Food Safety and Cross-Contamination of Gluten-Free Products: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Gluten Contamination in Gluten-Free Foods
3.1. Naturally and Certified Gluten-Free Foods
3.2. Products from Food Services
3.3. Oats
3.4. Hidden Gluten
4. Analytical Methods to Detect Gluten
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Taraghikhah, N.; Ashtari, S.; Asri, N.; Shahbazkhani, B.; Al-Dulaimi, D.; Rostami-Nejad, M.; Rezaei-Tavirani, M.; Razzaghi, M.R.; Zali, M.R. An updated overview of spectrum of gluten-related disorders: Clinical and diagnostic aspects. BMC Gastroenterol. 2020, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Leffler, D.A.; Bai, J.C.; Biagi, F.; Fasano, A.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C.P.; Leonard, J.N.; et al. The Oslo definitions for coeliac disease and related terms. Gut 2013, 62, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Antiga, E.; Maglie, R.; Quintarelli, L.; Verdelli, A.; Bonciani, D.; Bonciolini, V.; Caproni, M. Dermatitis herpetiformis: Novel perspectives. Front. Immunol. 2019, 10, 1290. [Google Scholar] [CrossRef]
- Rej, A.; Aziz, I.; Sanders, D.S. Coeliac disease and noncoeliac wheat or gluten sensitivity. J. Intern. Med. 2020, 288, 537–549. [Google Scholar] [CrossRef]
- Herrera, M.J.; Hermoso, M.A.; Quera, R. An update on the pathogenesis of celiac disease. Rev. Med. Chile 2009, 137, 1617–1626. [Google Scholar]
- Fasano, A.; Sapone, A.; Zevallos, V.; Schuppan, D. Nonceliac gluten and wheat sensitivity. Gastroenterology 2015, 148, 1195–1204. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 142. [Google Scholar] [CrossRef] [Green Version]
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. Nat. Rev. Dis. Primers 2019, 5, 3. [Google Scholar] [CrossRef]
- Hollon, J.R.; Cureton, P.A.; Martin, M.L.; Puppa, E.L.; Fasano, A. Trace gluten contamination may play a role in mucosal and clinical recovery in a subgroup of diet-adherent non-response celiac disease patients. BMC Gastroenterol. 2013, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itzlinger, A.; Branchi, F.; Elli, L.; Schumann, M. Gluten-free diet in celiac disease—Forever and for all? Nutrients 2018, 10, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, C.M.; Barro, F.; Sousa, C.; Mena, M.C. Cereals for developing gluten-free products and analytical tools for gluten detection. J. Cereal Sci. 2014, 59, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; Kaur, A.; Chopra, C.S. Gluten-free products for celiac susceptible people. Front. Nutr. 2018, 5, 116. [Google Scholar] [CrossRef]
- Codex Standard 118-1979. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B118-1979%252FCXS_118e_2015.pdf (accessed on 2 February 2021).
- Francavilla, R.; Cristofori, F.; Stella, M.; Borrelli, G.; Naspi, G.; Castellaneta, S. Treatment of celiac disease: From gluten-free diet to novel therapies. Minerva Pediatr. 2014, 66, 501–516. [Google Scholar] [PubMed]
- Leonard, M.M.; Cureton, P.; Fasano, A. Indications and use of the gluten contamination elimination diet for patients with non-responsive celiac disease. Nutrients 2017, 9, 1129. [Google Scholar] [CrossRef] [PubMed]
- Shehab, D.I. Celiac disease. Egypt J. Intern. Med. 2013, 25, 53–62. [Google Scholar]
- Koerner, T.B.; Abbott, M.; Godefroy, S.B.; Popping, B.; Yeung, J.M.; Diaz-Amigo, C.; Roberts, J.; Taylor, S.L.; Baumert, J.L.; Ulberth, F.; et al. Validation procedures for quantitative gluten ELISA methods: AOAC allergen community guidance and best practices. J. AOAC Int. 2013, 96, 1033–1040. [Google Scholar] [CrossRef]
- Segura, V.; Díaz, J.; Ruiz-Carnicer, Á.; Muñoz-Suano, A.; Carrillo-Carrión, C.; Sousa, C.; Cebolla, Á.; Comino, I. Rapid, Effective and Versatile Extraction of Gluten in Food with Application on Different Immunological Methods. Foods 2021, 10, 652. [Google Scholar] [CrossRef]
- Deutsch, H.; Poms, R.; Heeres, H.; van der Kamp, J.W. Labeling and regulatory issues. In Gluten-Free Cereal Products and Beverages; Arendt, E.K., dal Bello, F., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2008; pp. 29–46. [Google Scholar]
- McIntosh, J.; Flanagan, A.; Madden, N.; Mulcahy, M.; Dargan, L.; Walker, M.; Burns, D.T. Awareness of coeliac disease and the gluten status of ‘gluten-free’ food obtained on request in catering outlets in Ireland. Int. J. Food Sci. Technol. 2011, 46, 1569–1574. [Google Scholar] [CrossRef]
- Gibert, A.; Kruizinga, A.G.; Neuhold, S.; Houben, G.F.; Canela, M.A.; Fasano, A.; Catassi, C. Might gluten traces in wheat substitutes pose a risk in patients with celiac disease? A population-based probabilistic approach to risk estimation. Am. J. Clin. Nutr. 2013, 97, 109–116. [Google Scholar] [CrossRef]
- Lee, H.J.; Anderson, Z.; Ryu, D. Gluten contamination in foods labeled as “gluten-free” in the United States. J. Food Prot. 2014, 77, 1830–1833. [Google Scholar] [CrossRef]
- Oliveira, O.M.; Zandonadi, R.P.; Gandolfi, L.; de Almeida, D.C.; Almeida, L.M.; Pratesi, R. Evaluation of the presence of gluten in beans served at self-service restaurants: A problem for celiac disease carriers. J. Culin. Sci. Technol. 2014, 12, 22–33. [Google Scholar] [CrossRef]
- Sharma, G.M.; Pereira, M.; Williams, K.M. Gluten detection in foods available in the United States—A market survey. Food Chem. 2015, 169, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Fernandez-Gil, M.P.; Churruca, I.; Miranda, J.; Lasa, A.; Navarro, V.; Simon, E. Evolution of gluten content in cereal-based gluten-free products: An overview from 1998 to 2016. Nutrients 2017, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Atasoy, G.; Gokhisar, O.K.; Turhan, M. Gluten contamination in manufactured gluten-free food in Turkey. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.M.; Maurella, C.; Gallina, S.; Gorrasi, I.S.; Caramelli, M.; Decastelli, L. Analysis of gluten content in gluten-free pizza from certified take-away pizza restaurants. Foods 2018, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farage, P.; Zandonadi, R.P.; Gandolfi, L.; Pratesi, R.; Falcomer, A.L.; Arujo, L.S.; Yoshio Nakano, E.; Cortez-Ginani, V. Accidental gluten contamination in traditional lunch meals from food services in Brasilia, Brazil. Nutrients 2019, 11, 1924. [Google Scholar] [CrossRef] [Green Version]
- Lerner, B.A.; Phan Vo, L.T.; Yates, S.; Rundle, A.G.; Green, P.H.; Lebwohl, B. Detection of gluten in gluten-free labeled restaurant food: Analysis of crowd-sourced data. Am. J. Gastroenterol. 2019, 114, 792–797. [Google Scholar] [CrossRef]
- Raju, N.; Joshi, A.K.; Vahini, R.; Deepika, T.; Bhaskarachari, K.; Devindra, S. Gluten contamination in labelled and naturally gluten-free grain products in Southern India. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 531–538. [Google Scholar] [CrossRef]
- Thompson, T.; Lee, A.R.; Grace, T. Gluten contamination of grains, seeds, and flours in the United States: A pilot study. J. Am. Diet. Assoc. 2010, 110, 937–940. [Google Scholar] [CrossRef]
- Koerner, T.B.; Cleroux, C.; Poirier, C.; Cantin, I.; La Vieille, S.; Hayward, S.; Dubois, S. Gluten contamination of naturally gluten-free flours and starches used by Canadians with celiac disease. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2013, 30, 2017–2021. [Google Scholar] [CrossRef]
- Hassan, H.; Elaridi, J.; Bassil, M. Evaluation of gluten in gluten-free-labeled foods and assessment of exposure level to gluten among celiac patients in Lebanon. Int. J. Food Sci. Nutr. 2017, 68, 881–886. [Google Scholar] [CrossRef]
- Verma, A.K.; Gatti, S.; Galeazzi, T.; Monachesi, C.; Padella, L.; Baldo, G.D.; Annibali, R.; Lionetti, E.; Catassi, C. Gluten contamination in naturally or labeled gluten-free products marketed in Italy. Nutrients 2017, 9, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farage, P.; de Medeiros Nobrega, Y.K.; Pratesi, R.; Gandolfi, L.; Assuncao, P.; Zandonadi, R.P. Gluten contamination in gluten-free bakery products: A risk for coeliac disease patients. Public Health Nutr. 2017, 20, 413–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherf, K.A.; Wieser, H.; Koehler, P. Improved quantitation of gluten in wheat starch for celiac disease patients by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD). J. Agric. Food Chem. 2016, 64, 7622–7631. [Google Scholar] [CrossRef] [PubMed]
- Falcomer, A.L.; Santos-Araujo, L.; Farage, P.; Santos-Monteiro, J.; Yoshio-Nakano, E.; Puppin-Zandonadi, R. Gluten contamination in food services and industry: A systematic review. Crit. Rev. Sci. Nutr. 2018, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Weisbrod, V.M.; Silvester, J.A.; Raber, C.; Suslovic, W.; Coburn, S.S.; Raber, B.; McMahon, J.; Damast, A.; Kramer, Z.; Kerzner, B. A quantitative assessment of gluten cross-contact in the school environment for children with celiac disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 289–294. [Google Scholar] [CrossRef]
- Cohen, I.; Day, A.S.; Shaoul, R. To be or not to be? An update on the ongoing debate on oats for patients with celiac disease. Front. Pediatr. 2019, 7, 384. [Google Scholar] [CrossRef]
- Hoffmanova, I.; Sanchez, D.; Szczepankova, A.; Tlaskalova-Hogenova, H. The pros and cons of using oat in a gluten-free diet for celiac patients. Nutrients 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Boison, J.; Allred, L.; Almy, D.; Anderson, L.; Baumert, J.; Bhandari, S.; Cebolla, A.; Chen, Y.; Crowley, E.; Diaz-Amigo, C.; et al. Standard method performance requirements (SMPRs®) 2017.21: Quantitation of wheat, rye and barley gluten in oats. J. AOAC 2018, 101, 1238–1242. [Google Scholar] [CrossRef]
- Chen, Y.; Fritz, R.D.; Kock, L.; Garg, D.; Davis, R.M.; Kasturi, P. A stepwise test-all-positives methodology to assess gluten-kernel contamination at the serving-size level in gluten-free (GF) oat production. Food Chem. 2018, 240, 391–395. [Google Scholar] [CrossRef]
- Hernando, A.; Mujico, J.R.; Juanas, D.; Méndez, E. Confirmation of the cereal type in oat products highly contaminated with gluten. J. Am. Diet. Assoc. 2006, 106, 665. [Google Scholar] [CrossRef] [PubMed]
- Koerner, T.B.; Cléroux, C.; Poirier, C.; Cantin, I.; Alimkulov, A.; Elamparo, H. Gluten contamination in the Canadian commercial oat supply. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2011, 28, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Silano, M.; Dessì, M.; De Vincenzi, M.; Cornell, H. In Vitro tests indicate that certain varieties of oats may be harmful to patients with coeliac disease. J Gastroenterol. Hepatol. 2007, 22, 528–531. [Google Scholar] [CrossRef]
- Silano, M.; Di Benedetto, R.; Maialetti, F.; De Vincenzi, A.; Calcaterra, R.; Cornell, H.J.; De Vincenzi, M. Avenins from different cultivars of oats elicit response by coeliac peripheral lymphocytes. Scand. J. Gastroenterol. 2007, 42, 1302e5. [Google Scholar] [CrossRef] [PubMed]
- Comino, I.; Real, A.; de Lorenzo, L.; Cornell, H.; López-Casado, M.Á.; Barro, F.; Lorite, P.; Torres, M.I.; Cebolla, A.; Sousa, C. Diversity in oat potential immunogenicity: Basis for the selection of oat varieties with no toxicity in coeliac disease. Gut 2011, 60, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Silano, M.; Pozo, E.P.; Uberti, F.; Manferdelli, S.; Del Pinto, T.; Felli, C.; Budelli, A.; Vincentini, O.; Restani, P. Diversity of oat varieties in eliciting the early inflammatory events in celiac disease. Eur. J. Nutr. 2014, 53, 1177–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujico, J.R.; Mitea, C.; Gilissen, L.J.; de Ru, A.; van Veelen, P.; Smulders, M.J.; Koning, F. Natural variation in avenin epitopes among oat varieties: Implications for celiac disease. J. Cereal Sci. 2011, 54, 8–12. [Google Scholar] [CrossRef]
- Benoit, L.; Masiri, J.; Del Blanco, I.A.; Meshgi, M.; Gendel, S.M.; Samadpour, M. Assessment of Avenins from Different Oat Varieties Using R5-Based Sandwich ELISA. J. Agric. Food Chem. 2017, 65, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, M.J.; Real, A.; Garcia-Molina, M.D.; Sousa, C.; Barro, F. Characterization of celiac disease related oat proteins: Bases for the development of high quality oat varieties suitable for celiac patients. Sci. Rep. 2017, 7, 42588. [Google Scholar] [CrossRef] [Green Version]
- Arentz-Hansen, H.; Fleckenstein, B.; Molberg, Ø.; Scott, H.; Koning, F.; Jung, G.; Roepstorff, P.; Lundin, K.E.; Sollid, L.M. The molecular basis for oat intolerance in patients with celiac disease. PLoS Med. 2004, 1, 84–92. [Google Scholar] [CrossRef]
- Real, A.; Comino, I.; de Lorenzo, L.; Merchán, F.; Gil-Humanes, J.; Giménez, M.J.; López-Casado, M.Á.; Torres, M.I.; Cebolla, Á.; Sousa, C.; et al. Molecular and immunological characterization of gluten proteins isolated from oat cultivars that differ in toxicity for celiac disease. PLoS ONE 2012, 7, e48365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comino, I.; Bernardo, D.; Bancel, E.; Moreno, M.L.; Sánchez, B.; Barro, F.; Šuligoj, T.; Ciclitira, P.J.; Cebolla, Á.; Knight, S.C.; et al. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr. Res. 2016, 60, 30324. [Google Scholar] [CrossRef] [PubMed]
- Wieser, H.; Koehler, P.; Scherf, K.A. Wheat—An Exceptional Cro; Woodhead Publishing (Elsevier): Daxford, UK, 2020. [Google Scholar]
- Shah, A.V.; Serajuddin, A.T.; Mangione, R.A. Making all medications gluten free. J. Pharm. Sci. 2018, 107, 1263–1268. [Google Scholar] [CrossRef]
- Verma, A.K.; Lionetti, E.; Gatti, S.; Franceschini, E.; Catassi, G.N.; Catassi, C. Contribution of oral hygiene and cosmetics on contamination of gluten-free diet: Do celiac customers need to worry about? J. Pediatr. Gastroenterol. Nutr. 2019, 68, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Allred, L.K.; Park, E.S. EZ Gluten for the qualitative detection of gluten in foods, beverages, and environmental surfaces. J. AOAC Int. 2012, 95, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Portela, S.B.; Horrell, J.B.; Leung, A.; Weitmann, D.R.; Artiuch, J.B.; Wilson, S.M.; Cipriani, M.; Slakey, L.K.; Burt, A.M.; et al. An integrated, accurate, rapid and economical handheld consumer gluten detector. Food Chem. 2019, 275, 446–456. [Google Scholar] [CrossRef]
- Bruins Slot, I.D.; Bremer, M.G.; van der Fels-Klerx, I.; Hamer, R.J. Evaluating the performance of gluten ELISA test kits: The numbers do not tell the tale. Cereal Chem. 2015, 92, 513–521. [Google Scholar] [CrossRef]
- Mena, M.C.; Sousa, C. Analytical tools for gluten detection, Policies and regulation. In Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-Free Foods; Arranz, E., Fernández-Bañares, F., Rosell, C.M., Rodrigo, L., Peña, A.S., Eds.; OmniaScience: Barcelona, Spain, 2015; pp. 527–564. [Google Scholar]
- Rzychon, M.; Brohée, M.; Cordeiro, F.; Haraszi, R.; Ulberth, F.; O’Connor, G. The feasibility of harmonizing gluten ELISA measurements. Food Chem. 2017, 234, 144–154. [Google Scholar] [CrossRef]
- Lexhaller, B.; Tompos, C.; Scherf, K.A. Comparative analysis of prolamin and glutelin fractions from wheat, rye, and barley with five sandwich ELISA test kits. Anal. Bioanal. Chem. 2016, 408, 6093–6104. [Google Scholar] [CrossRef]
- Lexhaller, B.; Tompos, C.; Scherf, K.A. Fundamental study on reactivities of gluten protein types from wheat, rye and barley with five sandwich ELISA test kits. Food Chem. 2017, 237, 320–330. [Google Scholar] [CrossRef]
- Schopf, M.; Scherf, K.A. Wheat cultivar and species influence variability of gluten ELISA analyses based on polyclonal and monoclonal antibodies R5 and G12. J. Cereal Sci. 2018, 83, 32–41. [Google Scholar] [CrossRef]
- Rallabhandi, P.; Sharma, G.M.; Pereira, M.; Williams, K.M. Immunological characterization of the gluten fractions and their hydrolysates from wheat, rye and barley. J. Agric. Food Chem. 2015, 63, 1825–1832. [Google Scholar] [CrossRef]
- Frazer, A.C.; Fletcher, R.F.; Ross, C.A.; Shaw, B.; Sammons, H.G.; Schneider, R. Gluten-induced enteropathy: The effect of partially digested gluten. Lancet 1959, 2, 252–255. [Google Scholar] [CrossRef]
- Picariello, G.; Mamone, G.; Cutignano, A.; Fontana, A.; Zurlo, L.; Addeo, F.; Ferranti, P. Proteomics, peptidomics, and immunogenic potential of wheat beer (weissbier). J. Agric. Food Chem. 2015, 63, 3579–3586. [Google Scholar] [CrossRef] [PubMed]
- Real, A.; Comino, I.; Moreno, M.D.L.; López-Casado, M.Á.; Lorite, P.; Isabel Torres, M.; Cebolla, Á.; Sousa, C. Identification and in vitro reactivity of celiac immunoactive peptides in an apparent gluten-free beer. PLoS ONE 2014, 9, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Tian, N.; Siezen, R.; Schuppan, D.; Helmerhorst, E.J. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G571–G580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaenij-Dekking, L.; Kooy-Winkelaar, Y.; Van Veelen, P.; Drijfhout, J.W.; Jonker, H.; Van Soest, L.; Smulders, M.J.M.; Bosch, D.; Gilissen, L.J.W.J.; Koning, F. Natural variation in toxicity of wheat: Potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 2005, 129, 797–806. [Google Scholar] [CrossRef]
- Gregorini, A.; Colomba, M.; Julia Ellis, H.; Ciclitira, P.J. Immunogenicity characterization of two ancient wheat α-gliadin peptides related to coeliac disease. Nutrients 2009, 1, 276–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalk, K.; Lexhaller, B.; Koehler, P.; Scherf, K.A. Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS ONE 2017, 12, e0172819. [Google Scholar] [CrossRef]
- Mamone, G.; Ferranti, P.; Rossi, M.; Roepstorff, P.; Fierro, O.; Malorni, A.; Addeo, F. Identification of a peptide from alpha-gliadin resistant to digestive enzymes: Implications for celiac disease. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 855, 236–241. [Google Scholar] [CrossRef]
- Comino, I.; Real, A.; Gil-Humanes, J.; Pistón, F.; de Lorenzo, L.; Moreno, M.L.; López-Casado, M.Á.; Lorite, P.; Cebolla, A.; Torres, M.I.; et al. Significant differences in coeliac immunotoxicity of barley varieties. Mol. Nutr. Food Res. 2012, 56, 1697–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieser, H.; Koehler, P. Is the calculation of the gluten content by multiplying the prolamin content by a factor of 2 valid? Eur. Food Res. Technol. 2009, 229, 9–13. [Google Scholar] [CrossRef]
- Scherf, K.A. Gluten analysis of wheat starches with seven commercial ELISA test kits—Up to six different values. Food Anal. Methods 2017, 10, 234–246. [Google Scholar] [CrossRef]
Type of Products | Study Country | n | Percentage of Food Containing >20 mg/kg of Gluten | References |
---|---|---|---|---|
Ireland | 260 | 10% | McIntosh et al., 2011 [20] | |
Gluten-free-labeled products | Italy, Spain, Germany, and Norway | 205 | 0.5% | Gibert et al., 2013 [21] |
United States | 78 | 21% | Lee et al., 2014 [22] | |
Brazil | 20 | 16% | Oliveira et al., 2014 [23] | |
United States | 275 | 10% | Sharma et al., 2015 [24] | |
Spain | 3141 | 12% | Bustamante et al., 2017 [25] | |
Turkey | 200 | 17.5% | Atasoy et al., 2017 [26] | |
Italy | 56 | 0% | Bianchi et al., 2018 [27] | |
Brazil | 180 | 3% | Farage et al., 2019 [28] | |
United States | 5624 | 32% | Lerner et al., 2019 [29] | |
Indian | 160 | 36% | Raju et al., 2020 [30] | |
Naturally gluten-free products | United States | 22 | 32% | Thomson et al., 2010 [31] |
Canada | 640 | 9.5% | Koerner et al., 2013b [32] | |
United States | 186 | 19% | Sharma et al., 2015 [24] | |
Indian | 160 | 10% | Raju et al., 2020 [30] | |
Naturally or certified gluten-free products | Lebanon | 173 | 6% | Hassan et al., 2017 [33] |
Italy | 200 | 9% | Verma et al., 2017 [34] | |
Brazil | 130 | 22% | Farage et al., 2017 [35] |
Strengths | Weak Points | |
---|---|---|
ELISA immunoenzyme assay | Simple to perform, fast, inex-pensive, high sensitivity, does not produce cross-reactions. | False negatives can occur when proteins are denatured by changes in pressure, temperature, or salt concentration. |
POLYMERASE CHAIN REACTION (PCR) | Very high sensitivity in the detection of DNA, allows one to identify the species from which the gluten comes, useful to identify the origin of cross contamination. | Time and qualified personnel are required in the analysis, indirect technique to detect gluten (does not quantify the presence of gluten). |
WESTERN BLOT | Highly specific and sensitive, suitable for determining the gluten content in raw and processed foods. | Slow method, requires adequate training and specialization of analysts. |
MASS SPECTROMETRY (LC–MS) | Speed, reproducibility, precision. | Complex instrumentation, expensive equipment, not a quantitative technique, etc. |
CHROMATOGRAPHY | High capacity for the separation of different peptides. | Time consuming, difficult to automate for many samples. |
IMMUNOCHROMATOGRAPHIC STRIPS | Very simple, fast method, visual interpretation. | It does not show the concentration of gluten in the sample. |
Format | Test Kit | Manufacturer | Target | Antibody |
---|---|---|---|---|
ELISA competitive | AgraQuant ELISA Gluten G12 | Romer Labs | QPQLPY | G12 monoclonal |
RIDASCREEN Gliadin Competitive | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
GlutenTox® ELISA Competitive | Hygiena | QPQLPY | G12 monoclonal | |
ELISA sandwich | Veratox for Gliadin, 8480 | Neogen Corp. | Gluten | USDA monoclonal |
Veratox for Gliadin R5, 8510 | Neogen Corp. | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
MonoTrace Gluten ELISA Kit GLU-EK-96 | BioFront Technologies | Gluten | Set of gluten-specific monoclonal antibodies | |
RIDASCREEN®FAST Gliadin sensitive | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
RIDASCREEN®FAST Gliadin | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
AllergenControl TM Gluten Sandwich | Microbiologique Inc. | Gliadin | 2D4 | |
Wheat Protein ELISA (MIoBS) | Morinaga Institute of Biological Sciences, Inc. | Gliadin | Polyclonal | |
AllerTek Gluten | ELISA Technologies, Inc. | HMW glutenin | Skerritt monoclonal | |
GlutenTox® ELISA Rapid | Hygiena | QPQLPY | G12/A1 monoclonal | |
Gluten-Check ELISA kit | Biocheck (UK) | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
Lateral flow device (LFD) | AgraStrit Gluten G12 | Romer Labs | QPQLPY | G12 monoclonal |
RIDA®QUICK Gliadin | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP | R5 monoclonal | |
GlutenTox® Sticks Plus | Hygiena | QPQLPY | G12/A1 monoclonal | |
GlutenTox® Pro | Hygiena | QPQLPY | G12/A1 monoclonal | |
Nima Gluten sensor | Nima Labs, Inc. | Gluten | Nima antibody | |
EZ GlutentTM | ELISA Technologies, Inc. | Gluten | anti-omega gliadin antibody | |
PCR test | SureFood® ALLERGEN Gluten | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP | |
SureFood® ALLERGEN 4plex Cereals | R-Biopharm, AG | QQPFP, QQQFP, LQPFP, QLPFP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieser, H.; Segura, V.; Ruiz-Carnicer, Á.; Sousa, C.; Comino, I. Food Safety and Cross-Contamination of Gluten-Free Products: A Narrative Review. Nutrients 2021, 13, 2244. https://doi.org/10.3390/nu13072244
Wieser H, Segura V, Ruiz-Carnicer Á, Sousa C, Comino I. Food Safety and Cross-Contamination of Gluten-Free Products: A Narrative Review. Nutrients. 2021; 13(7):2244. https://doi.org/10.3390/nu13072244
Chicago/Turabian StyleWieser, Herbert, Verónica Segura, Ángela Ruiz-Carnicer, Carolina Sousa, and Isabel Comino. 2021. "Food Safety and Cross-Contamination of Gluten-Free Products: A Narrative Review" Nutrients 13, no. 7: 2244. https://doi.org/10.3390/nu13072244
APA StyleWieser, H., Segura, V., Ruiz-Carnicer, Á., Sousa, C., & Comino, I. (2021). Food Safety and Cross-Contamination of Gluten-Free Products: A Narrative Review. Nutrients, 13(7), 2244. https://doi.org/10.3390/nu13072244