A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Ethical Approval
2.1.2. CGMP-AA and L-AA Protein Substitutes
2.1.3. Selection into the CGMP Group or L-AA Group
2.2. Study Design
2.2.1. Dual-Energy X-ray Absorptiometry (DXA) and Peripheral Quantitative Computed Tomography (pQCT)
2.2.2. pQCT
2.2.3. Serum Blood and Urine Bone Turnover Markers
2.2.4. Blood Biochemistry Markers
2.2.5. Blood Phenylalanine/Tyrosine Monitoring
2.2.6. Pubertal Status
2.2.7. Anthropometric Measurements
2.3. Statistical Methods
3. Results
3.1. Subjects
3.1.1. Subject Drop Out
3.1.2. Pubertal Status
3.1.3. Median DXA Z Score Measurements for CGMP100, CGMP50, and L-AA Groups
3.1.4. Median pQCT Z Score Measurements at 36 Months for CGMP100, CGMP50, and L-AA Groups
3.2. Nutritional Bone Biochemistry Markers
Measurement for Bone Formation Markers and Urine Calcium
3.3. Anthropometry
3.4. Blood Phenylalanine Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Budek, A.Z.; Hoppe, C.; Ingstrup, H.; Michaelsen, K.F.; Bügel, S.; Mølgaard, C. Dietary protein intake and bone mineral content in adolescents—The Copenhagen Cohort Study. Osteoporos. Int. 2007, 18, 1661–1667. [Google Scholar] [CrossRef]
- Ferrari, S.L.; Chevalley, T.; Bonjour, J.P.; Rizzoli, R. Childhood fractures are associated with decreased bone mass gain during puberty: An early marker of persistent bone fragility? J. Bone Miner. Res. 2006, 21, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, A.; Van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; Van Spronsen, F.J. Adherence Issues in Inherited Metabolic Disorders Treated by Low Natural Protein Diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Walter, J.; White, F.; Hall, S.; MacDonald, A.; Rylance, G.; Boneh, A.; Francis, D.; Shortland, G.; Schmidt, M.; Vail, A. How practical are recommendations for dietary control in phenylketonuria? Lancet 2002, 360, 55–57. [Google Scholar] [CrossRef]
- Rizzoli, R.; Biver, E.; Bonjour, J.-P.; Coxam, V.; Goltzman, D.; Kanis, J.A.; Lappe, J.; Rejnmark, L.; Sahni, S.; Weaver, C.; et al. Benefits and safety of dietary protein for bone health—An expert consensus paper endorsed by the European Society for Clinical and Economical Aspects of Osteopororosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos. Int. 2018, 29, 1933–1948. [Google Scholar] [CrossRef]
- Thorpe, M.P.; Evans, E.M. Dietary protein and bone health: Harmonizing conflicting theories. Nutr. Rev. 2011, 69, 215–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conigrave, A.D.; Brown, E.M.; Rizzoli, R. Dietary Protein and Bone Health: Roles of Amino Acid–Sensing Receptors in the Control of Calcium Metabolism and Bone Homeostasis. Annu. Rev. Nutr. 2008, 28, 131–155. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef]
- Alexy, U.; Remer, T.; Manz, F.; Neu, C.M.; Schoenau, E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am. J. Clin. Nutr. 2005, 82, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Bonjour, J.-P.; Ammann, P.; Chevalley, T.; Rizzoli, R. Protein Intake and Bone Growth. Can. J. Appl. Physiol. 2001, 26, S153–S166. [Google Scholar] [CrossRef] [PubMed]
- Patience, J.F. A review of the role of acid-base balance in amino acid nutrition. J. Anim. Sci. 1990, 68, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Kerstetter, J.E.; O’Brien, K.O.; Caseria, D.M.; Wall, D.E.; Insogna, K.L. The Impact of Dietary Protein on Calcium Absorption and Kinetic Measures of Bone Turnover in Women. J. Clin. Endocrinol. Metab. 2005, 90, 26–31. [Google Scholar] [CrossRef] [Green Version]
- New, S.A. Nutrition Society Medal Lecture: The role of the skeleton in acid—Base homeostasis. Proc. Nutr. Soc. 2002, 61, 151–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Sebastian, A.; Frassetto, L.A.; Sellmeyer, D.E.; Merriam, R.L.; Morris, R.C. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am. J. Clin. Nutr. 2002, 76, 1308–1316. [Google Scholar] [CrossRef] [Green Version]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Meta-Analysis of the Effect of the Acid-Ash Hypothesis of Osteoporosis on Calcium Balance. J. Bone Miner. Res. 2009, 24, 1835–1840. [Google Scholar] [CrossRef]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr. J. 2009, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Solverson, P.; Murali, S.G.; Litscher, S.J.; Blank, R.D.; Ney, D.M. Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet. PLoS ONE 2012, 7, e45165. [Google Scholar] [CrossRef] [Green Version]
- Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Belanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Macdonald, A. Glycomacropeptide in children with phenylketonuria: Does its phenylalanine content affect blood phenylalanine control? J. Hum. Nutr. Diet. 2017, 30, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.C.C.; Dutton, J.J.; Piec, L.; Green, D.; Fisher, E.; Washbourne, C.J.; Fraser, W.D. LC-MS/MS application for urine free pyridinoline and free deoxypyridionine: Urine markers of collagen and bone degradation. Clin. Mass Spectrom. 2016, 1, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; Macdonald, A. The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria. Nutrients 2020, 12, 2704. [Google Scholar] [CrossRef]
- de Castro, M.J.; de Lamas, C.; Sanchez-Pintos, P.; Gonzalez-Lamuno, D.; Couce, M.L. Bone Status in Patients with Phenylketonuria: A Systematic Review. Nutrients 2020, 12, 2154. [Google Scholar] [CrossRef] [PubMed]
- Demirdas, S.; Coakley, E.K.; Bisschop, P.H.; Hollak, C.E.M.; Bosch, A.M.; Singh, R.H. Bone health in phenylketonuria: A systematic review and meta-analysis. Orphanet J. Rare Dis. 2015, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schousboe, J.T.; Shepherd, J.A.; Bilezikian, J.P.; Baim, S. Executive Summary of the 2013 International Society for Clinical Densitometry Position Development Conference on Bone Densitometry. J. Clin. Densitom. 2013, 16, 455–466. [Google Scholar] [CrossRef]
- Mora, S.; Pitukcheewanont, P.; Kaufman, F.R.; Nelson, J.C.; Gilsanz, V. Biochemical Markers of Bone Turnover and the Volume and the Density of Bone in Children at Different Stages of Sexual Development. J. Bone Miner. Res. 1999, 14, 1664–1671. [Google Scholar] [CrossRef]
- Fernandez Espuelas, C.; Manjon Llorente, G.; Gonzalez Lopez, J.M.; Ruiz-Echarri, M.P.; Baldellou Vazquez, A. Bone mineral turnover and bone densitometry in patients with a high-risk diet: Hyperphenylalaninemia and galactosemia. An. Pediatr. 2005, 63, 224–229. [Google Scholar]
- McMurry, M.P.; Chan, G.M.; Leonard, C.O.; Ernst, S.L. Bone mineral status in children with phenylketonuria—Relationship to nutritional intake and phenylalanine control. Am. J. Clin. Nutr. 1992, 55, 997–1004. [Google Scholar] [CrossRef]
- Schwahn, B.; Mokov, E.; Scheidhauer, K.; Lettgen, B.; Schönau, E. Decreased trabecular bone mineral density in patients with phenylketonuria measured by peripheral quantitative computed tomography. Acta Paediatr. 1998, 87, 61–63. [Google Scholar] [CrossRef]
- Dimitri, P. Fat and bone in children—Where are we now? Ann. Pediatr. Endocrinol. Metab. 2018, 23, 62–69. [Google Scholar] [CrossRef]
- Clark, E.M.; Ness, A.R.; Bishop, N.J.; Tobias, J.H. Association Between Bone Mass and Fractures in Children: A Prospective Cohort Study. J. Bone Miner. Res. 2006, 21, 1489–1495. [Google Scholar] [CrossRef] [Green Version]
- Rauch, F.; Bailey, D.A.; Baxter-Jones, A.; Mirwald, R.; Faulkner, R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 2004, 3, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Mendes, N.; Miller, K.K.; Rosen, C.J.; Lee, H.; Klibanski, A.; Misra, M. Visceral Fat Is a Negative Predictor of Bone Density Measures in Obese Adolescent Girls. J. Clin. Endocrinol. Metab. 2010, 95, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, N.; Kibirige, M.; Fordham, J.; Banks, L.; Muntoni, F.; Chinn, D.; Boivin, C.; Shaw, N. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 2004, 35, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Strauss, B.; Wilcox, G.; Rocha, J.; et al. Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 1323. [Google Scholar] [CrossRef]
- Adamczyk, P.; Morawiec-Knysak, A.; Płudowski, P.; Banaszak, B.; Karpe, J.; Pluskiewicz, W. Bone metabolism and the muscle–bone relationship in children, adolescents and young adults with phenylketonuria. J. Bone Miner. Metab. 2010, 29, 236–244. [Google Scholar] [CrossRef]
- Al-Qadreh, A.; Schulpis, K.H.; Athanasopoulou, H.; Mengreli, C.; Skarpalezou, A.; Voskaki, I. Bone mineral status in children with phenylketonuria under treatment. Acta Paediatr. 1998, 87, 1162–1166. [Google Scholar] [CrossRef] [PubMed]
- Hillman, L.; Schlotzhauer, C.; Lee, D.; Grasela, J.; Witter, S.; Allen, S.; Hillman, R. Decreased bone mineralization in children with phenylketonuria under treatment. Eur. J. Pediatr. 1996, 155 (Suppl. 1), S148–S152. [Google Scholar] [CrossRef]
- Roato, I.; Porta, F.; Mussa, A.; D’Amico, L.; Fiore, L.; Garelli, D.; Spada, M.; Ferracini, R. Bone Impairment in Phenylketonuria Is Characterized by Circulating Osteoclast Precursors and Activated T Cell Increase. PLoS ONE 2010, 5, e14167. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, S.F.; Tourkova, I.L.; Robinson, L.J.; Secunda, C.; Spridik, K.; Blair, H.C. A bone mineralization defect in the Pah(enu2) model of classical phenylketonuria involves compromised mesenchymal stem cell differentiation. Mol. Genet. Metab. 2018, 125, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Blumsohn, A.; Hannon, R.A.; Wrate, R.; Barton, J.; Ai-Dehaimi, A.W.; Colwell, A.; Eastell, R. Biochemical markers of bone turnover in girls during puberty. Clin. Endocrinol. 1994, 40, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Millet, P.; Vilaseca, M.A.; Valls, C.; Pérez-Dueñas, B.; Artuch, R.; Gómez, L.; Lambruschini, N.; Campistol, J. Is deoxypyridinoline a good resorption marker to detect osteopenia in phenylketonuria? Clin. Biochem. 2005, 38, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Bollen, A.-M.; Eyre, D. Bone resorption rates in children monitored by the urinary assay of collagen type I cross-linked peptides. Bone 1994, 15, 31–34. [Google Scholar] [CrossRef]
- Shaw, N.J.; Bishop, N.J. Mineral accretion in growing bones—A framework for the future? Arch. Dis. Child. 1995, 72, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Gennai, I.; Di Iorgi, N.; Reggiardo, G.; Gatti, C.; Bertelli, E.; Allegri, A.E.M.; Barco, S.; Maghnie, M.; Tripodi, G.; Cangemi, G. Age- and sex-matched reference curves for serum collagen type I C-telopeptides and bone alkaline phosphatase in children and adolescents: An alternative multivariate statistical analysis approach. Clin. Biochem. 2016, 49, 802–807. [Google Scholar] [CrossRef]
- Huang, Y.; Eapen, E.; Steele, S.; Grey, V. Establishment of reference intervals for bone markers in children and adolescents. Clin. Biochem. 2011, 44, 771–778. [Google Scholar] [CrossRef]
- Rauchenzauner, M.; Schmid, A.; Heinz-Erian, P.; Kapelari, K.; Falkensammer, G.; Griesmacher, A.; Finkenstedt, G.; Högler, W. Sex- and Age-Specific Reference Curves for Serum Markers of Bone Turnover in Healthy Children from 2 Months to 18 Years. J. Clin. Endocrinol. Metab. 2006, 92, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Seeman, E.; Delmas, P.D. Biochemical Measurements of Bone Turnover in Children and Adolescents. Osteoporos. Int. 2000, 11, 281–294. [Google Scholar] [CrossRef]
- Tisè, M.; Ferrante, L.; Mora, S.; Tagliabracci, A. A biochemical approach for assessing cutoffs at the age thresholds of 14 and 18 years: A pilot study on the applicability of bone specific alkaline phosphatase on an Italian sample. Int. J. Leg. Med. 2016, 130, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Delmas, P.D. Biochemical markers of bone turnover. Acta Orthop. Scand. Suppl. 1995, 266, 176–182. [Google Scholar] [CrossRef] [PubMed]
Enrolment | 6 Months | 12 Months | 36 Months |
---|---|---|---|
|
|
|
|
Anthropometry: 3/month | |||
Blood phenylalanine: weekly |
Group | Enrolment z Score (Range) | 36 Months z Score (Range) |
---|---|---|
L2–L4 BMDa (g/ cm2) | ||
CGMP100 | −0.2 (−0.9 to 0.8) | −0.6 (−0.9 to 0.6) |
CGMP50 | −0.1 (−0.5 to 0.5) | −0.1 (−0.6 to 0.4) |
L-AA | −0.1 (−0.7 to 0.4) | −0.5 (−0.8 to 0.0) |
L2–L4 BMAD (g/cm3) | ||
CGMP100 | 0.2 (−0.9 to 0.6) | 0.2 (−0.4 to 0.5) |
CGMP50 | −0.2 (−0.5 to 0.9) | −0.2 (−0.4 to 0.3) |
L-AA | −0.3 (−0.8 to 0.4) | −0.6 (−1.2 to −0.1) |
TBLH BMDa (g/cm2) | ||
CGMP100 | −0.6 (−1 to −0.5) | −0.5 (−0.6 to −0.2) |
CGMP50 | −0.8 (−1.3 to −0.1) | −0.6 (−0.9 to −0.3) |
L-AA | −0.2 (−0.5 to 0.1) | −0.2 (−0.4 to −0.1) |
Median values (range) for Total and L2–L4 BMC g | ||
Total body BMC g | ||
CGMP100 | 832.8 (672.9 to 1543.5) | 1258.4 (1082.8 to 1816.9) |
CGMP50 | 604.9 (532.9 to 680.3) | 1019.1 (963.4 to 1134.8) |
L-AA | 1183.8 (672.9 to 1543.5) | 1650.2 (1082.8 to 1816.9) |
L2–L4 BMC g | ||
CGMP100 | 18.9 (14.1 to 22.9) | 28.1 (24.1 to 38.3) |
CGMP50 | 14.2 (13.0 to 16.6) | 22.1 (20.4 to 25.1) |
L-AA | 25.6 (15.9 to 34.9) | 40.2 (25.0 to 45.4) |
Group | 36 Months Z Score (Range) |
---|---|
Trabecular density: 4% | |
CGMP100 | −1.0 (−1.3 to −0.5) |
CGMP50 | −1.0 (−1.2 to −0.7) |
L-AA | −0.5 (−1.2 to −0.1) |
Total density: 4% | |
CGMP100 | −0.7 (−1.1 to −0.6) |
CGMP50 | −0.7 (−0.9 to −0.3) |
L-AA | −0.4 (−0.9 to 0.5) |
Cortical density: 66% | |
CGMP100 | 0.1 (−0.1 to 0.3) * |
CGMP50 | −0.5 (−1.4 to −0.1) |
L-AA | −0.4 (−1.0 to 0.5) |
Bone area: 66% | |
CGMP100 | 1.9 (1.4 to 4.0) |
CGMP50 | 0.9 (0.2 to 1.8) |
L-AA | 2.0 (1.5 to 3.7) |
Muscle area: 66% | |
CGMP100 | −1.1 (−1.8 to −0.5) |
CGMP50 | −1.2 (−1.4 to −0.6) |
L-AA | −1.0 (−1.8 to −0.5) |
Fat area: 66% | |
CGMP100 | 0.5 (−0.3 to 0.9) |
CGMP50 | 1.0 (0.4 to 1.8) |
L-AA | 1.2 (0.1 to 2.3) |
Bone area/muscle area: 66% area | |
CGMP100 | 0.5 (0.2 to 1.1) |
CGMP50 | −0.4 (−1.2 to 0.5) |
L-AA | 0.5 (0.2 to 1.6) |
Strength strain index (SSI): 66% | |
CGMP100 | −0.7 (−1.0 to 1.3) |
CGMP50 | −0.1 (−0.6 to 0.5) |
L-AA | 0.4 (−0.3 to 0.6) |
Calcium mmol/L | Phosphate mmol/L | Magnesium mmol/L | 25 (OH) Vit D nmol/L | PTH ng/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(Range) | (Range) | (Range) | (Range) | (Range) | ||||||
Enrolment | 36 m | Enrolment | 36 m | Enrolment | 36 m | Enrolment | 36 m | Enrolment | 36 m | |
CGMP100 | 2.5 | 2.4 | 1.4 | 1.3 | 0.9 | 0.8 | 112 | 79 | 17 | 32 |
(2.3, 2.6) | (2.3, 2.5) | (1.0, 1.5) | (1.0, 1.5) | (0.7, 1.0) | (0.8, 0.9) | (81, 162) | (43.7, 113) | (11, 42) | (22, 57) | |
CGGMP50 | 2.5 | 2.4 | 1.4 | 1.3 | 0.8 | 0.8 | 94.6 | 95.2 | 15.5 | 31 |
(2.3, 2.6) | (2.3, 2.5) | (1.1, 1.6) | (1.1, 1.5) | (0.8, 1.0) | (0.8, 0.9) | (61.8, 135) | (56.3, 137) | (6, 37) | (19, 46) | |
L-AA | 2.5 | 2.4 | 1.3 | 1.2 | 0.8 | 0.8 | 93.9 | 91.8 | 21 | 31 |
(2.3, 2.6) | (2.3, 2.5) | (1.0, 1.5) | (0.8, 1.7) | (0.8, 0.9) | (0.7, 0.9) | (38.8, 182) | (60.3, 161) | (6, 44) | (19, 46) |
CGMP100 Boys | CGMP100 Girls | CGMP50 Boys | CGMP50 Girls | L-AA Boys | L-AA Girls | |
---|---|---|---|---|---|---|
β-CTX μg/L | 1.2 (1.2, 1.6) | 1.2 (1, 1.5) | 1.2 (1.1, 1.4) | 1.2 (1.2, 1.3) | 1.4 (1.3, 1.4) | 1.2 (0.9, 1.3) |
Bone ALP U/L | 86 (76, 95) | 103 (92, 106) | 125 (114, 131) | 108 (76, 116) | 85 (75, 95) | 83 (46, 97) |
P1NP μg/L | 503 (488, 509) | 476 (387, 663) | 470 (434, 543) | 507 (487, 649) | 522 (418, 556) | 445 (175, 553) |
fDPD nmol/L | 178 (68, 307) | 114 (71, 338) | 207 (91, 227) | 147 (98, 265) | 157 (96, 247) | 107 (93, 114) |
fDPD/Ur Cr nmol/mmol | 22 (9, 27) | 24 (12, 28) | 26 (10, 30) | 23 (13, 28) | 25 (8, 27) | 14 (8, 26) |
fPYD nmol/L | 735 (276, 1514) | 429 (275, 700) | 825 (310, 951) | 624 (347, 1134) | 615 (331, 876) | 413 (290, 436) |
fPYD/Ur Cr nmol/mmol | 96 (33, 118) | 90 (40, 121) | 96 (37, 111) | 105 (49, 110) | 94 (27, 109) | 58 (24, 100) |
Ur Ca/Cr mmol/L | 1 (0.4, 1.2) | 1.1 (0.8, 1.4) | 1.3 (0.7, 1.5) | 0.8 (0.4, 1.3) | 1.6 (1.3, 2.4) | 1.9 (1.3, 2.5) |
Ur Cr mmol/L | 12 (1, 15) | 6 (5, 11) | 8 (7, 9) | 8 (8, 10) | 10 (8, 16) | 7 (6, 8) |
Time (Months) | L-AA Height Z Score n = 19 | CGMP50 Height Z Score n = 16 | CGMP100 Height Z Score n = 13 |
Enrolment (range) | 0.2 (−0.2 to 0.8) | −0.1 (−0.6 to 0.6) | −0.1 (−0.4 to 0.3) |
36 Months (range) | 0.2 (0.0 to 0.5) | 0.3 (−0.1 to 0.7) | 0.6 (0.1 to 0.7) |
L-AA Weight Z score n = 19 | CGMP50 Weight Z score n = 16 | CGMP100 Weight Z score n = 13 | |
Enrolment (range) | 0.9 (−1.1 to 3.1) | 0.6 (−1.9 to 1.8) | 0.4 (−0.6 to 2.3) |
36 Months (range) | 1.0 (−1.3 to 2.6) | 1.2 (−2.4 to2.1) | 0.9 (−0.4 to 1.8) |
L-AA BMI Z score n = 19 | CGMP50 BMI Z score n = 16 | CGMP100 BMI Z score n = 13 | |
Enrolment (range) | 1.2 (−2.5 to 2.0) | 0.8 (−0.2 to 2.0) | 0.4 (−0.6 to 2.8) |
36 Months (range) | 1.0 (−0.8 to 2.8) | 1.3 (−1.2 to 2.4) | 0.9 (−0.9 to 1.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; Strauss, B.J.; et al. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 2075. https://doi.org/10.3390/nu13062075
Daly A, Högler W, Crabtree N, Shaw N, Evans S, Pinto A, Jackson R, Ashmore C, Rocha JC, Strauss BJ, et al. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients. 2021; 13(6):2075. https://doi.org/10.3390/nu13062075
Chicago/Turabian StyleDaly, Anne, Wolfgang Högler, Nicola Crabtree, Nick Shaw, Sharon Evans, Alex Pinto, Richard Jackson, Catherine Ashmore, Júlio C. Rocha, Boyd J. Strauss, and et al. 2021. "A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes" Nutrients 13, no. 6: 2075. https://doi.org/10.3390/nu13062075
APA StyleDaly, A., Högler, W., Crabtree, N., Shaw, N., Evans, S., Pinto, A., Jackson, R., Ashmore, C., Rocha, J. C., Strauss, B. J., Wilcox, G., Fraser, W. D., Tang, J. C. Y., & MacDonald, A. (2021). A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients, 13(6), 2075. https://doi.org/10.3390/nu13062075