Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Supplementation
2.3. Study Intervention, Sample Collection and Analysis
2.4. Statistical Analyses
3. Results
3.1. Subjects in the Per-Protocol Set
3.2. Blood Biochemistry
3.3. Adverse Effects
3.4. Sleep Quality, Mental Fatigue, Macronutrient and Caloric Intakes, Body Weight Changes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academic Press: Washington, DC, USA, 2005; Available online: https://www.nap.edu/catalog/10490/dietary-reference-intakes-for-energy-carbohydrate-fiber-fat-fatty-acids-cholesterol-protein-and-amino-acids (accessed on 20 April 2021).
- Iwasaki, M.; Ishihara, J.; Takachi, R.; Todoriki, H.; Yamamoto, H.; Miyano, H.; Yamaji, T.; Tsugane, S. Validity of a self-administered food-frequency questionnaire for assessing amino acid intake in Japan. J. Epidemiol. 2016, 26, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma Concentrations and Intakes of Amino Acids in Male Meat-eaters, Fish-eaters, Vegetarians and Vegans: A Cross-Sectional Analysis in the EPIC-Oxford Cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietary Supplement Label Database. Available online: https://dsld.od.nih.gov/dsld/ (accessed on 20 April 2021).
- Furuya, S. An essential role for de novo biosynthesis of L-serine in CNS development. Asia Pac. J. Clin. Nutr. 2008, 17, S312–S315. [Google Scholar]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Gheller, B.J.; Blum, J.E.; Lim, E.W.; Handzlik, M.K.; Fong, E.H.; Ko, A.C.; Khanna, S.; Gheller, M.E.; Bender, E.L.; Alexander, M.S.; et al. Extracellular serine and glycine are required for mouse and human skeletal muscle stem and progenitor cell function. Mol. Metab. 2021, 43, 101106. [Google Scholar] [CrossRef] [PubMed]
- Levine, T.D.; Miller, R.G.; Bradley, W.G.; Moore, D.H.; Saperstein, D.S.; Flynn, L.E.; Katz, J.S.; Forshew, D.A.; Metcalf, J.S.; Banack, S.A.; et al. Phase I clinical trial of safety of L-serine for ALS patients. Amyotroph. Lateral. Scler. Front. Degener. 2017, 18, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Gwin, J.A.; Church, D.D.; Hatch-McChesney, A.; Allen, J.T.; Wilson, M.A.; Varanoske, A.N.; Carrigan, C.T.; Murphy, N.E.; Margolis, L.M.; Carbone, J.W.; et al. Essential amino acid-enriched whey enhances post-exercise whole-body protein balance during energy deficit more than iso-nitrogenous whey or a mixed-macronutrient meal: A randomized, crossover study. J. Int. Soc. Sports Nutr. 2021, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cynober, L.; Bier, D.M.; Kadowaki, M.; Morris, S.M.; Renwick, A.G. A proposal for an upper limit of leucine safe intake in healthy adults. J. Nutr. 2012, 142, 2249S–2250S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cynober, L.; Bier, D.M.; Kadowaki, M.; Morris, S.M.; Elango, R.; Smriga, M. Proposals for upper limits of safe intake for arginine and tryptophan in young adults and an upper limit of safe intake for leucine in the elderly. J. Nutr. 2016, 146, 2652S–2654S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cynober, L.; Bier, D.M.; Stover, P.; Kadowaki, M.; Morris, S.M.; Elango, R.; Smriga, M. Proposals for upper limits of safe intake for methionine, histidine, and lysine in healthy humans. J. Nutr. 2020, 150, 2606S–2608S. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Simbo, S.Y.; Ligthart-Melis, G.C.; Cynober, L.; Smriga, M.; Engelen, M.P. Tolerance to increased supplemented dietary intakes of methionine in healthy older adults. Am. J. Clin. Nutr. 2017, 106, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Gheller, M.E.; Vermeylen, F.; Handzlik, M.K.; Gheller, B.J.; Bender, E.; Metallo, C.; Aydemir, T.B.; Smriga, M.; Thalacker-Mercer, A.E. Tolerance to graded dosages of histidine supplementation in healthy human adults. Am. J. Clin. Nutr. 2020, 112, 1358–1367. [Google Scholar]
- Sasaki, S.; Takahashi, T.; Iitoi, Y.; Iwase, Y.; Kobayashi, M.; Ishihara, J.; Akabane, M.; Tsugane, S. Food and nutrient intakes assessed with dietary records for the validation study of a self-administered food frequency questionnaire in JPHC study cohort I. J. Epidemiol. 2003, 13, S23–S50. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Sanbongi, C.; Yamaguchi, M.; Ikegami, S.; Hamaoka, T.; Fujita, S. The effects of phenylalanine on exercise-induced fat oxidation: A preliminary, double-blind, placebo-controlled, crossover trial. J. Int. Soc. Sports Nutr. 2017, 14, 34. [Google Scholar] [CrossRef] [Green Version]
- Camacho, F.; Mazuecos, J. Oral and topical L-phenylalanine, clobetasol propionate, and UVA/sunlight—A new study for the treatment of vitiligo. J. Drugs Dermatol. 2002, 1, 127–131. [Google Scholar]
- Magnuson, B.A.; Burdock, G.A.; Doull, J.; Kroes, R.M.; Marsh, G.M.; Pariza, M.W.; Spencer, P.S.; Waddell, W.J.; Walker, R.; Williams, G.M. Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 2007, 37, 629–727. [Google Scholar] [CrossRef]
- Stegink, L.D. The aspartame story: A model for the clinical testing of a food additive. Am. J. Clin. Nutr. 1987, 46, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Shibui, Y.; Miwa, T.; Kodama, T.; Gonsho, A. 28-day dietary toxicity study of L-phenylalanine in rats. Fundam. Tox. Sci. 2014, 1, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, I.; Han, L.; Liu, T.; Li, J.; Zhao, Y.; Li, C.; Yi, Y.; Liang, A.; Hayamizu, K. A 13-week subchronic oral toxicity study of L-serine in rats. Food Chem. Toxicol. 2009, 47, 2356–2360. [Google Scholar] [CrossRef]
- EFSA Scientific Committee. Statement on derivation of health-based guidance values (HBGVs) for regulated products that are also nutrients. EFSA J. 2021, 19, 6479. [Google Scholar]
- Roberts, A.; Lynch, B.; Rietjens, I.M.C.M. Risk assessment paradigm for glutamate. Ann. Nutr. Metab. 2018, 73, S53–S64. [Google Scholar] [CrossRef]
- Cynober, L.; Fernstrom, J.D.; Koletzko, B.; Rietjens, I.M.C.M.; Roberts, A.; Tennant, D.R.; Tomé, D.; Vorhees, C.V. Introduction and summary of the 2018 dietary glutamate workshop. Ann. Nutr. Metab. 2018, 73, S1–S4. [Google Scholar] [CrossRef]
- Dudman, N.P.; Tyrrell, P.A.; Wilcken, D.E. Homocysteinemia: Depressed plasma serine levels. Metabolism 1987, 36, 198–201. [Google Scholar] [CrossRef]
- Lustgarten, L.M.; Lyn Price, L.; Phillips, E.M.; Fielding, R.A. Serum glycine is associated with regional body fat and insulin resistance in functionally limited older adults. PLoS ONE 2013, 8, e84034. [Google Scholar] [CrossRef] [Green Version]
- Leonetti, S.; Herzog, R.I.; Caprio, S.; Santoro, N.; Trico, D. Glutamate-serine-glycine index: A novel potential biomarker in pediatric non-alcoholic fatty liver disease. Children 2020, 7, 270. [Google Scholar] [CrossRef]
- Kimura, T.; Hesaka, A.; Isaka, Y. D-amino acids and kidney diseases. Clin. Exp. Nephrol. 2020, 24, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.E. An overview of phenylalanine and tyrosine kinetics in humans. J. Nutr. 2007, 137, 1549S–1555S. [Google Scholar] [CrossRef]
- Miller, D.E.; Ferreira, C.R.; Scott, A.I.; Chang, I.J. Pharmacokinetics of oral l-serine supplementation in a single patient. Mol. Genet. Metab. Rep. 2020, 24, 100607. [Google Scholar] [CrossRef]
- Zhang, C.; Bjornson, E.; Arif, M.; Tebani, A.; Lovric, A.; Benfeitas, R.; Ozcan, M.; Juszczak, K.; Kim, W.; Kim, J.T.; et al. The acute effect of metabolic cofactor supplementation: A potential therapeutic strategy against non-alcoholic fatty liver disease. Mol. Syst. Biol. 2020, 16, e9495. [Google Scholar] [CrossRef]
- McNeal, C.J.; Meininger, C.J.; Wilborn, C.D.; Tekwe, C.D.; Wu, G. Safety of dietary supplementation with arginine in adult humans. Amino Acids 2018, 50, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Banderet, L.E.; Lieberman, H.R. Treatment with tyrosine, a neurotransmitter precursor, reduces environmental stress in humans. Brain Res. Bull. 1989, 22, 759–762. [Google Scholar] [CrossRef]
- Amin, A.; Frampton, J.; Liu, Z.; Franco-Becker, G.; Norton, M.; Alaa, A.; Li, J.V.; Murphy, K.G. Differential effects of L- and D-phenylalanine on pancreatic and gastrointestinal hormone release in humans: A randomized crossover study. Diabetes Obes. Metab. 2021, 23, 147–157. [Google Scholar] [CrossRef] [PubMed]
Blood Parameter | Trial | Phenylalanine (n = 23) | Serine (n = 30) |
---|---|---|---|
Total bilirubin (mg/L) Ref. value: 2–12 | Baseline | 9.1 ± 0.5 | 0.6 |
3 g/day | 9.7 ± 0.6 | 0.7 | |
6 g/day | 0.5 | 0.5 | |
9 g/day | 0.7 | 0.7 | |
12 g/day | 0.5 | 0.7 | |
Glutamic oxaloacetic transaminase (U/L) Ref. value: 10–40 | Baseline | 0.8 | 0.9 |
3 g/day | 1.0 | 1.3 | |
6 g/day | 0.7 | 0.7 | |
9 g/day | 2.1 | 1.1 | |
12 g/day | 1.2 | 0.9 | |
Glutamic pyruvic transaminase (U/L) Ref. value: 5–45 | Baseline | 0.8 | 2.0 |
3 g/day | 2.0 | 1.9 | |
6 g/day | 1.7 | 1.6 | |
9 g/day | 1.7 | 1.9 | |
12 g/day | 1.7 | 1.8 | |
Alkaline phosphatase (U/L) Ref. value: 100–325 | Baseline | 9.8 | 11.4 |
3 g/day | 8.8 | 0.2 | |
6 g/day | 10.1 | 10.1 | |
9 g/day | 9.0 | 9.0 | |
12 g/day | 9.0 | 9.0 | |
Lactate dehydrogenase (U/L) Ref. value: 120–240 | Baseline | 4.7 | 3.4 |
3 g/day | 4.7 | 7.0 | |
6 g/day | 4.2 | 3.7 | |
9 g/day | 8.7 | 4.1 | |
12 g/day | 4.9 | 3.1 | |
Gamma-glutamyltransferase (U/L) Ref. value: ≤80 | Baseline | 2.1 | 3.6 |
3 g/day | 2.7 | 3.0 | |
6 g/day | 2.7 | 2.0 | |
9 g/day | 2.9 | 3.8 | |
12 g/day | 2.5 | 3.8 | |
Creatine kinase (U/L) Ref. value: 60–270 | Baseline | 12.8 | 8.2 |
3 g/day | 18.2 | 12.9 | |
6 g/day | 13.4 | 10.9 | |
9 g/day | 169.0 | 5.9 | |
12 g/day | 33.6 | 17.6 | |
Total protein (g/L) Ref. value: 67–83 | Baseline | 0.6 | 0.7 |
3 g/day | 0.7 | ||
6 g/day | 0.6 | 0.6 | |
9 g/day | 0.6 | 0.7 | |
12 g/day | 0.8 | 0.6 | |
Creatine (mg/L) Ref. value: 6.1–10.4 | Baseline | 0.2 | 0.2 |
3 g/day | 0.2 | 0.2 | |
6 g/day | 0.2 | 0.2 | |
9 g/day | 0.2 | 0.2 | |
12 g/day | 0.2 | 0.2 | |
Blood urea nitrogen (mg/L) Ref. value: 80–200 | Baseline | 6.0 | 6.3 |
3 g/day | 5.5 | 7.4 | |
6 g/day | 6.5 | 6.3 | |
9 g/day | 6.9 | 7.3 | |
12 g/day | 5.2 | 5.9 | |
Uric acid (mg/L) Ref. value: 38–70 | Baseline | 2.2 | 1.9 |
3 g/day | 2.1 | 2.0 | |
6 g/day | 1.9 | 1.9 | |
9 g/day | 2.5 | 2.0 | |
12 g/day | 1.8 | 1.9 | |
Total cholesterol (mg/L) Ref. value: 2100–2190 | Baseline | 74 | 47 |
3 g/day | 73 | 53 | |
6 g/day | 68 | ||
9 g/day | 71 | 56 | |
12 g/day | 59 | 57 | |
Triglycerides (mg/dL) Ref. value: less than 147 | Baseline | 9.2 | 8.2 |
3 g/day | 7.8 | 9.3 | |
6 g/day | 17.8 | 6.3 | |
9 g/day | 10.1 | 12.1 | |
12 g/day | 7.8 | 11.4 | |
Sodium (mmol/L) Ref. value: 137–147 | Baseline | 0.3 | 0.2 |
3 g/day | 0.3 | 0.3 | |
6 g/day | 0.3 * | 0.4 $ | |
9 g/day | 0.4 | 0.3 | |
12 g/day | 0.2 | 0.3 | |
Potassium (mmol/L) Ref. value: 3.5–5.0 | Baseline | 0.04 | 0.05 |
3 g/day | 0.05 | 0.03 | |
6 g/day | 0.04 | 0.04 | |
9 g/day | 0.05 | 0.05 | |
12 g/day | 0.05 | 0.04 | |
Chloride (mmol/L) Ref. value: 97–107 | Baseline | 0.3 | 0.3 |
3 g/day | 0.3 * | 0.4 * | |
6 g/day | 0.3 * | * | |
9 g/day | 0.4 * | 0.3 * | |
12 g/day | 0.3 * | 0.3 | |
Calcium (mEq/L) Ref. value: 8.4–10.4 | Baseline | 0.07 | 0.05 |
3 g/day | 0.07 | 0.05 | |
6 g/day | 0.05 | 0.05 | |
9 g/day | 0.04 | 0.05 | |
12 g/day | 0.06 | 0.06 | |
HDL cholesterol (mg/dL) Ref. value: 40–85 | Baseline | 2.3 | 2.9 |
3 g/day | 2.0 | 3.0 | |
6 g/day | 2.1 | 2.8 | |
9 g/day | 1.9 | 3.0 | |
12 g/day | 1.7 | 3.4 | |
LDL cholesterol (mg/dL) Ref. value: 65–139 | Baseline | 6.1 | 4.8 |
3 g/day | 5.8 | 4.6 | |
6 g/day | 5.5 | 4.9 | |
9 g/day | 5.9 | 5.1 | |
12 g/day | 5.1 | 5.0 | |
Albumin (g/L) Ref. value: 38–52 | Baseline | 0.7 | 0.4 |
3 g/day | 0.5 | 0.4 | |
6 g/day | 0.6 | 0.4 | |
9 g/day | 0.6 | 0.3 | |
12 g/day | 0.7 | 0.4 | |
White blood cells (/mL) Ref. value: 3300–9900 | Baseline | 201 | 223 |
3 g/day | 221 | ||
6 g/day | 274 | 208 | |
9 g/day | 241 | 255 | |
12 g/day | 386 | 196 | |
Red blood cells (×104/mL) Ref. value: 430–580 | Baseline | 5.4 | 5.6 |
3 g/day | 5.3 | 5.1 | |
6 g/day | 6.5 | 5.3 | |
9 g/day | 5.2 | 5.2 | |
12 g/day | 6.9 | 5.1 | |
Hemoglobin (g/dL) Ref. value: 13.5–17.5 | Baseline | 0.21 | 0.21 |
3 g/day | 0.21 | 0.17 | |
6 g/day | 0.23 | 0.20 | |
9 g/day | 0.22 | 0.20 | |
12 g/day | 0.26 | 0.16 | |
Hematocrit (%) Ref. value: 39.7–52.4 | Baseline | 0.50 | 0.50 |
3 g/day | 0.52 | 0.45 | |
6 g/day | 0.69 | 0.54 | |
9 g/day | 0.55 | 0.53 | |
12 g/day | 0.58 | 0.41 | |
Platelet (×104/mL) Ref. value: 14–34 | Baseline | 0.84 | 0.75 |
3 g/day | 0.85 | 0.81 | |
6 g/day | 0.79 | 0.86 | |
9 g/day | 0.78 | 0.77 | |
12 g/day | 0.87 | 0.70 | |
Glucose (mg/dL) Ref. value: 70–109 | Baseline | 1.5 | 1.4 |
3 g/day | 1.5 | 1.0 | |
6 g/day | 1.5 | 1.9 | |
9 g/day | 1.6 | 1.4 | |
12 g/day | 1.3 | 2.0 |
Essential Amino Acids (mmol/L) | Trial | Phenylalanine (n = 23) | Serine (n = 30) |
---|---|---|---|
Histidine | Baseline | 1.6 | 1.4 |
3 g/day | 1.6 | 1.9 | |
6 g/day | 1.4 | 1.6 | |
9 g/day | 1.1 | 1.6 | |
12 g/day | 1.7 | 1.6 | |
Isoleucine | Baseline | 2.1 | 3.9 |
3 g/day | 2.5 | 3.9 | |
6 g/day | 5.0 | 3.0 | |
9 g/day | 3.1 | 4.5 | |
12 g/day | 2.7 | 3.6 | |
Leucine | Baseline | 3.8 | 6.8 |
3 g/day | 3.6 | 6.9 | |
6 g/day | 5.8 | 3.9 | |
9 g/day | 4.9 | 7.2 | |
12 g/day | 4.3 | 5.5 | |
Lysine | Baseline | 4.5 | 8.4 |
3 g/day | 5.1 | 5.6 | |
6 g/day | 5.7 | 4.9 | |
9 g/day | 5.7 | 5.5 | |
12 g/day | 6.0 | 6.5 | |
Methionine | Baseline | 0.9 | 1.1 |
3 g/day | 0.8 | 0.9 | |
6 g/day | .3 | 0.7 | |
9 g/day | 1.1 | 0.9 | |
12 g/day | 0.6 | 1.1 | |
Phenylalanine | Baseline | 1.7 | 1.5 |
3 g/day | 2.7 | 1.5 | |
6 g/day | 5.2 | 1.3 | |
9 g/day | 3.7 | 1.8 | |
12 g/day | 3.8 | 1.3 | |
Threonine | Baseline | 4.4 | 5.2 |
3 g/day | 4.0 | 4.7 | |
6 g/day | 5.0 | 3.5 | |
9 g/day | 5.0 | 3.8 | |
12 g/day | 3.7 | 4.6 | |
Tryptophan | Baseline | 1.2 | 2.1 |
3 g/day | 1.3 | 2.7 | |
6 g/day | 1.4 | 1.6 | |
9 g/day | 1.6 | 2.1 | |
12 g/day | 1.3 | 2.0 | |
Valine | Baseline | 5.7 | 10.1 |
3 g/day | 5.9 | 11.1 | |
6 g/day | 8.4 | 7.9 | |
9 g/day | 8.0 | 10.6 | |
12 g/day | 7.5 | 8.3 | |
Non-Essential Amino Acids, Cystine and Homocysteine (mmol/L) | Trial | Phenylalanine (n = 23) | Serine (n = 30) |
Alanine | Baseline | 17.9 | 14.8 |
3 g/day | 15.6 | 17.9 | |
6 g/day | 20.0 | 17.3 | |
9 g/day | 18.2 | 16.0 | |
12 g/day | 15.4 | 16.5 | |
Arginine | Baseline | 2.6 | 3.3 |
3 g/day | 3.1 | 2.7 | |
6 g/day | 3.1 | 2.7 | |
9 g/day | 2.7 | 3.4 | |
12 g/day | 2.4 | 3.6 | |
Aspartic acid | Baseline | 0.2 | 0.3 |
3 g/day | 0.3 | 0.2 | |
6 g/day | 0.2 | 0.2 | |
9 g/day | 0.2 $ | 0.2 | |
12 g/day | 0.3 | 0.3 | |
Asparagine | Baseline | 1.3 | 1.9 |
3 g/day | 1.4 | 1.8 | |
6 g/day | 2.3 | 2.0 | |
9 g/day | 1.9 | 1.9 | |
12 g/day | 1.4 | 1.9 | |
Cystine | Baseline | 1.5 | 1.6 |
3 g/day | 1.6 | 1.5 | |
6 g/day | 1.5 | 1.4 | |
9 g/day | 1.4 | 1.6 | |
12 g/day | 1.4 | 1.4 | |
Glutamic acid | Baseline | 1.7 | 2.2 |
3 g/day | 2.2 | 2.0 | |
6 g/day | 2.6 | 1.8 | |
9 g/day | 2.4 | 2.0 | |
12 g/day | 2.3 | 2.5 | |
Glutamine | Baseline | 10.5 | 8.6 |
3 g/day | 10.9 | 9.6 # | |
6 g/day | 12.4 | 9.5 | |
9 g/day | 9.4 *,# | 9.6 | |
12 g/day | 10.5 | 10.2 | |
Glycine | Baseline | 8.5 | 12.4 |
3 g/day | 8.5 | 11.3 | |
6 g/day | 10.0 | 13.6 | |
9 g/day | 9.1 | 12.0 | |
12 g/day | 7.4 | 13.0 | |
Proline | Baseline | 6.8 | 8.5 |
3 g/day | 6.7 | 9.2 | |
6 g/day | 10.0 | 8.2 | |
9 g/day | 6.2 | 11.0 | |
12 g/day | 5.6 | 9.5 | |
Serine | Baseline | 3.4 | 4.0 |
3 g/day | .9 | 3.6 | |
6 g/day | 4.4 | 5.6 | |
9 g/day | 3.5 | 7.2 ** | |
12 g/day | 3.5 | 12.7 ** | |
Tyrosine | Baseline | 1.8 | 2.1 |
3 g/day | 2.2 | 2.5 | |
6 g/day | 3.6 | ||
9 g/day | 3.7 | 2.8 | |
12 g/day | 4.2 * | 2.4 | |
Homocysteine | Baseline | 0.6 | |
3 g/day | 1.4 | ||
6 g/day | 2.0 | ||
9 g/day | 2.2 | ||
12 g/day | 2.0 |
Sleep Quality | Phenylalanine (n = 23) | Serine (n = 30) |
---|---|---|
Baseline (7 days) | 0.0769 | 0.1300 |
3 g/day (28 days) | .0812 | 0.1442 |
Wash-out period (14 days) | 0.1012 | 0.1271 |
6 g/day (28 days) | 0.1069 | 0.1335 |
Wash-out period (14 days) | 0.0718 | 0.1168 |
9 g/day (28 days) | 0.0577 | 0.1815 |
Wash-out period (14 days) | .0181 | 0.1840 |
12 g/day (28 days) | 0.0615 | 0.1848 |
Mental fatigue | Phenylalanine (n = 23) | Serine (n = 30) |
Baseline (7 days) | 0.0513 | 0.1428 |
3 g/day (28 days) | 0.0887 | 0.1310 |
Wash-out period (14 days) | 0.1066 | 0.1236 |
6 g/day (28 days) | 0.1007 | 0.1212 |
Wash-out period (14 days) | 0.0657 | 0.1275 |
9 g/day (28 days) | 0.0706 | 0.1829 |
Wash-out period (14 days) | 0.0308 | 0.1800 |
12 g/day (28 days) | 0.0457 | 0.1856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miura, N.; Matsumoto, H.; Cynober, L.; Stover, P.J.; Elango, R.; Kadowaki, M.; Bier, D.M.; Smriga, M. Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults. Nutrients 2021, 13, 1976. https://doi.org/10.3390/nu13061976
Miura N, Matsumoto H, Cynober L, Stover PJ, Elango R, Kadowaki M, Bier DM, Smriga M. Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults. Nutrients. 2021; 13(6):1976. https://doi.org/10.3390/nu13061976
Chicago/Turabian StyleMiura, Naoki, Hideki Matsumoto, Luc Cynober, Patrick J. Stover, Rajavel Elango, Motoni Kadowaki, Dennis M. Bier, and Miro Smriga. 2021. "Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults" Nutrients 13, no. 6: 1976. https://doi.org/10.3390/nu13061976
APA StyleMiura, N., Matsumoto, H., Cynober, L., Stover, P. J., Elango, R., Kadowaki, M., Bier, D. M., & Smriga, M. (2021). Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults. Nutrients, 13(6), 1976. https://doi.org/10.3390/nu13061976