Dehulled Adlay Consumption Modulates Blood Pressure in Spontaneously Hypertensive Rats and Overweight and Obese Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Study
2.1.1. Measurement of Blood Pressure
2.1.2. Blood Analysis
2.1.3. Urine Analysis
2.1.4. Heart and Kidney Analysis
2.2. Human Study
2.2.1. Experimental Design
2.2.2. Blood Pressure Measurement
2.2.3. Blood Analysis
2.3. Statistical Analysis
3. Results
3.1. Effects of Dehulled Adlay Intake on Body Weight in SHRs
3.2. Effects of Dehulled Adlay Intake on Blood Pressure and ACE Activity in SHRs
3.3. Effects of Dehulled Adlay Intake on AST, ALT, and Renal Functions in SHRs
3.4. Effects of Dehulled Adlay Intake on Indicators of Endothelial Function in SHRs
3.5. Effects of Daily Dehulled Adlay Intake on Blood Pressure and Endothelial Function in Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lawes, C.M.; Vander Hoorn, S.; Rodgers, A. International Society of H. Global burden of blood-pressure-related disease. Lancet 2008, 371, 1513–1518. [Google Scholar] [CrossRef]
- Touyz, R.M.; Alves-Lopes, R.; Rios, F.J.; Camargo, L.L.; Anagnostopoulou, A.; Arner, A.; Montezano, A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018, 114, 529–539. [Google Scholar] [CrossRef] [Green Version]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar]
- Muntner, P.; Carey, R.M.; Gidding, S.; Jones, D.W.; Taler, S.J.; Wright, J.T., Jr.; Whelton, P.K. Potential US Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation 2018, 137, 109–118. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Kashino, I.; Eguchi, M.; Miki, T.; Kochi, T.; Nanri, A.; Kabe, I.; Mizoue, T. Prospective association between whole grain consumption and hypertension: The Furukawa nutrition and health study. Nutrients 2020, 12, 902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.F.W.; Lehnerd, M.E.; Houser, R.F.; Rimm, E.B. Dietary Approaches to Stop Hypertension Diet, Weight Status, and Blood Pressure among Children and Adolescents: National Health and Nutrition Examination Surveys 2003–2012. J. Acad. Nutr. Diet. 2017, 117, 1437–1444.e2. [Google Scholar] [CrossRef]
- Borneo, R.; Leon, A.E. Whole grain cereals: Functional components and health benefits. Food Funct. 2012, 3, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.H.; Yang, C.C.; Li, P.C.; Chen, W.C.; Chien, C.T. Therapeutic potential of traditional chinese medicine on inflammatory diseases. J. Tradit. Complement. Med. 2013, 3, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tian, X.; Li, S.; Chang, L.; Sun, P.; Lu, Y.; Yu, X.; Chen, S.; Wu, Z.; Xu, Z.; et al. Total polysaccharides of adlay bran (Coix lachryma-jobi L.) improve TNF-alpha induced epithelial barrier dysfunction in Caco-2 cells via inhibition of the inflammatory response. Food Funct. 2019, 10, 2906–2913. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Chang, C.W.; Chiang, W.; Hsieh, S.C. Adlay bran oil suppresses hepatic gluconeogenesis and attenuates hyperlipidemia in type 2 diabetes rats. J. Med. Food 2019, 22, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.M.; Chang, W.C.; Liu, C.S.; Tsai, C.M. Effect of young barley leaf extract and adlay on plasma lipids and LDL oxidation in hyperlipidemic smokers. Biol. Pharm. Bull. 2004, 27, 802–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Qiao, L.; Li, L.; Zhang, Y.; Li, K.; Wang, L.; Qiao, Y. A novel antihypertensive peptides derived from adlay (Coix larchryma-jobi L. var. ma-yuen Stapf) Glutelin. Molecules 2017, 22, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeirssen, V.; Van Camp, J.; Verstraete, W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J. Biochem. Biophys. Methods 2002, 51, 75–87. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wu, L.Y.; Yeh, W.J.; Chen, J.R. Beneficial effects of beta-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats. Br. J. Nutr. 2014, 111, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, J.P.; Malin, S.K.; Scelsi, A.R.; Kullman, E.L.; Navaneethan, S.D.; Pagadala, M.R.; Haus, J.M.; Filion, J.; Godin, J.P.; Kochhar, S.; et al. A whole-grain diet reduces cardiovascular risk factors in overweight and obese adults: A randomized controlled trial. J. Nutr. 2016, 146, 2244–2251. [Google Scholar] [CrossRef]
- Chen, H.J.; Chung, C.P.; Chiang, W.; Lin, Y.L. Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chem. 2011, 126, 1741–1748. [Google Scholar] [CrossRef]
- Chung, C.P.; Hsu, H.Y.; Huang, D.W.; Hsu, H.H.; Lin, J.T.; Shih, C.K.; Chiang, W. Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway. J. Agric. Food Chem. 2010, 58, 7616–7623. [Google Scholar] [CrossRef]
- Chung, C.P.; Hsia, S.M.; Lee, M.Y.; Chen, H.J.; Cheng, F.; Chan, L.C.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Gastroprotective activities of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on the growth of the stomach cancer AGS cell line and indomethacin-induced gastric ulcers. J. Agric. Food Chem. 2011, 59, 6025–6033. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Satake, K.; Lee, J.D.; Shimizu, H.; Uzui, H.; Mitsuke, Y.; Yue, H.; Ueda, T. Effects of magnesium on prostacyclin synthesis and intracellular free calcium concentration in vascular cells. Magnes. Res. 2004, 17, 20–27. [Google Scholar]
- Landau, R.; Scott, J.A.; Smiley, R.M. Magnesium-induced vasodilation in the dorsal hand vein. BJOG Int. J. Obstet. Gynaecol. 2004, 111, 446–451. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarz, M.; Sohanaki, H.; Zahedi, A.S.; Dehpour, A.R. Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2005, 508, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Blache, D.; Devaux, S.; Joubert, O.; Loreau, N.; Schneider, M.; Durand, P.; Prost, M.; Gaume, V.; Adrian, M.; Laurant, P.; et al. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic. Biol. Med. 2006, 41, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.Y.; Day, R.; Schiffrin, E.L. Localization of sites of enhanced expression of endothelin-1 in the kidney of DOCA-salt hypertensive rats. J. Am. Soc. Nephrol. 1996, 7, 1158–1164. [Google Scholar] [CrossRef]
- Kuwabara, M.; Niwa, K.; Nishi, Y.; Mizuno, A.; Asano, T.; Masuda, K.; Komatsu, I.; Yamazoe, M.; Takahashi, O.; Hisatome, I. Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension. Hypertens. Res. 2014, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Kanbay, M.; Hisatome, I. Uric acid and hypertension because of arterial stiffness. Hypertension 2018, 72, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Otani, N.; Toyoda, S.; Sakuma, M.; Hayashi, K.; Ouchi, M.; Fujita, T.; Anzai, N.; Tanaka, A.; Node, K.; Uemura, N.; et al. Effects of uric acid on vascular endothelial function from bedside to bench. Hypertens. Res. 2018, 41, 923–931. [Google Scholar] [CrossRef]
- Romi, M.M.; Arfian, N.; Tranggono, U.; Setyaningsih, W.A.W.; Sari, D.C.R. Uric acid causes kidney injury through inducing fibroblast expansion, endothelin-1 expression, and inflammation. BMC Nephrol. 2017, 18, 326. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Zhu, D.; Sun-Waterhouse, D.; Su, G.; Lin, L.; Wang, X.; Dong, Y. In vitro and in vivo studies on adlay-derived seed extracts: Phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects. J. Agric. Food Chem. 2014, 62, 7771–7778. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.R. Clinical trial structures. J. Exp. Stroke Transl. Med. 2010, 3, 8. [Google Scholar]
WKY | SHR | SHR + LA | SHR + HA | |
---|---|---|---|---|
Casein | 140 | 140 | 118.2 | 96.3 |
Dextrin | 155 | 155 | 155 | 155 |
Corn starch | 465.7 | 465.7 | 389.4 | 313.1 |
Sucrose | 100 | 100 | 100 | 100 |
Soy oil | 40 | 40 | 38.4 | 36.9 |
Cellulose | 50 | 50 | 29.7 | 9.4 |
L-cystine | 1.8 | 1.8 | 1.8 | 1.8 |
AIN-93M mineral mix | 35 | 35 | 35 | 35 |
AIN-93M vitamin mix | 10 | 10 | 10 | 10 |
Choline bitartrate | 2.5 | 2.5 | 2.5 | 2.5 |
Dehulled adlay | 0 | 0 | 120 | 240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, W.-J.; Ko, J.; Cheng, W.-Y.; Yang, H.-Y. Dehulled Adlay Consumption Modulates Blood Pressure in Spontaneously Hypertensive Rats and Overweight and Obese Young Adults. Nutrients 2021, 13, 2305. https://doi.org/10.3390/nu13072305
Yeh W-J, Ko J, Cheng W-Y, Yang H-Y. Dehulled Adlay Consumption Modulates Blood Pressure in Spontaneously Hypertensive Rats and Overweight and Obese Young Adults. Nutrients. 2021; 13(7):2305. https://doi.org/10.3390/nu13072305
Chicago/Turabian StyleYeh, Wan-Ju, Jung Ko, Wei-Yi Cheng, and Hsin-Yi Yang. 2021. "Dehulled Adlay Consumption Modulates Blood Pressure in Spontaneously Hypertensive Rats and Overweight and Obese Young Adults" Nutrients 13, no. 7: 2305. https://doi.org/10.3390/nu13072305
APA StyleYeh, W. -J., Ko, J., Cheng, W. -Y., & Yang, H. -Y. (2021). Dehulled Adlay Consumption Modulates Blood Pressure in Spontaneously Hypertensive Rats and Overweight and Obese Young Adults. Nutrients, 13(7), 2305. https://doi.org/10.3390/nu13072305