 2.9–9.6 | 241 | 97.3 | 44.4–159.9 | 3.0 | 1.4–6.5 | 22.1 | 16.3–29.4 | ||||
Body mass index classification ** | ||||||||||||||||
Underweight | 70 | 14.8 | 13.4–15.7 | 0.902 | 10.4 | 5.0–20.5 | 0.003 | 71 | 87.9 | 44.9–131.6 | 0.001 | 1.3 | 0.02–9.0 | 13.4 | 7.0–24.3 | 0.076 |
Healthy weight | 424 | 14.7 | 13.8–16.0 | 4.7 | 3.0–7.4 | 422 | 64.4 | 33.1–119.3 | 5.8 | 3.7–8.9 | 14.9 | 11.1–19.7 | ||||
Overweight without obesity | 205 | 15.0 | 13.8–16.2 | 4.5 | 2.4–8.5 | 206 | 87.4 | 41.4–155.4 | 5.8 | 3.2–10.2 | 22.2 | 16.0–29.8 | ||||
Obesity | 197 | 14.5 | 13.3–16.2 | 12.0 | 7.5–18.6 | 199 | 95.3 | 44.8–185.8 | 3.6 | 1.7–7.2 | 24.3 | 17.9–32.1 |
Characteristics | Depleted Iron Stores without Anemia * | Depleted Iron Stores and Anemia *,† | Anemia † | Anemia and Severe Risk of Iron Overload †,‡ | Severe Risk of Iron Overload ‡ | p-Value ‖ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | 95%CI | n | % | 95%CI | n | % | 95%CI | n | % | 95%CI | n | % | 95%CI | ||
Entire sample | 40 | 4.0 | 2.8–5.7 | 11 | 1.1 | 0.5–2.1 | 42 | 4.3 | 3.1–6.0 | 10 | 1.3 | 0.6–2.6 | 127 | 17.6 | 14.7–20.87 | - |
Age groups | ||||||||||||||||
Adolescents; 12–19 y | 25 | 7.8 | 5.0–12.0 | 5 | 1.4 | 0.6–3.4 | 7 | 2.4 | 1.1–5.0 | NO | 7 | 2.3 | 1.0–4.7 | <0.001 | ||
Adults; 20–59 y | 13 | 3.9 | 2.2–6.9 | 2 | 0.7 | 0.2–3.1 | 12 | 4.0 | 2.2–7.0 | 4 | 1.6 | 0.6–4.2 | 70 | 25.3 | 20.3–31.0 | |
Older adults; ≥60 y | 2 | 0.5 | 0.1–2.2 | 4 | 1.4 | 0.5–3.7 | 23 | 6.8 | 4.4–10.3 | 6 | 2.0 | 0.9–4.5 | 50 | 16.8 | 12.6–21.9 | |
Age groups and sex | ||||||||||||||||
Male adolescents | 2 | 1.3 | 0.3–5.3 | NO | 1 | 0.8 | 0.1–5.4 | NO | 7 | 4.6 | 2.2–9.5 | <0.001 | ||||
Female adolescents | 23 | 14.0 | 8.9–21.4 | 5 | 2.8 | 1.2–6.6 | 6 | 3.9 | 1.7–8.7 | NO | NO | |||||
Male adults | NO | NO | 2 | 1.4 | 0.4–5.6 | 4 | 3.0 | 1.1–7.9 | 70 | 47.6 | 39.3–56.1 | <0.001 | ||||
Female adults | 13 | 8.4 | 4.8–14.3 | 2 | 1.5 | 0.3–5.4 | 10 | 6.8 | 3.6–12.6 | NO | NO | |||||
Male older adults | 1 | 0.6 | 0.1–4.5 | 2 | 1.4 | 0.3–5.4 | 7 | 4.2 | 1.8–9.5 | 6 | 3.8 | 1.7–8.5 | 48 | 32.2 | 24.7–40.7 | <0.001 |
Female older adults | 1 | 0.4 | 0.0–2.9 | 2 | 1.4 | 0.3–5.5 | 16 | 9.5 | 5.8–15.4 | NO | NO | |||||
Leisure-time physical activity § | ||||||||||||||||
Insufficient physical activity | 33 | 5.2 | 3.5–7.6 | 8 | 1.3 | 0.6–2.8 | 28 | 4.5 | 3.0–6.7 | 10 | 2.0 | 1.0–4.1 | 79 | 16.0 | 12.8–19.8 | 0.032 |
Sufficient physical activity | 6 | 2.0 | 0.8–4.7 | 3 | 0.7 | 0.2–2.2 | 14 | 4.0 | 2.2–7.1 | NO | 48 | 20.4 | 15.2–26.8 | |||
Body mass index classification ** | ||||||||||||||||
Underweight | NO | 1 | 1.4 | 0.2–9.2 | 5 | 6.6 | 2.5–16.3 | 2 | 2.4 | 0.6–9.3 | 8 | 11.2 | 5.3–22.0 | 0.025 | ||
Healthy weight | 20 | 4.4 | 2.6–7.2 | 6 | 1.4 | 0.5–3.6 | 16 | 2.9 | 1.7–5.0 | 2 | 0.4 | 0.1–1.8 | 52 | 14.5 | 10.7–19.3 | |
Overweight without obesity | 13 | 5.5 | 3.0–10.0 | 1 | 0.3 | 0.0–2.0 | 8 | 3.2 | 1.5–6.8 | 2 | 1.0 | 0.2–4.4 | 33 | 21.2 | 15.2–28.8 | |
Obesity | 6 | 2.7 | 1.2–6.2 | 3 | 1.2 | 0.4–3.8 | 13 | 7.7 | 4.2–13.4 | 4 | 3.0 | 1.0–8.6 | 34 | 21.4 | 15.4–29.0 |
Characteristics | n | Dietary Iron Intake (mg/d) | Dietary and Supplement Iron Intake (mg/d) | Probability of Inadequate Dietary Iron Intake * | |||||
---|---|---|---|---|---|---|---|---|---|
Median | Interquartile Range | p-Value † | Median | Interquartile Range | p-Value † | % | 95%CI | ||
Entire sample | 890 | 9.7 | 7.8–11.8 | - | 9.7 | 7.9–12.1 | - | 13.9 | 8.8–22.7 |
Age groups | |||||||||
Adolescents; 12–19 y | 287 | 10.3 | 8.5–13.3 | <0.001 | 10.3 | 8.5–13.3 | <0.001 | 18.4 | 9.3–38.3 |
Adults; 20–59 y | 297 | 9.8 | 8.1–12.0 | 9.9 | 8.1–12.2 | 14.4 | 7.2–31.6 | ||
Older adults; ≥60 y | 306 | 8.5 | 7.1–10.1 | 8.7 | 7.3–10.3 | 8.6 | 6.0–19.7 | ||
Age groups and sex | |||||||||
Male adolescents | 139 | 12.0 | 9.1–14.7 | <0.001 | 12.0 | 9.1–14.8 | <0.001 | 10.7 | 3.3–37.0 |
Female adolescents | 148 | 9.8 | 8.1–11.4 | 9.8 | 8.2–11.4 | 25.8 | 11.9–60.6 | ||
Male adults | 152 | 10.6 | 8.8–13.0 | <0.001 | 10.9 | 8.8–13.6 | <0.001 | 3.4 | 1.2–11.2 |
Female adults | 145 | 8.8 | 7.1–10.6 | 8.9 | 7.2–10.6 | 36.4 | 12.9–61.9 | ||
Male older adults | 151 | 9.2 | 7.7–10.6 | <0.001 | 9.3 | 8.0–11.3 | <0.001 | 8.8 | 3.4–25.1 |
Female older adults | 155 | 7.8 | 6.9–9.5 | 8.0 | 7.0–9.7 | 8.4 | 3.5–24.6 | ||
Household head education | |||||||||
<10 y | 460 | 9.4 | 7.6–11.3 | 0.004 | 9.5 | 7.8–11.6 | 0.015 | 15.0 | 8.0–29.4 |
≥10 y | 409 | 10.0 | 8.1–12.3 | 10.0 | 8.2–12.5 | 12.2 | 7.8–26.3 | ||
Leisure-time physical activity ‡ | |||||||||
Insufficient physical activity | 589 | 9.3 | 7.6–11.2 | 0.003 | 9.4 | 7.6–11.5 | 0.002 | 15.7 | 9.3–27.6 |
Sufficient physical activity | 299 | 10.0 | 8.3–12.2 | 10.0 | 8.4–12.6 | 10.7 | 4.7–28.6 | ||
Body mass index classification § | |||||||||
Underweight | 71 | 9.7 | 6.9–12.0 | 0.008 | 9.9 | 7.7–14.3 | 0.001 | 11.4 | 3.3–43.5 |
Healthy weight | 418 | 10.0 | 8.1–12.4 | 10.0 | 8.2–12.8 | 13.0 | 7.0–25.6 | ||
Overweight without obesity | 202 | 9.4 | 7.6–11.3 | 9.4 | 7.6–11.4 | 16.6 | 7.4–41.0 | ||
Obesity | 198 | 9.2 | 7.8–11.0 | 9.2 | 7.8–11.5 | 13.3 | 5.5–35.7 |
Main Group | Subgroup | Category | Entire Sample | Adolescents; 12–19 y | Adults; 20–59 y | Older Adults; ≥60 y | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Total | Male | Female | Total | Male | Female | Total | ||||||||||||||||||||||||
mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | mg/d | SD | %C | |||
Grains | Breads, rolls, tortillas | Yeast breads | 2.4 | 1.2 | 22.2 | 3.3 | 1.8 | 20.5 | 2.5 | 1.1 | 18.8 | 2.9 | 1.5 | 19.8 | 2.7 | 1.4 | 23.2 | 2.2 | 0.9 | 25.0 | 2.5 | 1.2 | 24.0 | 2.1 | 0.8 | 22.6 | 1.8 | 0.9 | 23.9 | 2.0 | 0.9 | 23.2 |
Protein foods | Plant-based protein foods | Beans, peas, and other legumes | 1.4 | 0.9 | 14.4 | 1.6 | 0.7 | 13.4 | 1.3 | 0.7 | 12.6 | 1.5 | 0.7 | 13.1 | 1.7 | 1.0 | 17.7 | 1.1 | 0.8 | 10.6 | 1.5 | 1.0 | 14.8 | 1.4 | 1.1 | 18.8 | 1.0 | 0.8 | 12.1 | 1.2 | 1.0 | 15.7 |
Protein foods | Meats | Beef, excludes ground | 2.0 | 1.4 | 9.0 | 2.4 | 1.5 | 7.5 | 1.9 | 1.8 | 9.1 | 2.2 | 1.7 | 8.2 | 2.3 | 1.6 | 10.8 | 1.6 | 1.2 | 7.6 | 2.0 | 1.5 | 9.5 | 1.6 | 1.0 | 10.0 | 1.7 | 0.9 | 8.9 | 1.7 | 0.9 | 9.5 |
Mixed dishes | Mixed dishes, grain-based | Turnovers and other grain-based items | 2.0 | 1.6 | 4.1 | 2.1 | 1.4 | 5.4 | 1.8 | 1.5 | 4.8 | 2.0 | 1.4 | 5.1 | 2.4 | 2.0 | 3.5 | 1.9 | 1.4 | 5.5 | 2.1 | 1.7 | 4.3 | 1.6 | 1.2 | 2.0 | 1.3 | 1.2 | 3.3 | 1.5 | 1.2 | 2.6 |
Snacks and sweets | Sweet bakery products | Cookies and brownies | 3.4 | 3.2 | 4.1 | 5.0 | 3.8 | 10.4 | 2.9 | 2.6 | 6.5 | 4.1 | 3.4 | 8.6 | 4.3 | 3.4 | 2.6 | - | - | - | 2.9 | 2.9 | 2.0 | - | - | - | - | - | - | - | - | - |
Mixed dishes | Mixed dishes, grain-based | Pasta mixed dishes | 2.6 | 1.5 | 3.0 | 3.7 | 1.7 | 3.5 | 2.8 | 1.3 | 2.8 | 3.3 | 1.6 | 3.2 | 2.5 | 1.3 | 2.6 | 2.5 | 1.8 | 3.4 | 2.5 | 1.5 | 2.9 | 2.5 | 1.5 | 2.8 | 1.8 | 0.9 | 2.8 | 2.2 | 1.2 | 2.8 |
Snacks and sweets | Crackers | Saltine crackers | 1.4 | 1.4 | 2.8 | - | - | - | 1.5 | 1.4 | 3.1 | 1.6 | 1.5 | 2.4 | 2.3 | 1.9 | 3.4 | 1.3 | 1.2 | 3.2 | 1.7 | 1.6 | 3.3 | 1.0 | 0.7 | 2.6 | 0.9 | 0.4 | 3.4 | 1.0 | 0.5 | 3.0 |
Protein foods | Meats | Ground beef and items made from ground beef | 2.2 | 1.4 | 2.4 | 2.3 | 1.0 | 3.6 | 2.2 | 1.3 | 3.8 | 2.3 | 1.2 | 3.7 | - | - | - | 1.8 | 1.3 | 2.3 | - | - | - | - | - | - | 2.1 | 1.8 | 2.5 | - | - | - |
Grains | Breads, rolls, tortillas | Rolls and buns | 2.1 | 1.4 | 2.4 | 2.5 | 1.4 | 2.1 | 2.0 | 1.0 | 2.6 | - | - | - | 2.4 | 1.8 | 2.3 | 2.0 | 1.3 | 4.5 | 2.2 | 1.5 | 3.2 | - | - | - | - | - | - | - | - | |
Mixed dishes | Mixed dishes, pizza | Pizza | 2.6 | 1.4 | 2.2 | - | - | - | 2.4 | 1.1 | 2.6 | - | - | - | 3.4 | 1.6 | 4.0 | - | - | - | 2.8 | 1.6 | 3.0 | - | - | - | - | - | - | - | - | |
Grains | Cooked grains | Pasta, noodles, cooked grains | - | - | - | 3.6 | 2.0 | 2.9 | - | - | - | 3.2 | 2.0 | 3.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Sugars | Sugars | Jams, syrups, toppings | - | - | - | 1.4 | 0.7 | 2.1 | - | - | - | 1.2 | 0.8 | 2.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Protein foods | Poultry | Chicken, whole pieces | - | - | - | - | - | - | - | - | - | - | - | - | 0.6 | 0.5 | 2.5 | - | - | - | 0.6 | 0.4 | 2.3 | 0.5 | 0.4 | 2.0 | 0.5 | 0.7 | 2.4 | 0.5 | 0.6 | 2.2 |
Snacks and sweets | Sweet bakery products | Cakes and pies | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.9 | 0.7 | 2.5 | - | - | - | - | - | - | - | - | - | - | - | - |
Mixed dishes | Mixed dishes, soups | Soups | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.6 | 1.8 | 2.3 | - | - | - | - | - | - | 1.7 | 2.0 | 3.3 | 1.7 | 1.9 | 2.6 |
Grains | Cereals | Grits and other cooked cereals | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 3.2 | 3.8 | 3.1 | - | - | - | - | - | - |
Grains | Ready-to-eat cereals | Ready-to-eat cereal, lower sugar (≤21.2 g/100 g) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 12.2 | 18.6 | 2.7 | 8.6 | 19.0 | 5.4 | 9.8 | 17.8 | 4.0 |
Grains | Cooked grains | Rice | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.2 | 0.1 | 2.2 | - | - | - | 0.2 | 0.1 | 2.0 |
Total | - | - | 66.6 | - | - | 71.4 | - | - | 66.7 | - | - | 70.0 | - | - | 72.6 | - | - | 66.9 | - | - | 69.3 | - | - | 68.8 | - | - | 68.0 | - | - | 67.6 |
Factors | Hemoglobin (g/dL) | Ferritin (µg/L) * | ||
---|---|---|---|---|
β | 95%CI | β | 95%CI | |
Sex (ref. Men) | ||||
Women | −1.17 | −1.57; −0.77 | −0.91 | −1.04; −0.78 |
Age (ref. Adolescents; 12–19 years) | ||||
Adults; 20–59 years | 0.57 | 0.14; 0.99 | 0.80 | 0.67; 0.94 |
Older adults; ≥60 years | 0.21 | −0.32; 0.75 | 0.87 | 0.71; 1.03 |
Household head education (ref. < 10 years) | ||||
≥10 years | - | - | −0.15 | −0.31; 0.00 |
Family income per capita (ref. 1st tertile) | ||||
2nd tertile | 0.57 | −0.05; 1.19 | 0.03 | −0.16; 0.22 |
3rd tertile | 0.81 | 0.18; 1.45 | 0.18 | −0.02; 0.37 |
Leisure-time physical activity (ref. Insufficient physical activity) | ||||
Sufficient physical activity | 0.28 | −0.46; 0.51 | −0.08 | −0.19; 0.04 |
Constant | 14.96 | 14.55; 15.38 | 4.13 | 3.99; 4.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sales, C.H.; Rogero, M.M.; Sarti, F.M.; Fisberg, R.M. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients 2021, 13, 1888. https://doi.org/10.3390/nu13061888
Sales CH, Rogero MM, Sarti FM, Fisberg RM. Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients. 2021; 13(6):1888. https://doi.org/10.3390/nu13061888
Chicago/Turabian StyleSales, Cristiane Hermes, Marcelo Macedo Rogero, Flávia Mori Sarti, and Regina Mara Fisberg. 2021. "Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil" Nutrients 13, no. 6: 1888. https://doi.org/10.3390/nu13061888
APA StyleSales, C. H., Rogero, M. M., Sarti, F. M., & Fisberg, R. M. (2021). Prevalence and Factors Associated with Iron Deficiency and Anemia among Residents of Urban Areas of São Paulo, Brazil. Nutrients, 13(6), 1888. https://doi.org/10.3390/nu13061888