Association between Bone Mineral Density and Fat Mass Independent of Lean Mass and Physical Activity in Women Aged 75 or Older
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Baseline Data
2.3. Body Composition with BIPHOTON Absorptiometry
2.4. Study Outcomes
2.5. Statistics
3. Results
3.1. Population Characteristics
3.2. Study Outcomes
3.3. Factors Associated with the Femoral Neck T-Score
3.4. Factors Associated with Osteoporosis
3.5. Factors Associated with Osteosarcopenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonnefoy, M. Body composition and physical activity in the elderly. Cah. Année. Gérontol. 2010, 2, 45–49. [Google Scholar] [CrossRef]
- Haute Autorité de Santé—Prévention, Diagnostic et Traitement de L’ostéoporose. HAS. 2006. Available online: https://www.has-sante.fr/jcms/c_437005/fr/prise-en-charge-de-l-osteoporose-la-has-publie-une-synthese-a-destination-des-professionnels-de-sante (accessed on 11 June 2020).
- Kanis, J.A.; McCloskey, E.V.; Johanson, H.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2013, 24, 23–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Aging 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belmin, J.; Chassagne, P.; Friocourt, P.; Gonthier, R.; Jeandel, C.; Nourhashemi, F. Gériatrie, 2nd ed.; Elsevier Masson: Issy-les-Moulineaux, France, 2009; 835p. [Google Scholar]
- Tichet, J.; Vol, S.; Goxe, D.; Salle, A.; Berrut, G.; Ritz, P. Prevalence of sarcopenia in the French senior population. J. Nutr. Health Aging 2008, 12, 202–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boirie, Y.; Cesari, M.; Cherin, P.; Godeau, P. La Sarcopénie; Springer Healthcare: Paris, France, 2013; 206p. [Google Scholar]
- Laurent, M.R.; Dubois, V.; Claessens, F.; Verschueren, S.M.; Vander-schueren, D.; Gielen, E.; Jardí, F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Moll. Cell Endocrinol. 2015, 432, 14–36. [Google Scholar] [CrossRef] [PubMed]
- Duque, G. Osteosarcopenia: Bone, Muscle and Fat Interactions; Springer Nature: St albans, Australia, 2019; 383p. [Google Scholar]
- Reid, I.R.; Ames, R.; Evans, M.C.; Sharpe, S.; Gamble, G.; France, J.T.; Lim, T.M.; Cundy, T.F. Determinants of total body and regional bone mineral density in normal postmenauposal women: A key role for fat mass. J. Clin. Endocrinol. Metab. 1992, 75, 45–51. [Google Scholar] [PubMed]
- Bleicher, K.; Cumming, R.G.; Naganathan, V.; Travison, T.G.; Sambrook, P.N.; Blyth, F.M.; Handelsman, D.J.; Le Couteur, D.G.; Waite, L.M.; Creasey, H.M.; et al. The role of fat and lean mass in bone loss in older men: Findings from the CHAMP study. Bone 2011, 49, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Hinriksdottir, G.; Arngrimsson, S.A.; Misic, M.M.; Evans, E.M. Lean soft tissue contributes more to bone health than fat mass independent of physical activity in women across the lifespan. Maturitas 2013, 74, 264–269. [Google Scholar] [CrossRef]
- Gomez-Cabello, A.; Ara, I.; Gonzalez-Aguero, A.; Casajus, J.A.; Vicente-Rodriguez, G. Fat mass influence on bone mass is mediated by the independent association between lean mass and bone mass among elderly women: A cross-sectional study. Maturitas 2013, 74, 44–53. [Google Scholar] [CrossRef]
- Levesque, M.; Ndangang, M.; Riaudel, T.; de Decker, L.; Benichou, J.; Berrut, G. Relationship between body composition and bone mineral density, related to physical activity, in elderly women. Geriatr. Psychol. Neuropsychiatr. Vieil. 2016, 14, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Gillette-Guyonnet, S.; Nourhashemi, F.; Lauque, S.; Grandjean, H.; Vellas, B. Body composition and osteoporosis in elderly women. Gerontology 2000, 46, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Province, M.A.; Hadley, E.C.; Hornbrook, M.C.; Lipsitz, L.A.; Miller, J.P.; Mulrow, C.D.; Ory, M.G.; Sattin, R.W.; Tinetti, M.E.; Wolf, S.L. The effects of exercise on falls in elderly patients. A preplanned meta-analysis of the FICSIT Trials. Frailty and Injuries: Cooperative Studies of Intervention Techniques. JAMA 1995, 273, 134–137. [Google Scholar] [CrossRef]
- Pyka, G.; Linderberger, E.; Charrette, S.; Marcus, R. Muscle strength and fiber adaptations to a year-long resistance training program in elderly men and women. J. Gerontol. 1994, 49, M22–M27. [Google Scholar] [CrossRef] [PubMed]
- Haute Autorité de Santé—Stratégie de Prise en Charge en Cas de Dénutrition Protéinoénergétique Chez la Personne Agée. HAS. 2007. Available online: https://www.has-sante.fr/jcms/c_546549/fr/strategie-de-prise-en-charge-en-cas-de-denutrition-proteino-energetique-chez-la-personne-agee (accessed on 14 August 2020).
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State: A ractical method for grading the cognitive state of patients for the clinician. J. Psychiat. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Charlon, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Robert, H.; Casillas, J.M.; Iskandar, M.; D’Athis, P.; Antoine, D.; Taha, S. The dijon physical activity score: Reproducibility and correlation with exercise testing in healthy elderly subjects. Ann. Readapt. Med. Phys. 2004, 47, 546–554. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Binkley, N.; Buerhring, B. Beyond FRAX: It’s time to consider «sarco-osteopenia». J. Clin. Densitom. 2009, 12, 413–416. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, Y.; Tian, Q.; Papasian, C.J.; Hu, T.; Deng, H.W. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos. Int. 2016, 27, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Chain, A.; Crivelli, M.; Faerstein, E.; Bezerra, F.F. Association between fat mass and bone mineral density among Brazilian women differs by menopausal status: The Pro-Saude Study. Nutrition 2017, 33, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, X.; Xie, H.; Zheng, S.; Wu, X.; Zhu, X.; Zhang, X.; Xue, S.; Li, H.; Hong, W.; et al. Sex differences in the prevalence and adverse outcomes of sarcopenia and sarcopenic obesity in community dwelling elderly in East China using the AWGS criteria. BMC Endocr. Disorders. 2019, 19, 109. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, S.; Greco, E.A.; Wannenes, F.; Donini, L.M.; Lenzi, A. Adipose, bone and muscle tissus as new endocrine organ: Role of reciprocal regulation for osteoporosis and obesity development. Horm. Mol. Biol Clin. Investig. 2014, 17, 39–51. [Google Scholar] [PubMed]
- Reginster, J.Y.; Beaudart, C.; Buckinx, F.; Bruyere, O. Osteoporosis and sarcopenia: Two diseases or one? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.J.; Walrand, S.; Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Brown, M. Skeletal muscle and bone: Effect of sex steroids and aging. Adv. Physiol. Educ. 2008, 32, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, P.; Mechtcheriakova DMeshcheryakova, A.; Föger-Samwald, U.; Ellinger, I. Immunology of osteoporosis: A mini-review. Gerontology 2016, 62, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Singh, L.; Tyagi, S.; Myers, D.; Duque, G. Good, bad, or ugly: The biological roles of bone marrow fat. Curr. Osteoporos. Rep. 2018, 16, 130–137. [Google Scholar] [CrossRef]
- Looker, A.; Flegal, K.; Melton, L.R. Impact of increased overweight on the projected prevalence of osteoporosis in older women. Osteoporos. Int. 2007, 18, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: A systematic review and meta-analysis. JAMA 2013, 309, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lliodromiti, S.; Celis-Morales, C.A.; Lyall, D.M.; Anderson, J.; Gray, S.R.; Mackay, D.F.; Nelson, S.M.; Welsh, P.; Pell, J.P.; Gill, J.M.R.; et al. The impact of confounding on the associations of different adiposity measures with the indicence of cardiovascular disease: A cohort study of 296 535 adults of white European descent. Eur. Heart J. 2018, 39, 14–20. [Google Scholar]
- Riaudel, T.; Guillot, P.; De Decker, L.; Gouraud-Tanguy, A.; Pichierri, S.; Chevalet, P.; Aoudia, V.O.; Maugars, Y.; Berrut, G. Nutrition et ostéoporose chez le sujet âgé [Nutrition and osteoporosis in elderly]. Geriatr. Psychol. Neuropsychiatr. Vieil. 2011, 9, 399–408. [Google Scholar] [PubMed]
- Du, Y.; Zhu, H.; Zheng, S.; Zhu, X.; Zhang, X.; Xue, S.; Li, H.; Hong, W.; Tang, W.; Chen, M. Age and sex effects on the relationship between body composition and hip geometric structure in males and females from East China. Arch. Osteoporos. 2018, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, J.; Yao, J.; Zhong, J.; Guo, L.; Sun, T. Fracture initiates systemic inflammatory response syndrome through recruiting polymorphonuclear leucocytes. Immunol. Res. 2016, 64, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Kanakaris, N.K.; Anthony, C.; Papasotiriou, A.; Giannoudis, P.V. Inflammatory response after nailing. Injury 2017, 48 (Suppl. 1), S10–S14. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Thiebaud, R.S.; Loenneke, J.P.; Fujita, E.; Akamine, T. DXA-rectified appendicular lean mass: Development of ultrasound prediction models in older adults. J. Nutr. Health Aging 2018, 22, 80–85. [Google Scholar] [CrossRef]
Total (n = 101) | |
---|---|
Patients’ characteristics | |
Age (years), mean ± SD | 84.8 ± 4.9 |
BMI (kg/m2), mean ± SD | 24.8 ± 5.6 |
<18 kg/m2, n (%) | 7 (6.9) |
18–21 kg/m2, n (%) | 22 (21.8) |
21–25 kg/m2, n (%) | 32 (31.7) |
25–30 kg/m2, n (%) | 22 (21.8) |
30–35 kg/m2, n (%) | 13 (12.9) |
>35 kg/m2, n (%) | 5 (5.0) |
Malnutrition, n (%) | 29 (28.7) |
MMSE, mean ± SD | 23.7 ± 4.9 |
ADL, mean ± SD | 5.2 ± 1.0 |
IADL, mean ± SD | 2.8 ± 1.2 |
Charlson comorbidity index, mean ± SD | 3.1 ± 1.8 |
Albumin (g/L), mean ± SD | 35.0 ± 4.9 |
25-OH Vitamin D (ng/mL), mean ± SD | 25.1 ± 14.1 |
Inclusion during hospitalization | 79 (78) |
For a vertebral fracture | 33 (42) |
For a femoral fracture | 20 (25) |
For another reason | 26 (33) |
Outpatient | 21 (22) |
Physical performances | |
4-meter gait speed (m/s), mean ± SD | 0.62 ± 0.23 |
Hand grip (kg), mean ± SD | 10.3 ± 6.0 |
Unipedal stance >5 s, n (%) | 30 (30) |
Physical activity level, mean ± SD | 21.5 ± 5.3 |
DXA measurements | |
Femoral neck T-score (SD), mean ± SD | −2.23 ± 1.05 |
Lean mass (kg), mean ± SD | 34.9 ± 4.7 |
Fat mass (kg), mean ± SD | 20.9 ± 10.2 |
ASMM (kg/m2), mean ± SD | 5.8 ± 0.9 |
Musculoskeletal alterations | |
Osteopenia, n (%) | 16 (16) |
Osteoporosis, n (%) | 73 (72) |
Osteosarcopenia, n (%) | 33 (34) |
Sarcopenia, n (%) | 37 (37) |
Variables | β (95% CI) * | p Value ** |
---|---|---|
Lean mass | 0.19 (−0.02; 0.37) | 0.072 |
Fat mass | 0.41 (0.23; 0.56) | <0.001 |
ASMM | 0.25 (0.05; 0.43) | 0.017 |
Physical activity level | 0.29 (0.09; 0.46) | <0.01 |
Age | −0.37 (0.09; 0.46) | <0.01 |
BMI | 0.43 (0.25; 0.58) | <0.001 |
Charlson comorbidity index | −0.19 (−0.38; 0.01) | 0.059 |
Albumin | 0.28 (0.07; 0.47) | <0.01 |
25-OH Vitamin D | 0.12 (−0.10; 0.32) | 0.29 |
4-meter gait speed | −0.33 (−0.50; −0.14) | <0.01 |
Hand grip | −0.02 (−0.23; 0.18) | 0.83 |
Variables | β (95% CI) * | p Value ** |
---|---|---|
Age | −0.06 (−0.08; −0.03) | 0.009 |
Physical activity level | 0.04 (0.02; 0.06) | 0.053 |
Fat mass | 0.02 (0.01; 0.03) | 0.037 |
ASMM | 0.19 (0.07; 0.32) | 0.121 |
Total (n = 101) | Osteoporosis | p Value * | |
---|---|---|---|
No (n = 28) | Yes (n = 73) | ||
Patients’ characteristics | |||
Age (years), mean ± SD | 82.3 (±4.1) | 85.8 (±4.9) | <0.01 |
BMI (kg/m2), mean ± SD | 28.3 (±5.7) | 23.5 (±5.1) | <0.001 |
Malnutrition, n (%) | 2 (7,1) | 27 (37) | <0.01 |
Charlson comorbidity index, mean ± SD | 3.4 (±1.9) | 2.9 (±1.8) | 0.27 |
Albumin (g/L), mean ± SD | 34.9 (±5.0) | 35.1 (±4.9) | 0.86 |
25-OH Vitamin D (ng/mL), mean ± SD | 25.7 (±13.2) | 24.9 (±14.5) | 0.77 |
Physical performances | |||
4-meter gait speed (m/s), mean ± SD | 0.60 (±0.21) | 0.62 (±0.24) | 0.65 |
Hand grip (kg), mean ± SD | 11.6 (±7.2) | 9.8 (±5.5) | 0.15 |
Unipedal stance >5 s, n (%) | 6 (21%) | 24 (33%) | 0.26 |
Physical activity level, mean ± SD | 22.2 (±4.2) | 21.2 (±5.6) | 0.59 |
DXA measurements | |||
Lean mass (kg), mean ± SD | 37.0 (±4.9) | 34.1 (±4.4) | 0.015 |
Fat mass (kg), mean ± SD | 28.1 (±11.0) | 18.2 (±8.5) | <0.001 |
ASMM (kg/m2), mean ± SD | 6.2 (±0.8) | 5.7 (±0.9) | <0.01 |
Total (n = 101) | Osteosarcopenia | p Value * | |
---|---|---|---|
No (n = 68) | Yes (n = 33) | ||
Patients’ characteristics | |||
Age (years), mean ± SD | 84.9 (±5.0) | 84.6 (±4.7) | 0.8 |
BMI (kg/m2), mean ± SD | 26.7 (±5.6) | 20.7 (±2.8) | <0.001 |
Malnutrition, n (%) | 12 (17) | 17 (53) | <0.001 |
Charlson comorbidity index, mean ± SD | 3.3 (±1.8) | 2.6 (±1.7) | 0.091 |
Albumin (g/L), mean ± SD | 35.1 (±4.8) | 34.9 (±5.1) | 0.86 |
25-OH Vitamin D (ng/mL), mean ± SD | 25.4 (±13.0) | 24.5 (±16.2) | 0.8 |
Physical performances | |||
Unipedal stance >5 s, n (%) | 15 (22) | 15 (47) | 0.01 |
Physical activity level, mean ± SD | 21.2 (±5.6) | 22.1 (±4.6) | 0.4 |
DXA measurements | |||
Fat mass (kg), mean ± SD | 23.1 (±10.8) | 16.2 (±6.8) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, M.; Guillot, P.; Riaudel, T.; Boureau, A.-S.; Chapelet, G.; Brouessard, C.; de Decker, L.; Berrut, G. Association between Bone Mineral Density and Fat Mass Independent of Lean Mass and Physical Activity in Women Aged 75 or Older. Nutrients 2021, 13, 1994. https://doi.org/10.3390/nu13061994
Mathieu M, Guillot P, Riaudel T, Boureau A-S, Chapelet G, Brouessard C, de Decker L, Berrut G. Association between Bone Mineral Density and Fat Mass Independent of Lean Mass and Physical Activity in Women Aged 75 or Older. Nutrients. 2021; 13(6):1994. https://doi.org/10.3390/nu13061994
Chicago/Turabian StyleMathieu, Marie, Pascale Guillot, Typhaine Riaudel, Anne-Sophie Boureau, Guillaume Chapelet, Céline Brouessard, Laure de Decker, and Gilles Berrut. 2021. "Association between Bone Mineral Density and Fat Mass Independent of Lean Mass and Physical Activity in Women Aged 75 or Older" Nutrients 13, no. 6: 1994. https://doi.org/10.3390/nu13061994
APA StyleMathieu, M., Guillot, P., Riaudel, T., Boureau, A. -S., Chapelet, G., Brouessard, C., de Decker, L., & Berrut, G. (2021). Association between Bone Mineral Density and Fat Mass Independent of Lean Mass and Physical Activity in Women Aged 75 or Older. Nutrients, 13(6), 1994. https://doi.org/10.3390/nu13061994