Dietary Acid Load and Its Interaction with IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) Polymorphisms on Metabolic Traits among Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sociodemographic and Physical Activity
2.3. Physical Measurement
2.4. Blood Collection and Biochemical Measurement
2.5. Estimation of Dietary Acid Load
2.6. SNP Selection, Genotyping, and Quality Control Analysis
2.7. Statistical Analyses
3. Results
3.1. General Characteristics
3.2. Demographic, Clinical, and Biochemical Characteristics According to SNPs rs35767, rs7136446, and rs1800796
3.3. Contribution of Variables on Metabolic Traits
3.4. Direct Effects of DAL and Genetic Polymorphisms on Metabolic Traits
3.5. Gene-Diet Interaction for Metabolic Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziki, M.D.A.; Mani, A. Metabolic syndrome: Genetic insights into disease pathogenesis. Curr. Opin. Lipidol. 2016, 27, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex-and gender-related prevalence, car-diovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Loos, R.J.F. Progress in the genetics of common obesity and type 2 diabetes. Expert Rev. Mol. Med. 2010, 12, e7. [Google Scholar] [CrossRef]
- Cho, Y.S.; Go, M.J.; Kim, Y.J.; Heo, J.Y.; Oh, J.H.; Ban, H.-J.; Yoon, D.; Lee, M.H.; Kim, D.-J.; Park, M. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quanti-tative traits. Nat. Genet. 2009, 41, 527–534. [Google Scholar] [CrossRef]
- Kim, Y.J.; Go, M.J.; Hu, C.; Hong, C.B.; Kim, Y.K.; Lee, J.Y.; Hwang, J.Y.; Oh, J.H.; Kim, D.J.; Kim, N.H.; et al. Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat. Genet. 2011, 43, 990–995. [Google Scholar] [CrossRef]
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef]
- Yin, Y.-W.; Sun, Q.-Q.; Zhang, B.-B.; Hu, A.-M.; Liu, H.-L.; Wang, Q.; Zeng, Y.-H.; Xu, R.-J.; Zhang, Z.-D.; Zhang, Z.-G. Association between the Interleukin-6 Gene –572 C/G Polymorphism and the Risk of Type 2 Diabetes Mellitus: A Meta-Analysis of 11,681 Subjects. Ann. Hum. Genet. 2013, 77, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Indulekha, K.; Surendar, J.; Anjana, R.M.; Geetha, L.; Gokulakrishnan, K.; Pradeepa, R.; Mohan, V. Metabolic Obesity, Adipocytokines, and Inflammatory Markers in Asian Indians—CURES-124. Diabetes Technol. Ther. 2015, 17, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Supriya, R.; Tam, B.T.; Yu, A.P.; Lee, P.H.; Lai, C.W.; Cheng, K.K.; Yau, S.Y.; Chan, L.W.; Yung, B.Y.; Sheridan, S.; et al. Adipokines demonstrate the interacting influence of central obesity with other cardiometabolic risk factors of metabolic syndrome in Hong Kong Chinese adults. PLoS ONE 2018, 13, e0201585. [Google Scholar] [CrossRef]
- Rizi, E.P.; Teo, Y.; Leow, M.K.-S.; Khoo, E.Y.H.; Yeo, C.R.; Chan, E.; Song, T.; Sadananthan, S.A.; Velan, S.S.; Gluckman, P.D.; et al. Ethnic differences in the role of adipocytokines linking abdominal adiposity and insulin sensitivity among Asians. J. Clin. Endocrinol. Metab. 2015, 100, 4249–4256. [Google Scholar] [CrossRef] [Green Version]
- Boeta-Lopez, K.; Duran, J.; Elizondo, D.; Gonzales, E.; Rentfro, A.; Schwarzbach, A.E.; Nair, S. Association of interleukin-6 polymorphisms with obesity or metabolic traits in young Mexican-Americans. Obes. Sci. Pr. 2017, 4, 85–96. [Google Scholar] [CrossRef]
- Ronti, T.; Lupattelli, G.; Mannarino, E. The endocrine function of adipose tissue: An update. Clin. Endocrinol. 2006, 64, 355–365. [Google Scholar] [CrossRef]
- Hamid, Y.H.; Rose, C.S.; Urhammer, S.A.; Kristiansen, O.P.; Mandrup-Poulsen, T.; Borch-Johnsen, K.; Jørgensen, T.; Hansen, T.; Pedersen, O.; Glümer, C.; et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes. Diabetologia 2005, 48, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-López, G.; Buen, E.P.-D.; Sánchez-Corona, J.; Salmerón-Castro, J.; Mendoza-Carrera, F. Interleukin-6 Polymorphisms Are Associated with Obesity and Hyperglycemia in Mexican Adolescents. Arch. Med. Res. 2013, 44, 62–68. [Google Scholar] [CrossRef]
- Ma, H.; Sun, G.; Wang, W.; Zhou, Y.; Liu, D.; Tong, Y.; Lu, Z. Association between interleukin-6-572C> G and-174G> C polymorphisms and hypertension: A meta-analysis of case-control studies. Medicine 2016, 95, e2416. [Google Scholar] [CrossRef]
- Yang, X.; Feng, L.; Li, C.; Li, Y. Association of IL-6-174G>C and -572C>G polymorphisms with risk of young ischemic stroke patients. Gene 2014, 539, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, J.T.; Amoli, M.M.; Taheri, Z.; Larijani, B.; Pravica, V.; Hutchinson, I.V. TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications. J. Diabetes Metab. Disord. 2014, 13, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaessen, N.; Heutink, P.; Janssen, J.A.; Witteman, J.C.M.; Testers, L.; Hofman, A.; Lamberts, S.W.J.; Oostra, B.A.; Pols, H.A.P.; Van Duijn, C.M. A polymorphism in the gene for IGF-I: Functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001, 50, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.I.; Clemmons, D.R. Insulin-Like Growth Factors and Their Binding Proteins: Biological Actions. Endocr. Rev. 1995, 16, 3–34. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Zhang, L.; Peng, Y. IGF1 gene polymorphisms associated with diabetic retinopathy risk in Chinese Han population. Oncotarget 2017, 8, 88034–88042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huuskonen, A.; Lappalainen, J.; Oksala, N.; Santtila, M.; Häkkinen, K.; Kyröläinen, H.; Atalay, M. Common Genetic Variation in the IGF1 Associates with Maximal Force Output. Med. Sci. Sports Exerc. 2011, 43, 2368–2374. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.A.; Mannino, G.C.; Fiorentino, T.V.; Andreozzi, F.; Perticone, F.; Sesti, G. A polymorphism at IGF1 locus is associated with anemia. Oncotarget 2017, 8, 32398–32406. [Google Scholar] [CrossRef] [Green Version]
- Szmuilowicz, E.D.; Stuenkel, C.A.; Seely, E.W. Influence of menopause on diabetes and diabetes risk. Nat. Rev. Endocrinol. 2009, 5, 553–558. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Tang, X.; Li, N.; Wu, Y.; Wang, J.; Li, J.; Zhang, Z.; Dou, H.; Liu, J.; Yu, L.; et al. Menopause with cardiovascular disease and its risk factors among rural Chinese women in Beijing: A population-based study. Maturitas 2012, 72, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Gruppo di Studio Progetto Menopausa Italia. Risk factors for type 2 diabetes in women attending menopause clinics in Italy: A cross-sectional study. Climacteric 2005, 8, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.S.; Van Der Schouw, Y.T.; Onland-Moret, N.C.; Sharp, S.J.; Ong, K.K.; Khaw, K.-T.; Ardanaz, E.; Amiano, P.; Boeing, H.; Chirlaque, M.-D.; et al. Age at Menopause, Reproductive Life Span, and Type 2 Diabetes Risk: Results from the EPIC-InterAct study. Diabetes Care 2012, 36, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Fenton, T.R.; Lyon, A.W.; Eliasziw, M.; Tough, S.C.; Hanley, D.A. Phosphate decreases urine calcium and increases calcium balance: A meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr. J. 2009, 8, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Wang, D.; Gao, X. Association between Dietary Acid-Based Load and Obesity in Chinese Adults. Fed. Am. Soc. Exp. Biol. 2012, 26 (Suppl. 1). [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Khosravi, H.; Azizi, F. Associations between Dietary Acid-Base Load and Cardiometabolic Risk Factors in Adults: The Tehran Lipid and Glucose Study. Endocrinol. Metab. 2015, 30, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Shab-Bidar, S. Dietary acid load and risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. Clin. Nutr. ESPEN 2018, 23, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Luis, D.; Huang, X.; Risérus, U.; Sjogren, P.; Lindholm, B.; Ärnlöv, J.; Cederholm, T.; Carrero, J.J. Estimated Dietary Acid Load Is Not Associated with Blood Pressure or Hypertension Incidence in Men Who Are Approximately 70 Years Old. J. Nutr. 2014, 145, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Jia, T.; Huang, X.; Risérus, U.; Cederholm, T.; Ärnlöv, J.; Sjögren, P.; Lindholm, B.; Carrero, J.-J. Dietary acid load, insulin sensitivity and risk of type 2 diabetes in community-dwelling older men. Diabetologia 2014, 57, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Zalilah, M.S.; Chin, Y.S.; Ramachandran, V.; Chan, Y.M. Dietary Acid Load, IGF-1 Single Nucleotide Polymorphism and Bone Resorption among Postmenopausal Chinese Women. Nutrients 2018, 10, 915. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Chan, Y.; Ramachandran, V.; Shariff, Z.; Chin, Y.; Arumugam, M. No Interaction Effect between Interleukin-6 Polymorphisms and Acid Ash Diet with Bone Resorption Marker in Postmenopausal Women. Int. J. Environ. Res. Public Health 2021, 18, 827. [Google Scholar] [CrossRef]
- Armstrong, T.; Bull, F. Development of the World Health Organization Global Physical Activity Questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, NSW, Australia, 2000. [Google Scholar]
- Aris, T.; Ahmad, N.A.; Tee, G.H. National Health and Morbidity Survey 2014: Malaysian Adult Nutrition Survey (MANS); Institute for Public Health: Kuala Lumpur, Malaysia, 2014.
- Institute for Public Health. Report on Smoking Status among Malaysian Adults. Report of the National Health and Morbidity Survey 2015; IPH, Ministry of Health: Kuala Lumpur, Malaysia, 2015.
- Tee, E.S.; Noor, M.I.; Azudin, M.N.; Idris, K. Nutrient Composition of Malaysian Foods; Institute for Medical Research: Kuala Lumpur, Malaysia, 1997. [Google Scholar]
- Energy and Nutrient Composition of Food. Available online: https://focos.hpb.gov.sg/eservices/ENCF/ (accessed on 30 July 2018).
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and its Influence on Urine pH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Mannino, G.C.; Greco, A.; De Lorenzo, C.; Andreozzi, F.; Marini, M.A.; Perticone, F.; Sesti, G. A Fasting Insulin—Raising Allele at IGF1 Locus Is Associated with Circulating Levels of IGF-1 and Insulin Sensitivity. PLoS ONE 2013, 8, e85483. [Google Scholar] [CrossRef]
- Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; Kanoni, S.; et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 2012, 44, 991–1005. [Google Scholar] [CrossRef] [Green Version]
- Kostek, M.C.; Devaney, J.M.; Gordish-Dressman, H.; Harris, T.B.; Thompson, P.D.; Clarkson, P.M.; Angelopoulos, T.J.; Gordon, P.M.; Moyna, N.M.; Pescatello, L.S.; et al. A polymorphism near IGF1 is associated with body composition and muscle function in women from the Health, Aging, and Body Composition Study. Eur. J. Appl. Physiol. 2010, 110, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the metabolic syndrome. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, K.S.; Hejar, A.R.; Rushdan, A.Z.; Loh, S.P. Prevalence of metabolic syndrome among staff in a Malaysian public university based on Harmonised, International Diabetes Federation and National Cholesterol Education Program Definitions. Malays. J. Nutr. 2013, 19, 77–86. [Google Scholar] [PubMed]
- Rampal, S.; Mahadeva, S.; Guallar, E.; Bulgiba, A.; Mohamed, R.; Rahmat, R.; Arif, M.T.; Rampal, L. Ethnic Differences in the Prevalence of Metabolic Syndrome: Results from a Multi-Ethnic Population-Based Survey in Malaysia. PLoS ONE 2012, 7, e46365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan, P.; Abbasalizad-Farhangi, M. Dietary acid load, blood pressure, fasting blood sugar and biomarkers of insulin resistance among adults: Findings from an updated systematic review and meta-analysis. Int. J. Clin. Pract. 2020, 74, e13471. [Google Scholar] [CrossRef]
- Parohan, M.; Sadeghi, A.; Nasiri, M.; Maleki, V.; Khodadost, M.; Pirouzi, A.; Sadeghi, O. Dietary acid load and risk of hypertension: A systematic review and dose-response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 665–675. [Google Scholar] [CrossRef]
- Chen, S.-W.; Chen, Z.-H.; Liang, Y.-H.; Wang, P.; Peng, J.-W. Elevated hypertension risk associated with higher dietary acid load: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2019, 33, 171–177. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Statistic 2012. Available online: http://www.who.int/gho/publications/world_health_statistics/FR_WHS2012_Full.pdf (accessed on 23 February 2021).
- Rutan, G.H.; McDonald, R.H.; Kuller, L.H. A historical perspective of elevated systolic vs diastolic blood pressure from an epidemiological and clinical trial viewpoint. J. Clin. Epidemiol. 1989, 42, 663–673. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Svetkey, L.P.; Simons-Morton, D.; Vollmer, W.M.; Appel, L.J.; Conlin, P.R.; Ryan, D.H.; Ard, J.; Kennedy, B.M. Effects of dietary patterns on blood pressure: Subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch. Intern. Med. 1999, 159, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.; Nowson, C.; Worsley, T.; Margerison, C.; Jorna, M. Dietary approaches for weight loss with in-creased fruit, vegetables and dairy. Asia Pac. J. Clin. Nutr. 2003, 12. [Google Scholar] [CrossRef]
- Couch, S.C.; Saelens, B.E.; Levin, L.; Dart, K.; Falciglia, G.; Daniels, S.R. The efficacy of a clinic-based behavior-al nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J. Pediatr. 2008, 152, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Nowson, C.A.; Worsley, A.; Margerison, C.; Jorna, M.K.; Frame, A.G.; Torres, S.J.; Godfrey, S.J. Blood Pressure Response to Dietary Modifications in Free-Living Individuals. J. Nutr. 2004, 134, 2322–2329. [Google Scholar] [CrossRef]
- Obarzanek, E.; Vollmer, W.M.; Lin, P.-H.; Cooper, L.S.; Young, D.R.; Ard, J.D.; Stevens, V.J.; Simons-Morton, D.G.; Svetkey, L.P.; Harsha, D.W. Effects of individual components of multiple behavior changes: The PREMIER trial. Am. J. Health Behav. 2007, 31, 545–560. [Google Scholar] [CrossRef]
- Troyer, J.L.; Racine, E.F.; Ngugi, G.W.; McAuley, W.J. The effect of home-delivered Dietary Approach to Stop Hypertension (DASH) meals on the diets of older adults with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racine, E.; Troyer, J.L.; Warren-Findlow, J.; McAuley, W.J. The effect of medical nutrition therapy on changes in dietary knowledge and DASH diet adherence in older adults with cardiovascular disease. J. Nutr. Health Aging 2011, 15, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Eguchi, M.; Kuwahara, K.; Kochi, T.; Ito, R.; Kurotani, K.; Tsuruoka, H.; Nanri, A.; Kabe, I.; Mizoue, T. High dietary acid load is associated with insulin resistance: The Furukawa Nutrition and Health Study. Clin. Nutr. 2016, 35, 453–459. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Vilier, A.; Bonnet, F.; Lajous, M.; Balkau, B.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F. Dietary acid load and risk of type 2 diabetes: The E3N-EPIC cohort study. Diabetologia 2014, 57, 313–320. [Google Scholar] [CrossRef] [Green Version]
- Gæde, J.; Nielsen, T.; Madsen, M.L.; Toft, U.; Jørgensen, T.; Overvad, K.; Tjønneland, A.; Hansen, T.; Allin, K.H.; Pedersen, O. Population-based studies of relationships between dietary acidity load, insulin resistance and incident diabetes in Danes. Nutr. J. 2018, 17, 91. [Google Scholar] [CrossRef]
- Jong, J.C.K.-D.; Li, Y.; Chen, M.; Curhan, G.C.; Mattei, J.; Malik, V.S.; Forman, J.P.; Franco, O.H.; Hu, F.B. Diet-dependent acid load and type 2 diabetes: Pooled results from three prospective cohort studies. Diabetologia 2017, 60, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Carnauba, R.A.; Baptistella, A.B.; Paschoal, V.; Hübscher, G.H. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients 2017, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Mccarty, M.F. Acid-base balance may influence risk for insulin resistance syndrome by modulating cortisol output. Med. Hypotheses 2005, 64, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Rylander, R.; Tallheden, T.; Vormann, J. Acid-base conditions regulate calcium and magnesium homeostasis. Magnes. Res. 2009, 22, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Suliburska, J.; Cofta, S.; Gajewska, E.; Kalmus, G.; Sobieska, M.; Samborski, W.; Krejpcio, Z.; Drzymala-Czyz, S.; Bogdanski, P. The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2396–2400. [Google Scholar] [PubMed]
- Zingone, F.; Ciacci, C. The value and significance of 25(OH) and 1,25(OH) vitamin D serum levels in adult coeliac patients: A review of the literature. Dig. Liver Dis. 2018, 50, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, F.A.; Santos, F.; Martínez, V.; García, E.; Fernández, P.; Rodríguez, J.; Fernández, M.; Álvarez, J.; Ferrando, S. Resistance to growth hormone and insulin-like growth factor-I in acidotic rats. Pediatr. Nephrol. 2000, 14, 720–725. [Google Scholar] [CrossRef]
- Wang, R.; Xu, D.; Liu, R.; Zhao, L.; Hu, L.; Wu, P. Microsatellite and Single Nucleotide Polymorphisms in the Insulin-Like Growth Factor 1 Promoter with Insulin Sensitivity and Insulin Secretion. Med. Sci. Monit. 2017, 23, 3722–3736. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.-W.; Sun, Q.-Q.; Zhang, B.-B.; Hu, A.-M.; Wang, Q.; Liu, H.-L.; Hou, Z.-Z.; Zeng, Y.-H.; Xu, R.-J.; Shi, L.-B. The lack of association between interleukin-6 gene −174 G/C polymorphism and the risk of type 1 diabetes mellitus: A meta-analysis of 18,152 subjects. Gene 2013, 515, 461–465. [Google Scholar] [CrossRef]
- Gu, T.; Gu, H.; Hilding, A.; Ostenson, C.; Brismar, K. DNA methylation analysis of the insulin-like growth fac-tor-1 (IGF1) gene in Swedish men with normal glucose tolerance and type 2 diabetes. J. Diabetes Metab. 2014, 5, 2. [Google Scholar]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Low Urine pH: A Novel Feature of the Metabolic Syndrome. Clin. J. Am. Soc. Nephrol. 2007, 2, 883–888. [Google Scholar] [CrossRef]
- Murakami, K.; Livingstone, M.B.E.; Okubo, H.; Sasaki, S. Higher dietary acid load is weakly associated with higher adiposity measures and blood pressure in Japanese adults: The National Health and Nutrition Survey. Nutr. Res. 2017, 44, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K.; The Japan Dietetic Students’ Study for Nutrition and Biomarkers Group. Association between dietary acid-base load and cardiometabolic risk factors in young Japanese women. Br. J. Nutr. 2008, 100, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.A.; MacGregor, A.; Skinner, J.; Spector, T.D.; Moayyeri, A.; Cassidy, A. A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women. Osteoporos. Int. 2012, 24, 1899–1908. [Google Scholar] [CrossRef]
- Kucharska, A.; Szostak-Węgierek, D.; Waśkiewicz, A.; Piotrowski, W.; Stepaniak, U.; Pająk, A.; Kozakiewicz, K.; Tykarski, A.; Rutkowski, M.; Bielecki, W.; et al. Dietary acid load and cardiometabolic risk in the Polish adult population. Adv. Clin. Exp. Med. 2018, 27, 1347–1354. [Google Scholar] [CrossRef]
- Oana, M.C.; Claudia, B.; Carmen, D.; Maria, P.A.; Septimiu, V.; Claudiu, M. The role of IL-6 572 C/G, 190 C/T, and 174 G/C gene polymorphisms in children’s obesity. Eur. J. Nucl. Med. Mol. Imaging 2014, 173, 1285–1296. [Google Scholar] [CrossRef]
- Slattery, M.L.; Curtin, K.; Sweeney, C.; Wolff, R.K.; Baumgartner, R.N.; Baumgartner, K.B.; Giuliano, A.R.; Byers, T. Modifying Effects of IL-6 Polymorphisms on Body Size-Associated Breast Cancer Risk. Obesity 2008, 16, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Mărginean, C.; Mărginean, C.O.; Bănescu, C.; Meliţ, L.; Tripon, F.; Iancu, M. Impact of demographic, genetic, and bioimpedance factors on gestational weight gain and birth weight in a Romanian population: A cross-sectional study in mothers and their newborns: The Monebo study (STROBE-compliant article). Medicine 2016, 95, e4098. [Google Scholar] [CrossRef]
- Van den Berg, S.W.; Dolle, M.E.; Imholz, S.; van Slot, R.; Wijmenga, C.; Verschuren, W.M.; Strien, C.; Siezen, C.L.; Hoebee, B.; Feskens, E.J.; et al. Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes: A population-based cohort study. Int. J. Obes. 2009, 33, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
SNPs | Possible Effects on |
---|---|
IL6 gene -587 G/A polymorphism [8] | Diabetes |
IL6 gene rs1800797 (–597 G/A), rs1800796 (–572 G/C) and rs1800795 (–174 G/C) [12] | Obesity |
IL6 gene rs1800796 [14,15,16,17] | High insulinogenic index, hyperglycemia, hypertension, and obesity |
IGF1 gene rs35767 [21] | Diabetes |
IGF1 gene rs7136446 [22] | Body mass index and body fat percentage |
Mean ± SD or % | Range (Min–Max) | |
---|---|---|
Social demographics | ||
Age (years) | 66.7 ± 6.6 | 51–85 |
Postmenopausal (years) | 16.1 ± 7.8 | 5–43 |
Education level (years) | 8 ± 4.6 | 0–18 |
Lifestyles | ||
Physical activity (MET min/week) | 1006.3 ± 875.3 | 0–4680 |
Insufficiently active (<600 MET min/week) | 37.4 | |
Low active (600–3999 MET min/week) | 61.2 | |
Moderately active (4000–7999 MET min/week) | 1.4 | |
Highly active (>8000 MET min/week) | 0 | |
Metabolic traits | ||
BMI (kg/m2) | 24.3 ± 3.8 | 16.2–37.5 |
BMI/Obesity | ||
No (BMI < 30 kg/m2) | 92.9 | |
Yes (BMI ≥ 30 kg/m2) | 7.1 | |
WC (cm) | 80.4 ± 9.3 | 58.4–116.7 |
Normal (WC < 80 cm) | 50.7 | |
Abdominal obesity (WC ≥ 80 cm) | 49.3 | |
SBP (mmHg) | 140 ± 20.2 | 92–214 |
Normal (SBP < 130 mmHg) | 31.8 | |
Hypertension (SBP ≥ 130 mmHg) | 68.2 | |
DBP (mmHg) | 77 ± 10.2 | 51–103 |
Normal (DBP < 85 mmHg) | 76.8 | |
Hypertension (DBP ≥ 85 mmHg) | 23.2 | |
Fasting blood glucose (mmol/L) | 5.9 ± 0.8 | 4.4–9.2 |
Normal (FBG < 5.6 mmol/L) | 40.8 | |
Hyperglycemia (FBG ≥ 5.6 mmol/L) | 59.2 | |
Total-C (mg/dL) | 5.8 ± 1.1 | 2.7–9.4 |
HDL-C (mg/dL) | 1.6 ± 0.4 | 0.8–3 |
Normal (≥1.3 mmol/L) | 89.1 | |
Dyslipidemia (<1.3 mmol/L) | 10.9 | |
LDL-C (mg/dL) | 3.5 ± 1 | 0.9–7.1 |
TG (mg/dL) | 1.3 ± 0.6 | 0.4–3.8 |
Normal (<1.7 mmol/L) | 76.8 | |
Dyslipidemia (≥1.7 mmol/L) | 23.2 | |
Dietary intake | ||
PRAL (mEq/day) | 13.8 ± 19.1 | −49.5–85.3 |
Total energy intake (kcal) | 1481 ± 523.6 | 505.8–3580.1 |
Genetic analysis | ||
IGF1 rs35767 polymorphism (genotype) (%) | ||
TT | 9.4 | |
CT | 42.7 | |
CC | 47.9 | |
IGF1 rs7136446 polymorphism (genotype) (%) | ||
TT | 67.3 | |
CT | 28.0 | |
CC | 4.7 | |
IL6 rs1800796 polymorphism (genotype) (%) | ||
CC | 55.9 | |
CG | 41.3 | |
GG | 2.8 |
IGF1 rs35767 Polymorphism | IGF1 rs7136446 Polymorphism | IL6 rs1800796 Polymorphism | ||||
---|---|---|---|---|---|---|
CC genotypes (n = 101) | CT + TT genotypes (n = 110) | TT genotypes (n = 142) | CT + CC genotypes (n = 69) | CC genotypes (n = 118) | CG + GG genotypes (n = 93) | |
Age (years) | 66.8 ± 6.9 | 66.6 ± 6.4 | 67.1 ± 6.8 | 66 ± 6.1 | 67.4 ± 7.2 | 65.9 ± 5.6 |
Duration of menopause (years) | 16.6± 8.4 | 15.7 ± 7.2 | 16.3 ± 7.4 | 15.9 ± 8.6 | 16.8 ± 8.4 | 15.3 ± 6.9 |
Duration of education (years) | 7.5 ± 4.4 | 8.4 ± 4.8 | 8.2 ± 4.5 | 7.5 ± 4.8 | 7.4 ± 4.5 | 8.6 ± 4.6 |
BMI (kg/m2) | 24.3 ± 3.7 | 24.4 ± 3.99 | 24.5 ± 3.7 | 24 ± 3.9 | 24.5 ± 3.9 | 24.1 ± 3.7 |
Waist circumference (cm) | 80.2 ± 88 | 80.6 ± 9.7 | 80.3 ± 9.1 | 80.6 ± 9.6 | 80.9 ± 9.7 | 79.7 ± 8.6 |
SBP (mmHg) | 138.6 ± 21 | 141.3 ± 19.5 | 140.5 ± 18.8 | 138.9 ± 23 | 140.9 ± 20.8 | 138.8 ± 19.4 |
DBP (mmHg) | 77.1 ± 10.2 | 76.9 ± 10.3 | 76.9 ± 10 | 77.2 ± 10.8 | 77.3 ± 10.2 | 76.7 ± 10.3 |
Fasting blood glucose (mmol/L) | 5.99 ± 0.8 | 5.9 ± 0.9 | 5.9 ± 0.9 | 5.8 ± 0.8 | 5.9 ± 0.8 | 5.9 ± 0.9 |
Total-C (mg/dL) | 5.8 ± 1 | 5.8 ± 1.2 | 5.8 ± 1.1 | 5.7 ± 1.1 | 5.8 ± 1.2 | 5.8 ± 1 |
HDL-C (mg/dL) | 1.7 ± 0.4 | 1.6 ± 0.3 | 1.6 ± 0.3 | 1.7 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.4 |
LDL-C (mg/dL) | 3.5 ± 0.9 | 1.6 ± 1.1 | 3.6 ± 1 | 3.5 ± 1 | 3.6 ± 1.1 | 3.5 ± 1 |
TG (mg/dL) | 1.4 ± 0.6 | 1.3 ± 0.6 | 1.4 ± 0.6 | 1.3 ± 0.6 | 1.3 ± 0.6 | 1.4 ± 0.7 |
Variable | Systolic Blood Pressure | Diastolic Blood Pressure | Waist Circumference | Fasting Blood Glucose | Triglyceride | High-Density Lipoprotein and Cholesterol RATIO | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B Value ± SE | F Change | B Value ± SE | F Change | B Value ± SE | F Change | B Value ± SE | F Change | B Value ± SE | F Change | B Value ± SE | F Change | |
Step 1 (adjusted variables) | 22.291 ** | 10.162 ** | 17.575 ** | 8.443 ** | 18.005 ** | 17.250 ** | ||||||
Age | 0.371 ± 0.184 ** | 0.012 ± 0.102 | 0.185 ± 0.001 * | −0.181 ± 0.013 * | ||||||||
BMI | 0.388 ± 0.301 ** | 0.392 ± 0.167 ** | 0.209 ± 0.001 * | |||||||||
Total cholesterol | 0.169 ± 1.100 * | 0.154 ± 0.609 * | −0.191 ± 0.004 * | |||||||||
FBG | 0.019 ± 17.215 | −0.050 ± 9.532 | 0.220 ± 7.793 * | 0.080 ± 0.508 | ||||||||
SBP | 0.226 ± 0.029 ** | 0.023 ± 0.000 | 0.117 ± 0.002 | |||||||||
Year(s) of education | −0.192 ± 0.123 * | 0.100 ± 0.019 | ||||||||||
TG | 0.229 ± 0.961 ** | 0.411 ± 0.134 ** | ||||||||||
HDL and cholesterol ratio | 0.397 ± 0.027 ** | |||||||||||
WC | 0.185 ± 0.004 * | |||||||||||
Serum 25(OH) vitamin D | −0.176 ± 0.002 * | |||||||||||
Physical activity | 0.107 ± 0.000 | |||||||||||
PRAL and IGF1 rs35767 Polymorphism Model | ||||||||||||
Step 2 (DAL and gene main effects) | 1.150 | 0.010 | 0.733 | 2.730 | 0.071 | 1.112 | ||||||
PRAL (mEq/day) | −0.047 ± 0.063 | 0.008 ± 0.035 | −0.062 ± 0.030 | 0.149 ± 0.000 * | −0.011 ± 0.002 | −0.045 ± 0.004 | ||||||
IGF1 rs35767 polymorphism (0 = CC, 1 = TT + TC) | 0.077 ± 2.348 | −0.006 ± 1.307 | 0.045 ± 1.125 | −0.027 ± 0.009 | −0.019 ± 0.072 | −0.077 ± 0.163 | ||||||
Step 3 (DAL*gene interactions) | 0.107 | 0.083 | 0.005 | 0.768 | 1.443 | 0.047 | ||||||
PRAL* SNP rs35767 (TT + TC) | 0.033 ± 0.126 | −0.032 ± 0.070 | 0.008 ± 0.060 | −0.097 ± 0.001 | 0.122 ± 0.004 | 0.023 ± 0.009 | ||||||
PRAL and IGF1 rs7136446 Polymorphism Model | ||||||||||||
Step 2 (DAL and gene main effects) | 0.395 | 0.296 | 0.521 | 2.797 | 0.451 | 0.511 | ||||||
PRAL (mEq/day) | −0.043 ± 0.063 | 0.009 ± 0.035 | −0.058 ± 0.030 | 0.149 ± 0.000 * | −0.014 ± 0.002 | −0.047 ± 0.004 | ||||||
IGF1 rs7136446 polymorphism (0 = TT, 1 = CC + CT) | 0.029 ± 2.528 | 0.049 ± 1.400 | 0.021 ± 1.194 | 0.036 ± 0.010 | −0.055 ± 0.077 | 0.039 ± 0.176 | ||||||
Step 3 (DAL*gene interactions) | 3.814 | 2.082 | 0.525 | 0.612 | 0.217 | 0.048 | ||||||
PRAL* SNP rs7136446 (CC + CT) | −0.156 ± 0.144 | −0.127 ± 0.080 | −0.061 ± 0.069 | 0.070 ± 0.001 | 0.038 ± 0.004 | 0.018 ± 0.010 | ||||||
PRAL and IL6 rs1800796 Polymorphism Model | ||||||||||||
Step 2 (DAL and gene main effects) | 0.389 | 0.007 | 0.657 | 2.649 | 1.567 | 1.880 | ||||||
PRAL (mEq/day) | −0.045 ± 0.063 | 0.007 ± 0.035 | −0.057 ± 0.030 | 0.147 ± 0.000 * | −0.016 ± 0.002 | −0.041 ± 0.004 | ||||||
IL6 rs1800796 polymorphism (0 = CC, 1 = GG + CG) | 0.029 ± 2.398 | 0.003 ± 1.331 | −0.038 ± 1.136 | 0.010 ± 0.010 | 0.103 ± 0.071 | −0.108 ± 0.165 | ||||||
Step 3 (DAL*gene interactions) | 4.222 * | 0.536 | 0.133 | 1.236 | 0.876 | 0.944 | ||||||
PRAL* SNP rs1800796 (GG + CG) | 0.194 ± 0.124* | 0.076 ± 0.069 | 0.036 ± 0.060 | −0.117 ± 0.001 | 0.090 ± 0.004 | −0.096 ± 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.Y.; Chan, Y.M.; Ramachandran, V.; Shariff, Z.M.; Chin, Y.S.; Arumugam, M. Dietary Acid Load and Its Interaction with IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) Polymorphisms on Metabolic Traits among Postmenopausal Women. Nutrients 2021, 13, 2161. https://doi.org/10.3390/nu13072161
Lim SY, Chan YM, Ramachandran V, Shariff ZM, Chin YS, Arumugam M. Dietary Acid Load and Its Interaction with IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) Polymorphisms on Metabolic Traits among Postmenopausal Women. Nutrients. 2021; 13(7):2161. https://doi.org/10.3390/nu13072161
Chicago/Turabian StyleLim, Sook Yee, Yoke Mun Chan, Vasudevan Ramachandran, Zalilah Mohd Shariff, Yit Siew Chin, and Manohar Arumugam. 2021. "Dietary Acid Load and Its Interaction with IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) Polymorphisms on Metabolic Traits among Postmenopausal Women" Nutrients 13, no. 7: 2161. https://doi.org/10.3390/nu13072161
APA StyleLim, S. Y., Chan, Y. M., Ramachandran, V., Shariff, Z. M., Chin, Y. S., & Arumugam, M. (2021). Dietary Acid Load and Its Interaction with IGF1 (rs35767 and rs7136446) and IL6 (rs1800796) Polymorphisms on Metabolic Traits among Postmenopausal Women. Nutrients, 13(7), 2161. https://doi.org/10.3390/nu13072161