Plasma Sphingolipid Profile in Association with Incident Metabolic Syndrome in a Chinese Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Laboratory Measurements
2.4. Sphingolipid Profile Quantification
2.5. Assessment of Incident MetS
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Factor Analysis
3.3. Sphingolipid Scores and Incident MetS Risk
3.4. Joint Associations of Sphingolipid Scores, Inflammatory Markers, Adipokines, and Incident MetS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
CRP | C-reactive protein |
CVD | cardiovascular disease |
dhCer | dihydroceramide |
FA2H | fatty acid hydroxylase 2 |
FDR | false discovery rate |
GlcCer | glucosylceramide |
GSL | glycosphingolipid |
HexCer | hexosylceramide |
HOMA-IR | homeostatic model assessment of insulin resistance |
IL-6 | interkeukin-6 |
LacCer | lactosylceramide |
MetS | metabolic syndrome |
NHAPC | Nutrition and Health of Aging Population in China |
No | number |
PCA | principal component analysis |
RBP4 | retinol-binding protein 4 |
RR | relative risk |
SM | sphingomyelin |
SM (OH) | sphingomyelin with one additional hydroxyl |
SM (2OH) | sphingomyelin with two additional hydroxyls |
T2D | type 2 diabetes |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meikle, P.J.; Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr. Opin. Lipidol. 2011, 22, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Hussain, M.M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017, 28, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.H.; Blesso, C.N. Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017, 9, 1180. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, R.; Ekroos, K.; Sysi-Aho, M.; Hilvo, M.; Vihervaara, T.; Kauhanen, D.; Suoniemi, M.; Hurme, R.; Marz, W.; Scharnagl, H.; et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 2016, 37, 1967–1976. [Google Scholar] [CrossRef]
- Jiang, X.-C.; Paultre, F.; Pearson, T.A.; Reed, R.G.; Francis, C.K.; Lin, M.; Berglund, L.; Tall, A.R. Plasma Sphingomyelin Level as a Risk Factor for Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2614–2618. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.C.; Deik, A.A.; Hua, S.; Wang, T.; Hanna, D.B.; Xue, X.N.; Haberlen, S.A.; Shah, S.J.; Suh, Y.; Lazar, J.M.; et al. Association of Lipidomic Profiles with Progression of Carotid Artery Atherosclerosis in HIV Infection. JAMA Cardiol. 2019, 4, 1239–1249. [Google Scholar] [CrossRef]
- Hilvo, M.; Salonurmi, T.; Havulinna, A.S.; Kauhanen, D.; Pedersen, E.R.; Tell, G.S.; Meyer, K.; Teeriniemi, A.M.; Laatikainen, T.; Jousilahti, P.; et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018, 61, 1424–1434. [Google Scholar] [CrossRef] [Green Version]
- Chew, W.S.; Torta, F.; Ji, S.; Choi, H.; Begum, H.; Sim, X.; Khoo, C.M.; Khoo, E.Y.H.; Ong, W.Y.; Van Dam, R.M.; et al. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019, 5. [Google Scholar] [CrossRef]
- Chen, G.C.; Chai, J.C.; Yu, B.; Michelotti, G.A.; Grove, M.L.; Fretts, A.M.; Daviglus, M.L.; Garcia-Bedoya, O.L.; Thyagarajan, B.; Schneiderman, N.; et al. Serum sphingolipids and incident diabetes in a US population with high diabetes burden: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am. J. Clin. Nutr. 2020, 112, 57–65. [Google Scholar] [CrossRef]
- Surowiec, I.; Noordam, R.; Bennett, K.; Beekman, M.; Slagboom, P.E.; Lundstedt, T.; van Heemst, D. Metabolomic and lipidomic assessment of the metabolic syndrome in Dutch middle-aged individuals reveals novel biological signatures separating health and disease. Metabolomics 2019, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Denimal, D.; Nguyen, A.; Pais de Barros, J.P.; Bouillet, B.; Petit, J.M.; Verges, B.; Duvillard, L. Major changes in the sphingophospholipidome of HDL in non-diabetic patients with metabolic syndrome. Atherosclerosis 2016, 246, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Jove, M.; Naudi, A.; Portero-Otin, M.; Cabre, R.; Rovira-Llopis, S.; Banuls, C.; Rocha, M.; Hernandez-Mijares, A.; Victor, V.M.; Pamplona, R. Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB J. 2014, 28, 5163–5171. [Google Scholar] [CrossRef]
- Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. Endocrinol. 2017, 13, 79–91. [Google Scholar] [CrossRef]
- Yun, H.; Sun, L.; Wu, Q.; Zong, G.; Qi, Q.; Li, H.; Zheng, H.; Zeng, R.; Liang, L.; Lin, X. Associations among circulating sphingolipids, beta-cell function, and risk of developing type 2 diabetes: A population-based cohort study in China. PLoS Med. 2020, 17, e1003451. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Ye, X.; Wang, J.; Qi, Q.; Franco, O.H.; Rennie, K.L.; Pan, A.; Li, H.; Liu, Y.; Hu, F.B.; et al. Associations of physical activity with inflammatory factors, adipocytokines, and metabolic syndrome in middle-aged and older chinese people. Circulation 2009, 119, 2969–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, T.S.; Sattar, N.; Williams, K.; Gonzalez-Villalpando, C.; Lean, M.E.; Haffner, S.M. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 2002, 25, 2016–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez, J.A.; Summers, S.A. A ceramide-centric view of insulin resistance. Cell Metab. 2012, 15, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Yu, Z.; Li, H.; Franco, O.H.; Liu, Y.; Lin, X. Distributions of C-reactive protein and its association with metabolic syndrome in middle-aged and older Chinese people. J. Am. Coll. Cardiol. 2007, 49, 1798–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, G.; Zhu, J.; Sun, L.; Ye, X.; Lu, L.; Jin, Q.; Zheng, H.; Yu, Z.; Zhu, Z.; Li, H.; et al. Associations of erythrocyte fatty acids in the de novo lipogenesis pathway with risk of metabolic syndrome in a cohort study of middle-aged and older Chinese. Am. J. Clin. Nutr. 2013, 98, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Franco, O.H.; Yu, Z.; Li, H.; Hu, F.B.; Liu, H.; Wang, X.; Tang, H.; Liu, Y.; Chen, Y.; et al. Associations of inflammatory factors with glycaemic status among middle-aged and older Chinese people. Clin. Endocrinol. 2009, 70, 854–862. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Franco, O.H.; Yu, Z.; Liu, Y.; Lin, X. Adiponectin and metabolic syndrome in middle-aged and elderly Chinese. Obesity 2008, 16, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Yu, Z.; Ye, X.; Zhao, F.; Huang, P.; Hu, F.B.; Franco, O.H.; Wang, J.; Li, H.; Liu, Y.; et al. Elevated retinol-binding protein 4 levels are associated with metabolic syndrome in Chinese people. J. Clin. Endocrinol. Metab. 2007, 92, 4827–4834. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Yin, X.; Willinger, C.M.; Keefe, J.; Liu, J.; Fernandez-Ortiz, A.; Ibanez, B.; Penalvo, J.; Adourian, A.; Chen, G.; Corella, D.; et al. Lipidomic profiling identifies signatures of metabolic risk. EBioMedicine 2020, 51, 102520. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.D.; Toledo, E.; Hruby, A.; Rosner, B.A.; Willett, W.C.; Sun, Q.; Razquin, C.; Zheng, Y.; Ruiz-Canela, M.; Guasch-Ferre, M.; et al. Plasma Ceramides, Mediterranean Diet, and Incident Cardiovascular Disease in the PREDIMED Trial (Prevencion con Dieta Mediterranea). Circulation 2017, 135, 2028–2040. [Google Scholar] [CrossRef] [Green Version]
- Fretts, A.M.; Jensen, P.N.; Hoofnagle, A.; McKnight, B.; Howard, B.V.; Umans, J.; Yu, C.; Sitlani, C.; Siscovick, D.S.; King, I.B.; et al. Plasma Ceramide Species Are Associated with Diabetes Risk in Participants of the Strong Heart Study. J. Nutr. 2020, 150, 1214–1222. [Google Scholar] [CrossRef]
- Chaurasia, B.; Summers, S.A. Ceramides in Metabolism: Key Lipotoxic Players. Annu. Rev. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Singh, S.; McGuire, D.K.; Vega, G.L.; Roddy, T.; Reilly, D.F.; Castro-Perez, J.; Kozlitina, J.; Scherer, P.E. Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: The Dallas Heart Study. Diabetologia 2018, 61, 2570–2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderson, N.L.; Maldonado, E.N.; Kern, M.J.; Bhat, N.R.; Hama, H. FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain. J. Lipid Res. 2006, 47, 2772–2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittenbecher, C.; Muhlenbruch, K.; Kroger, J.; Jacobs, S.; Kuxhaus, O.; Floegel, A.; Fritsche, A.; Pischon, T.; Prehn, C.; Adamski, J.; et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Misialek, J.R.; Huang, F.; Windham, G.B.; Yu, F.; Alonso, A. Independent Association of Plasma Hydroxysphingomyelins With Physical Function in the Atherosclerosis Risk in Communities (ARIC) Study. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1103–1110. [Google Scholar] [CrossRef]
- Wang-Sattler, R.; Yu, Z.; Herder, C.; Messias, A.C.; Floegel, A.; He, Y.; Heim, K.; Campillos, M.; Holzapfel, C.; Thorand, B.; et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012, 8, 615. [Google Scholar] [CrossRef]
- Yeboah, J.; McNamara, C.; Jiang, X.C.; Tabas, I.; Herrington, D.M.; Burke, G.L.; Shea, S. Association of plasma sphingomyelin levels and incident coronary heart disease events in an adult population: Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhang, X.; Zhou, D.; Okunade, A.L.; Su, X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J. Lipid Res. 2012, 53, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Havulinna, A.S.; Sysi-Aho, M.; Hilvo, M.; Kauhanen, D.; Hurme, R.; Ekroos, K.; Salomaa, V.; Laaksonen, R. Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
- Grunfeld, C.; Feingold, K.R. Regulation of lipid metabolism by cytokines during host defense. Nutrition 1996, 12, S24–S26. [Google Scholar] [CrossRef]
- Zunzunegui, M.V.; Beland, F.; Gutierrez-Cuadra, P. Loss to follow-up in a longitudinal study on aging in Spain. J. Clin. Epidemiol. 2001, 54, 501–510. [Google Scholar] [CrossRef]
- Vega, S.; Benito-Leon, J.; Bermejo-Pareja, F.; Medrano, M.J.; Vega-Valderrama, L.M.; Rodriguez, C.; Louis, E.D. Several factors influenced attrition in a population-based elderly cohort: Neurological disorders in Central Spain Study. J. Clin. Epidemiol. 2010, 63, 215–222. [Google Scholar] [CrossRef] [PubMed]
Incident MetS | p Value | ||
---|---|---|---|
No (n = 811) | Yes (n = 431) | ||
Age, years | 57.9 ± 5.9 | 57.9 ± 6.0 | 0.45 |
Male, n (%) | 425 (52.4) | 162 (37.6) | <0.001 |
Northern residents, n (%) | 333 (41.1) | 186 (43.2) | 0.34 |
Urban residents, n (%) | 288 (35.5) | 193 (44.8) | 0.006 |
Educational attainment, ≥10 years, n (%) | 144 (17.8) | 92 (21.3) | 0.89 |
Current smoking, n (%) | 276 (34.0) | 109 (25.3) | 0.87 |
Current alcohol drinking, n (%) | 257 (31.7) | 111 (25.8) | 0.84 |
High physical activity, n (%) | 484 (59.7) | 242 (56.1) | 0.49 |
Family history of chronic diseases, n (%) 1 | 431 (53.1) | 184 (42.7) | 0.005 |
Use of lipid-lowering medication, n (%) | 10 (1.2) | 19 (4.4) | 0.002 |
BMI (kg/m2) | 22.1 ± 2.6 | 24.4 ± 3.0 | <0.001 |
Waist circumference (cm) | 76.4 ± 8.2 | 83.0 ± 8.8 | <0.001 |
Systolic blood pressure (mmHg) | 130.6 ± 20.8 | 137.4 ± 20.3 | <0.001 |
Diastolic blood pressure (mmHg) | 76.1 ± 10.1 | 79.7 ± 10.1 | <0.001 |
Fasting glucose (mmol/L) | 5.24 ± 0.54 | 5.20 ± 0.44 | 0.43 |
Fasting insulin (μU/mL) 2 | 11.5 (8.5, 15.0) | 13.3 (9.7, 17.8) | <0.001 |
HOMA-IR 2 | 2.63 (1.95, 3.47) | 3.09 (2.18, 4.12) | <0.001 |
Total cholesterol (mmol/L) | 4.47 ± 0.90 | 4.66 ± 0.89 | 0.06 |
LDL-cholesterol (mmol/L) | 3.00 ± 0.90 | 3.27 ± 0.88 | <0.001 |
HDL-cholesterol (mmol/L) | 1.45 ± 0.34 | 1.32 ± 0.28 | <0.001 |
Triglycerides (mmol/L) | 0.78 (0.57, 1.01) | 1.07 (0.80, 1.38) | <0.001 |
Triglycerides/HDL-cholesterol | 0.55 (0.37, 0.76) | 0.80 (0.56, 1.16) | <0.001 |
HDL-cholesterol/LDL-cholesterol | 0.52 ± 0.20 | 0.42 ± 0.13 | <0.001 |
CRP (mg/L) | 0.39 (0.12, 0.85) | 0.59 (0.32, 1.21) | <0.001 |
IL-6 (pg/mL) 3 | 0.90 (0.57, 1.38) | 1.00 (0.62, 1.47) | 0.06 |
Adiponectin (μg/mL) 3 | 17.4 (10.9, 26.6) | 13.3 (8.7, 21.4) | <0.001 |
RBP4 (μg/mL) | 35.8 (30.0, 43.0) | 38.9 (32.3, 46.3) | <0.001 |
Quartiles of Factors | ptrend | Per SD Increment | p | ||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||||
Factor 1 (Hydroxysphingomyelins, long-chain SMs, and GSLs) | |||||||
Model 1 | 1 | 0.76 (0.62, 0.94) | 0.64 (0.50, 0.82) | 0.57 (0.44, 0.73) | <0.001 | 0.80 (0.74, 0.88) | <0.001 |
Model 2 | 1 | 0.81 (0.65, 1.00) | 0.72 (0.56, 0.93) | 0.66 (0.50, 0.89) | 0.004 | 0.83 (0.76, 0.91) | <0.001 |
Model 3 | 1 | 0.81 (0.65, 1.00) | 0.71 (0.55, 0.91) | 0.67 (0.51, 0.90) | 0.004 | 0.83 (0.75, 0.92) | <0.001 |
Factor 2 (SMs) | |||||||
Model 1 | 1 | 1.36 (1.10, 1.68) | 1.30 (1.04, 1.62) | 1.20 (0.94, 1.53) | 0.26 | 1.08 (0.99, 1.17) | 0.069 |
Model 2 | 1 | 1.23 (1.00, 1.51) | 1.17 (0.94, 1.45) | 1.05 (0.83, 1.33) | 0.996 | 1.03 (0.95, 1.12) | 0.49 |
Model 3 | 1 | 1.14 (0.93, 1.41) | 1.08 (0.87, 1.35) | 0.98 (0.78, 1.25) | 0.65 | 1.01 (0.92, 1.10) | 0.86 |
Factor 3 (Ceramides and dhCers) | |||||||
Model 1 | 1 | 1.34 (1.07, 1.68) | 1.35 (1.08, 1.70) | 1.55 (1.23, 1.94) | <0.001 | 1.13 (1.05, 1.21) | 0.001 |
Model 2 | 1 | 1.37 (1.10, 1.71) | 1.34 (1.07, 1.67) | 1.49 (1.19, 1.87) | 0.001 | 1.11 (1.03, 1.20) | 0.006 |
Model 3 | 1 | 1.36 (1.08, 1.70) | 1.32 (1.05, 1.66) | 1.50 (1.19, 1.89) | 0.002 | 1.12 (1.04, 1.22) | 0.004 |
Factor 4 (GSLs) | |||||||
Model 1 | 1 | 1.03 (0.86, 1.23) | 0.83 (0.68, 1.02) | 0.79 (0.62, 1.01) | 0.020 | 0.90 (0.83, 0.98) | 0.011 |
Model 2 | 1 | 1.08 (0.90, 1.29) | 0.93 (0.76, 1.14) | 0.90 (0.70, 1.15) | 0.27 | 0.96 (0.89, 1.04) | 0.36 |
Model 3 | 1 | 1.10 (0.92, 1.32) | 0.96 (0.78, 1.18) | 0.96 (0.76, 1.22) | 0.57 | 0.99 (0.91, 1.07) | 0.79 |
Factor 5 (Very-long-chain SMs and hydroxysphingomyelins) | |||||||
Model 1 | 1 | 1.04 (0.84, 1.28) | 1.12 (0.91, 1.37) | 1.09 (0.88, 1.34) | 0.37 | 1.03 (0.96, 1.12) | 0.39 |
Model 2 | 1 | 0.99 (0.81, 1.22) | 1.11 (0.90, 1.37) | 1.06 (0.84, 1.34) | 0.48 | 1.04 (0.96, 1.13) | 0.38 |
Model 3 | 1 | 1.00 (0.81, 1.24) | 1.09 (0.88, 1.35) | 1.09 (0.86, 1.38) | 0.40 | 1.05 (0.96, 1.14) | 0.29 |
Factor 6 (Very-long-chain hydroxysphingomyelins) | |||||||
Model 1 | 1 | 1.29 (1.06, 1.57) | 1.15 (0.92, 1.44) | 1.16 (0.93, 1.44) | 0.29 | 1.03 (0.96, 1.11) | 0.39 |
Model 2 | 1 | 1.33 (1.09, 1.61) | 1.26 (1.01, 1.57) | 1.25 (1.01, 1.56) | 0.055 | 1.06 (0.98, 1.14) | 0.15 |
Model 3 | 1 | 1.33 (1.09, 1.62) | 1.27 (1.02, 1.58) | 1.29 (1.04, 1.62) | 0.028 | 1.06 (0.98, 1.14) | 0.15 |
Factor 7 (Very-long-chain ceramides and dhCers) | |||||||
Model 1 | 1 | 1.17 (0.92, 1.49) | 1.52 (1.21, 1.91) | 1.68 (1.34, 2.11) | <0.001 | 1.23 (1.14, 1.32) | <0.001 |
Model 2 | 1 | 1.12 (0.88, 1.43) | 1.43 (1.14, 1.78) | 1.43 (1.13, 1.79) | <0.001 | 1.15 (1.07, 1.24) | <0.001 |
Model 3 | 1 | 1.14 (0.90, 1.45) | 1.45 (1.16, 1.82) | 1.42 (1.13, 1.80) | <0.001 | 1.14 (1.06, 1.23) | <0.001 |
Quartiles of Scores | ptrend | Per SD Increment | p | ||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||||
Ceramide score; n of molecules = 10 | |||||||
Model 1 | 1 | 1.17 (0.94, 1.47) | 1.31 (1.06, 1.63) | 1.31 (1.05, 1.63) | 0.010 | 1.10 (1.02, 1.19) | 0.009 |
Model 2 | 1 | 1.17 (0.94, 1.47) | 1.33 (1.07, 1.66) | 1.34 (1.06, 1.70) | 0.010 | 1.10 (1.02, 1.20) | 0.016 |
Model 3 | 1 | 1.14 (0.91, 1.43) | 1.30 (1.04, 1.62) | 1.33 (1.05, 1.69) | 0.013 | 1.11 (1.02, 1.21) | 0.016 |
dhCer score; n of molecules = 8 | |||||||
Model 1 | 1 | 1.16 (0.92, 1.45) | 1.12 (0.89, 1.40) | 1.16 (0.92, 1.46) | 0.27 | 1.05 (0.97, 1.13) | 0.24 |
Model 2 | 1 | 1.17 (0.94, 1.46) | 1.16 (0.92, 1.46) | 1.11 (0.87, 1.41) | 0.51 | 1.04 (0.96, 1.13) | 0.32 |
Model 3 | 1 | 1.15 (0.92, 1.44) | 1.15 (0.92, 1.45) | 1.10 (0.86, 1.41) | 0.50 | 1.05 (0.96, 1.15) | 0.25 |
SM score; n of molecules = 6 | |||||||
Model 1 | 1 | 1.02 (0.83, 1.26) | 0.81 (0.65, 1.02) | 0.79 (0.63, 1.01) | 0.02 | 0.91 (0.84, 1.00) | 0.04 |
Model 2 | 1 | 1.07 (0.88, 1.31) | 0.88 (0.69, 1.11) | 0.85 (0.65, 1.11) | 0.14 | 0.94 (0.85, 1.03) | 0.20 |
Model 3 | 1 | 1.03 (0.85, 1.27) | 0.84 (0.66, 1.06) | 0.83 (0.64, 1.09) | 0.11 | 0.94 (0.85, 1.03) | 0.19 |
SM (OH) score; n of molecules = 11 | |||||||
Model 1 | 1 | 0.82 (0.67, 1.01) | 0.62 (0.49, 0.80) | 0.60 (0.45, 0.79) | <0.001 | 0.82 (0.75, 0.91) | <0.001 |
Model 2 | 1 | 0.91 (0.74, 1.13) | 0.75 (0.58, 0.98) | 0.71 (0.51, 0.97) | 0.018 | 0.87 (0.78, 0.97) | 0.011 |
Model 3 | 1 | 0.89 (0.72, 1.10) | 0.77 (0.59, 1.00) | 0.75 (0.55, 1.04) | 0.059 | 0.88 (0.79, 0.98) | 0.026 |
GSL score; n of molecules = 5 | |||||||
Model 1 | 1 | 0.97 (0.80, 1.17) | 0.73 (0.58, 0.91) | 0.85 (0.67, 1.09) | 0.10 | 0.94 (0.85, 1.02) | 0.15 |
Model 2 | 1 | 1.02 (0.84, 1.24) | 0.81 (0.65, 1.01) | 0.96 (0.74, 1.24) | 0.49 | 0.98 (0.89, 1.08) | 0.70 |
Model 3 | 1 | 1.04 (0.85, 1.26) | 0.78 (0.63, 0.98) | 0.99 (0.77, 1.27) | 0.58 | 0.99 (0.90, 1.09) | 0.90 |
Quartile of Ceramide Score | ptrend | pinteraction | |||||
n | Q1 | Q2 | Q3 | Q4 | |||
Age | 0.785 | ||||||
≤59 years | 744 | 1 | 1.03 (0.77, 1.38) | 1.15 (0.86, 1.52) | 1.12 (0.83, 1.52) | 0.413 | |
>59 years | 498 | 1 | 1.13 (0.81, 1.58) | 1.40 (1.00, 1.97) | 1.40 (0.96, 2.03) | 0.042 | |
Sex | 0.260 | ||||||
Men | 587 | 1 | 1.26 (0.86, 1.84) | 1.47 (1.01, 2.15) | 1.50 (0.99, 2.25) | 0.052 | |
Women | 655 | 1 | 1.23 (0.95, 1.58) | 1.19 (0.91, 1.56) | 1.20 (0.90, 1.60) | 0.257 | |
BMI 1 | 0.578 | ||||||
<25 kg/m2 | 978 | 1 | 1.14 (0.84, 1.54) | 1.43 (1.08, 1.90) | 1.21 (0.87, 1.68) | 0.168 | |
≥25 kg/m2 | 264 | 1 | 1.21 (0.88, 1.66) | 1.33 (0.97, 1.83) | 1.53 (1.11, 2.09) | 0.005 | |
Inflammatory index | 0.004 | ||||||
≤median | 603 | 1 | 1.44 (1.01, 2.05) | 1.56 (1.11, 2.20) | 1.20 (0.79, 1.82) | 0.336 | |
>median | 603 | 1 | 1.19 (0.89, 1.59) | 1.40 (1.03, 1.88) | 1.57 (1.16, 2.12) | 0.002 | |
Adipokine index | 0.422 | ||||||
≤median | 604 | 1 | 1.14 (0.84, 1.53) | 1.11 (0.82, 1.51) | 1.06 (0.76, 1.47) | 0.838 | |
>median | 605 | 1 | 1.18 (0.85, 1.66) | 1.63 (1.16, 2.29) | 1.70 (1.19, 2.44) | <0.001 | |
Quartile of SM (OH) Score | ptrend | pinteraction | |||||
n | Q1 | Q2 | Q3 | Q4 | |||
Age | 0.194 | ||||||
≤59 years | 744 | 1 | 0.84 (0.64, 1.10) | 0.68 (0.49, 0.95) | 0.53 (0.36, 0.78) | 0.001 | |
>59 years | 498 | 1 | 0.88 (0.63, 1.23) | 0.77 (0.51, 1.18) | 1.14 (0.69, 1.88) | 0.898 | |
Sex | 0.048 | ||||||
Men | 587 | 1 | 0.75 (0.53, 1.06) | 0.65 (0.42, 1.00) | 0.85 (0.50, 1.42) | 0.446 | |
Women | 655 | 1 | 1.00 (0.77, 1.30) | 0.88 (0.65, 1.21) | 0.72 (0.49, 1.06) | 0.121 | |
BMI 1 | 0.434 | ||||||
<25 kg/m2 | 978 | 1 | 0.77 (0.57, 1.03) | 0.74 (0.53, 1.04) | 0.65 (0.43, 0.99) | 0.050 | |
≥25 kg/m2 | 264 | 1 | 1.13 (0.83, 1.54) | 1.05 (0.74, 1.50) | 1.24 (0.82, 1.88) | 0.421 | |
Inflammatory index | 0.823 | ||||||
≤median | 603 | 1 | 0.91 (0.65, 1.26) | 0.70 (0.47, 1.06) | 0.62 (0.39, 1.01) | 0.033 | |
>median | 603 | 1 | 0.92 (0.69, 1.23) | 0.87 (0.61, 1.25) | 0.90 (0.59, 1.38) | 0.608 | |
Adipokine index | 0.819 | ||||||
≤median | 604 | 1 | 0.73 (0.53, 0.99) | 0.81 (0.58, 1.13) | 0.78 (0.52, 1.18) | 0.311 | |
>median | 605 | 1 | 0.73 (0.53, 1.00) | 0.67 (0.46, 0.97) | 0.68 (0.42, 1.10) | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, H.; Qi, Q.-B.; Zong, G.; Wu, Q.-Q.; Niu, Z.-H.; Chen, S.-S.; Li, H.-X.; Sun, L.; Zeng, R.; Lin, X. Plasma Sphingolipid Profile in Association with Incident Metabolic Syndrome in a Chinese Population-Based Cohort Study. Nutrients 2021, 13, 2263. https://doi.org/10.3390/nu13072263
Yun H, Qi Q-B, Zong G, Wu Q-Q, Niu Z-H, Chen S-S, Li H-X, Sun L, Zeng R, Lin X. Plasma Sphingolipid Profile in Association with Incident Metabolic Syndrome in a Chinese Population-Based Cohort Study. Nutrients. 2021; 13(7):2263. https://doi.org/10.3390/nu13072263
Chicago/Turabian StyleYun, Huan, Qi-Bin Qi, Geng Zong, Qing-Qing Wu, Zhen-Hua Niu, Shuang-Shuang Chen, Huai-Xing Li, Liang Sun, Rong Zeng, and Xu Lin. 2021. "Plasma Sphingolipid Profile in Association with Incident Metabolic Syndrome in a Chinese Population-Based Cohort Study" Nutrients 13, no. 7: 2263. https://doi.org/10.3390/nu13072263
APA StyleYun, H., Qi, Q. -B., Zong, G., Wu, Q. -Q., Niu, Z. -H., Chen, S. -S., Li, H. -X., Sun, L., Zeng, R., & Lin, X. (2021). Plasma Sphingolipid Profile in Association with Incident Metabolic Syndrome in a Chinese Population-Based Cohort Study. Nutrients, 13(7), 2263. https://doi.org/10.3390/nu13072263