Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical, Physical Activity, and Diet Assessment
2.3. Biochemical Measurements
2.4. Erythrocyte Fatty Acids Analysis
2.5. Cardiovascular Risk Assessment
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Committee
References
- D’Agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham heart study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- DeGoma, E.M.; Dunbar, R.L.; Jacoby, D.; French, B. Differences in absolute risk of cardiovascular events using risk-refinement tests: A systematic analysis of four cardiovascular risk equations. Atherosclerosis 2013, 227, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Hardoon, S.L.; Whincup, P.H.; Lennon, L.T.; Wannamethee, S.G.; Capewell, S.; Morris, R.W. How much of the recent decline in the incidence of myocardial infarction in British men can be explained by changes in cardiovascular risk factors? Evidence from a prospective population-based study. Circulation 2008, 117, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Stamler, J.; Wentworth, D.; Neaton, J.D. Is Relationship Between Serum Cholesterol and Risk of Premature Death From Coronary Heart Disease Continuous and Graded?: Findings in 356 222 Primary Screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986, 256, 2823–2828. [Google Scholar] [CrossRef] [PubMed]
- Unal, B.; Critchley, J.A.; Capewell, S. Explaining the decline in coronary heart disease mortality in England and Wales between 1981 and 2000. Circulation 2004, 109, 1101–1107. [Google Scholar] [CrossRef]
- Kavousi, M.; Leening, M.J.G.; Nanchen, D.; Greenland, P.; Graham, I.M.; Steyerberg, E.W.; Ikram, M.A.; Stricker, B.H.; Hofman, A.; Franco, O.H. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA 2014, 311, 1416–1423. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Young, R.; Carrubba, C.J.; McEvoy, J.W.; Budoff, M.J.; Blumenthal, R.S.; Kronmal, R.A.; McClelland, R.L.; Nasir, K.; Blaha, M.J. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann. Intern. Med. 2015, 162, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.R.; Paynter, N.P.; Eaton, C.B.; Manson, J.E.; Martin, L.W.; Robinson, J.G.; Rossouw, J.E.; Wassertheil-Smoller, S.; Ridker, P.M. Comparison of the framingham and reynolds risk scores for global cardiovascular risk prediction in the multiethnic women’s health initiative. Circulation 2012, 125, 1748–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntner, P.; Colantonio, L.D.; Cushman, M.; Goff, D.C.; Howard, G.; Howard, V.J.; Kissela, B.; Levitan, E.B.; Lloyd-Jones, D.M.; Safford, M.M. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA 2014, 311, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Faludi, A.A.; Izar, M.C.; Saraiva, J.F.; Chacra, A.P.; Bianco, H.T.; Afiune Neto, A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose—2017. Arq. Bras. Cardiol. 2017, 109, 76. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine n−3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Imamura, F.; Aslibekyan, S.; Marklund, M.; Virtanen, J.K.; Wennberg, M.; Yakoob, M.Y.; Chiuve, S.E.; Dela Cruz, L.; Frazier-Wood, A.C.; et al. ω-3 Polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies. JAMA Intern. Med. 2016, 176, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Tintle, N.L.; Etherton, M.R.; Vasan, R.S. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J. Clin. Lipidol. 2018, 12, 718–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef]
- Baecke, J.A.; Burema, J.; Frijters, J.E. A short questionnaire for the measurement habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Florindo, A.A.; Latorre, M.; do, R.D.; de, O. Validation and reliability of the Baecke questionnaire for the evaluation of habitual physical activity in adult men. Rev. Bras. Med. Esporte 2003, 9, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.; Osti, R.; Ribeiro, E.; Florindo, A. Validação de dois questionários para a avaliação da atividade física em adultos. Rev. Bras. Ativ. Física Saúde 2013, 18. [Google Scholar] [CrossRef]
- Masood, A.; Stark, K.D.; Salem, N. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J. Lipid Res. 2005, 46, 2299. [Google Scholar] [CrossRef] [Green Version]
- Mosca, L.; Benjamin, E.J.; Berra, K.; Bezanson, J.L.; Dolor, R.J.; Lloyd-Jones, D.M.; Newby, L.K.; Piña, I.L.; Roger, V.L.; Shaw, L.J.; et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 Update: A guideline from the American Heart Association. J. Am. Coll. Cardiol. 2011, 57, 1404–1423. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Buring, J.E.; Rifai, N.; Cook, N.R. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds Risk Score. J. Am. Med. Assoc. 2007, 297, 611–619. [Google Scholar] [CrossRef]
- Ridker, P.M.; Paynter, N.P.; Rifai, N.; Gaziano, J.M.; Cook, N.R. C-reactive protein and parental history improve global cardiovascular risk prediction: The Reynolds risk score for men. Circulation 2008, 118, 2243–2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catapano, A.L.; Reiner, Ž.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the management of dyslipidaemias. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 2011, 217, 3–46. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchioni, D.M.L.; Latorre, M.; do, R.D.; de, O.; Eluf-Neto, J.; Wünsch-Filho, V.; Fisberg, R.M. Identification of dietary patterns using factor analysis in and epidemiological study in São Paulo. São Paulo Med. J. 2005, 123, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Winkleby, M.A.; Jatulis, D.E.; Frank, E.; Fortmann, S.P. Socioeconomic status and health: How education, income, and occupation contribute to risk factors for cardiovascular disease. Am. J. Public Health 1992, 82, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 2013, 64, 402–406. [Google Scholar] [CrossRef]
- Park, Y.; Lim, J.; Lee, J.; Kim, S.G. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br. J. Nutr. 2009, 102, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Kennedy, K.F.; O’Keefe, J.H.; Spertus, J.A. Red blood cell fatty acid levels improve GRACE score prediction of 2-yr mortality in patients with myocardial infarction. Int. J. Cardiol. 2013, 168, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleber, M.E.; Delgado, G.E.; Lorkowski, S.; März, W.; von Schacky, C. Omega-3 fatty acids and mortality in patients referred for coronary angiography. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis 2016, 252, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Block, R.C.; Harris, W.S.; Reid, K.J.; Sands, S.A.; Spertus, J.A. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 2008, 197, 821–828. [Google Scholar] [CrossRef]
- Harris, W.S.; Del Gobbo, L.; Tintle, N.L. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis 2017, 262, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Zibaeenezhad, M.J.; Ghavipisheh, M.; Attar, A.; Aslani, A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: A randomized, open-labeled trial. Nutr. Diabetes 2017, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Din, J.N.; Harding, S.A.; Valerio, C.J.; Sarma, J.; Lyall, K.; Riemersma, R.A.; Newby, D.E.; Flapan, A.D. Dietary intervention with oil rich fish reduces platelet-monocyte aggregation in man. Atherosclerosis 2008, 197, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atherosclerosis 2006, 189, 19–30. [Google Scholar] [CrossRef]
- Eslick, G.D.; Howe, P.R.C.; Smith, C.; Priest, R.; Bensoussan, A. Benefits of fish oil supplementation in hyperlipidemia: A systematic review and meta-analysis. Int. J. Cardiol. 2009, 136, 4–16. [Google Scholar] [CrossRef]
- Wei, M.Y.; Jacobson, T.A. Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: A systematic review and meta-analysis. Curr. Atheroscler. Rep. 2011, 13, 474–483. [Google Scholar] [CrossRef]
- DeFilippis, A.P.; Blaha, M.J.; Ndumele, C.E.; Budoff, M.J.; Lloyd-Jones, D.M.; McClelland, R.L.; Lakoski, S.G.; Cushman, M.; Wong, N.D.; Blumenthal, R.S.; et al. The association of Framingham and reynolds risk scores with incidence and progression of coronary artery calcification in MESA (multi-ethnic study of atherosclerosis). J. Am. Coll. Cardiol. 2011, 58, 2076–2083. [Google Scholar] [CrossRef] [Green Version]
- Omar, Z.A.; Montser, B.A.; Farahat, M.A.R. Effect of high-dose Omega 3 on lipid profile and inflammatory markers in chronic hemodialysis children. Saudi J. Kidney Dis. Transpl. 2019, 30, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Ballantyne, C.M.; Bays, H.E.; Granowitz, C.; Doyle, R.T.; Juliano, R.A.; Philip, S. Effects of Icosapent Ethyl (Eicosapentaenoic Acid Ethyl Ester) on Atherogenic Lipid/Lipoprotein, Apolipoprotein, and Inflammatory Parameters in Patients With Elevated High-Sensitivity C-Reactive Protein (from the ANCHOR Study). Am. J. Cardiol. 2019, 124, 696–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.M.; Doust, J.; Glasziou, P. Cardiovascular risk scores do not account for the effect of treatment: A review. Heart 2011, 97, 689–697. [Google Scholar] [CrossRef] [PubMed]
Variables | n | Total |
---|---|---|
Age (years) | 356 | 52.5 (10.4) |
Ethnicity (n, %) | 356 | |
White | 238 (66.9) | |
Non-white | 118 (33.1) | |
Smoking (n, %) | 356 | |
Current smoker | 70 (19.7) | |
Non-smoker | 286 (80.3) | |
Alcohol consumption (n, %) | 356 | |
Yes | 164 (46.1) | |
No | 192 (53.9) | |
Education (n, %) | ||
High school or less | 208 (58.4) | |
College | 148 (41.6) | |
Chronic non-communicable diseases (n, %) | 356 | |
Diabetes Mellitus | 72 (20.2) | |
Hypertension | 203 (57.0) | |
Hypothyroidism | 43 (12.1) | |
Dyslipidemia | 192 (53.9) | |
Medication (n, %) | 356 | |
Statins | 98 (27.5) | |
Antihypertensives | 184 (51.7) | |
Hypoglycemic | 74 (20.8) | |
Fibrates | 9 (2.5) | |
Family history of diseases (n, %) | 356 | |
Obesity | 64 (18.0) | |
Hypertension | 232 (65.2) | |
Myocardial infarction | 100 (28.1) | |
Stroke | 68 (19.1) | |
Diabetes Mellitus | 134 (37.6) | |
Physical activity (points) | 7.18 (1.39) | |
Framingham Risk Score (n,%) | 356 | |
Low risk | 43 (12.1) | |
Moderate risk | 127 (35.7) | |
High risk | 186 (52.2) | |
Reynolds Risk Score (n,%) | 351 | |
Low risk | 154 (43.9) | |
Moderate risk | 95 (27.1) | |
High risk | 102 (29.1) | |
ACC/AHA-2013 Risk Score (n,%) | 355 | |
Low risk | 130 (36.6) | |
Moderate risk | 46 (13.0) | |
High risk | 179 (50.4) |
Variables | n | Total |
---|---|---|
SBP (mmHg) | 356 | 133 (18.0) |
DBP (mmHg) Hypertension (≥140 mmHg) (n, %) | 356 | 81 (10.0) 111 (31.2) |
BMI (kg/m2) Obesity (BMI ≥ 30.0 kg/m2) (n, %) | 356 | 30.9 (5.8) 182 (51.1) |
Total cholesterol (mg/dL) Hypercholesterolemia (≥200mg/dL) (n, %) | 354 | 205.0 (42.6) 193 (54.2) |
LDL-c (mg/dL) High LDL-c (≥130 mg/dL) (n, %) | 340 | 137.3 (38.7) 196 (55.1) |
HDL-c (mg/dL) Low-HDL-c (<40 mg/dL) (n, %) | 354 | 36.0 (30.0–42.3) 125 (35.1) |
Triglycerides (mg/dL) Hypertriglyceridemia (≥150 mg/dL) (n, %) | 354 | 130.5 (98.0–191.3) 145 (40.7) |
Glucose (mg/dL) Hyperglycemia (≥100 mg/dL) (n, %) | 354 | 98.0 (91.0–108.0) 164 (46.1) |
Apo A-I (mg/dL) Low-Apo A-I (<120 mg/dL) (n, %) | 355 | 132.2 (25.7) 230 (64.6) |
Apo B (mg/dL) High-Apo B (≥120 mg/dL) (n, %) | 355 | 104.7 (24.8) 88 (24.7) |
C-reactive protein (mg/L) High-CRP (>1.0 mg/L) (n, %) | 347 | 2.84 (1.2–6.0) 275 (77.2) |
Variables | Total |
---|---|
SFA (%) | |
C16:0 | 43.6 (41.1–47.5) |
C18:0 | 24.8 (22.9–27.3) |
C20:0 | 0.7 (0.6–0.8) |
C22:0 | 1.1 (0.9–1.4) |
C24:0 | 0.3 (0.1–0.7) |
MUFA (%) | |
C16:1 n-7 | 0.3 (0.2–0.6) |
C18:1 n-9 | 10.0 (3.5) |
C20:1 n-9 | 0.0 (0.1–0.1) |
C22:1 n-9 | 0.1 (0.1–0.2) |
C24:1 n-9 | 1.3 (0.5) |
PUFA n-6 (%) | |
C18:2 n-6 | 4.7 (1.8) |
C18:3 n-6 | 0.2 (0.1–0.2) |
C20:2 n-6 | 0.1 (0.1–0.2) |
C20:3 n-6 | 0.6 (0.3) |
C20:4 n-6 | 2.5 (1.4–5.1) |
C22:2 n-6 | 0.4 (0.3–0.6) |
Total n-6 | 9.4 (3.8) |
PUFA n-3 (%) | |
C18:3 n-3 | 0.2 (0.1–0.2) |
C20:5 n-3 | 0.2 (0.1–0.3) |
C22:6 n-3 | 3.4 (2.7–4.2) |
Omega-3 Index | 3.6 (3.0–4.5) |
Total n-3 | 5.7 (4.8–6.7) |
Fatty acids ratios | |
C16:0/C16:1 n-7 | 130.7 (67.9–232.6) |
C18:0/C18:1 n-9 | 2.5 (2.0–3.4) |
n-6/n-3 | 1.7 (1.0–2.4) |
C20:4 n-6/C20:5 n-3 | 12.9 (5.6–27.6) |
C18:3 n-3/C20:5 n-3 | 9,1 (5.7–14.0) |
C18:2 n-6/C20:4 n-6 | 1.8 (1.0–2.8) |
C18:2 n-6/C18:3 n-3 | 2.4 (1.4–4.2) |
Fatty Acids | Framingham Risk Score | Reynolds Risk Score | ||||||
---|---|---|---|---|---|---|---|---|
Unadjusted Model | Adjusted Model * | Unadjusted Model | Adjusted Model * | |||||
OR | CI (95%) | OR | CI (95%) | OR | CI (95%) | OR | CI (95%) | |
C18:3 n-3 | 0.792 | 0.635–0.988 | 0.819 | 0.642–1.046 | 0.911 | 0.766–1.082 | 0.925 | 0.772–1.108 |
C20:5 n-3 | 5.016 | 0.409–61.557 | 6.176 | 0.374–102.027 | 0.417 | 0.095–1.835 | 0.378 | 0.078–1.823 |
C22:6 n-3 | 0.830 | 0.655–1.052 | 0.833 | 0.654–1.062 | 1.033 | 0.867–1.232 | 1.033 | 0.861–1.239 |
Total n-3 | 0.798 | 0.672–0.946 | 0.811 | 0.675–0.976 | 0.959 | 0.842–1.091 | 0.968 | 0.845–1.108 |
Total n-6 | 1.077 | 0.986–1.176 | 1.079 | 0.984–1.183 | 1.033 | 0.975–1.094 | 1.049 | 0.987–1.115 |
Omega-3 index | 0.840 | 0.660–1.069 | 0.844 | 0.660–1.079 | 1.021 | 0.855–1.220 | 1.020 | 0.849–1.226 |
n-6/n-3 | 1.473 | 1.021–2.126 | 1.421 | 0.972–2.078 | 1.099 | 0.886–1.363 | 1.117 | 0.890–1.403 |
C20:4 n-6/C20:5 n-3 | 1.002 | 0.986–1.020 | 1.002 | 0.985–1.020 | 1.005 | 0.994–1.016 | 1.008 | 0.996–1.019 |
C18:3 n-3/C20:5 n-3 | 0.972 | 0.945–1.000 | 0.973 | 0.945–1.003 | 0.989 | 0.966–1.012 | 0.990 | 0.966–1.014 |
C18:3 n-3/C22:6 n-3 | 0.764 | 0.455–1.285 | 0.856 | 0.482–1.521 | 0.888 | 0.599–1.317 | 0.923 | 0.613–1.391 |
C18:2 n-6/C18:3 n-3 | 1.276 | 1.043–1.561 | 1.229 | 0.995–1.518 | 0.995 | 0.980–1.009 | 0.988 | 0.970–1.006 |
Factor 1 | 1.408 | 1.036–1.913 | 1.469 | 1.056–2.043 | 1.208 | 0.969–1.507 | 1.276 | 1.010–1.612 |
Factor 2 | 1.577 | 0.878–2.831 | 1.516 | 0.812–2.832 | 1.099 | 0.876–1.378 | 1.087 | 0.860–1.375 |
Factor 3 | 0.923 | 0.671–1.271 | 0.992 | 0.697–1.411 | 0.734 | 0.585–0.921 | 0.747 | 0.589–0.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalinho, G.H.F.; Sampaio, G.R.; Soares-Freitas, R.A.M.; Damasceno, N.R.T. Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events. Nutrients 2021, 13, 1919. https://doi.org/10.3390/nu13061919
Gonçalinho GHF, Sampaio GR, Soares-Freitas RAM, Damasceno NRT. Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events. Nutrients. 2021; 13(6):1919. https://doi.org/10.3390/nu13061919
Chicago/Turabian StyleGonçalinho, Gustavo Henrique Ferreira, Geni Rodrigues Sampaio, Rosana Aparecida Manólio Soares-Freitas, and Nágila Raquel Teixeira Damasceno. 2021. "Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events" Nutrients 13, no. 6: 1919. https://doi.org/10.3390/nu13061919
APA StyleGonçalinho, G. H. F., Sampaio, G. R., Soares-Freitas, R. A. M., & Damasceno, N. R. T. (2021). Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events. Nutrients, 13(6), 1919. https://doi.org/10.3390/nu13061919