The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism
Abstract
:1. Introduction
2. Methods
3. Physiology of Bone and Mineral Metabolism
4. Pathophysiology of Secondary Hyperparathyroidism
5. Effect of Diet on Bone and Mineral Metabolism Homeostasis and Secondary Hyperparathyroidism
5.1. Dietary Protein Intake
5.2. Dietary Acid and Alkali Intake
5.3. Calcium Intake
5.4. Phosphate Intake
5.5. Lipid Consumption
6. Diet and Secondary Hyperparathyroidism in Non-Dialysis-Dependent CKD
7. Diet and Secondary Hyperparathyroidism in Dialysis-Dependent CKD
8. Conclusions
Funding
Conflicts of Interest
Disclosures
References
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Bargagli, M.; Tio, M.C.; Waikar, S.S.; Ferraro, P.M. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020, 12, 2673. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Tsang, R. Normal bone and mineral physiology and metabolism. In Neonatal Nutrition and Metabolism; Thureen, P.J., Hay, W.W., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 185–228. ISBN 978-1-107-41179-1. [Google Scholar]
- Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The Cell Biology of Bone Metabolism. J. Clin. Pathol. 2008, 61, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Sarko, J. Bone and Mineral Metabolism. Emerg. Med. Clin. N. Am. 2005, 23, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M. Disorders of Calcium, Phosphorus, and Magnesium. Am. J. Kidney Dis. 2005, 45, 213–218. [Google Scholar] [CrossRef]
- Infante, M.; Fabi, A.; Cognetti, F.; Gorini, S.; Caprio, M.; Fabbri, A. RANKL/RANK/OPG System beyond Bone Remodeling: Involvement in Breast Cancer and Clinical Perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 12. [Google Scholar] [CrossRef] [Green Version]
- Boyce, B.F.; Xing, L. The RANKL/RANK/OPG Pathway. Curr. Osteoporos. Rep. 2007, 5, 98–104. [Google Scholar] [CrossRef]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, S131–S139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cashman, K.D. Calcium Intake, Calcium Bioavailability and Bone Health. Br. J. Nutr. 2002, 87, S169–S177. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bagordo, D.; De Martini, N.; Pasquali, M.; Rotondi, S.; Tartaglione, L.; Stenvinkel, P. Inflammation, Oxidative Stress, and Bone in Chronic Kidney Disease in the Osteoimmunology Era. Calcif. Tissue Int. 2021, 1–9. [Google Scholar] [CrossRef]
- Christakos, S. Recent Advances in Our Understanding of 1,25-Dihydroxyvitamin D(3) Regulation of Intestinal Calcium Absorption. Arch. Biochem. Biophys. 2012, 523, 73–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seldin, D.W. Renal Handling of Calcium. Nephron 1999, 81 (Suppl. 1), 2–7. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A.; Ramakrishnan, S.K.; Wootla, B.; Chambrey, R.; de la Faille, R.; Bourgeois, S.; Bruneval, P.; Mandet, C.; Christensen, E.I.; Faure, H.; et al. PTH-Independent Regulation of Blood Calcium Concentration by the Calcium-Sensing Receptor. J. Clin. Investig. 2012, 122, 3355–3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frische, S.; Alexander, R.T.; Ferreira, P.; Tan, R.S.G.; Wang, W.; Svenningsen, P.; Skjødt, K.; Dimke, H. Localization and Regulation of Claudin-14 in Experimental Models of Hypercalcemia. Am. J. Physiol. Ren. Physiol. 2021, 320, F74–F86. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. FGF23-Mediated Regulation of Systemic Phosphate Homeostasis: Is Klotho an Essential Player? Am. J. Physiol. Ren. Physiol. 2009, 296, F470–F476. [Google Scholar] [CrossRef] [Green Version]
- Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Compr. Physiol. 2016, 6, 561–601. [Google Scholar] [CrossRef]
- Tanaka, Y.; Deluca, H.F. The Control of 25-Hydroxyvitamin D Metabolism by Inorganic Phosphorus. Arch. Biochem. Biophys. 1973, 154, 566–574. [Google Scholar] [CrossRef]
- Llach, F.; Massry, S.G. On the Mechanism of Secondary Hyperparathyroidism in Moderate Renal Insufficiency. J. Clin. Endocrinol. Metab. 1985, 61, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Antoniucci, D.M.; Yamashita, T.; Portale, A.A. Dietary Phosphorus Regulates Serum Fibroblast Growth Factor-23 Concentrations in Healthy Men. J. Clin. Endocrinol. Metab. 2006, 91, 3144–3149. [Google Scholar] [CrossRef]
- Cunningham, J.; Locatelli, F.; Rodriguez, M. Secondary Hyperparathyroidism: Pathogenesis, Disease Progression, and Therapeutic Options. Clin. J. Am. Soc. Nephrol. 2011, 6, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.; Kinne, R.K. Evolution of the Na-P(i) Cotransport Systems. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R301–R312. [Google Scholar] [CrossRef]
- Nguyen-Yamamoto, L.; Karaplis, A.C.; St–Arnaud, R.; Goltzman, D. Fibroblast Growth Factor 23 Regulation by Systemic and Local Osteoblast-Synthesized 1,25-Dihydroxyvitamin D. J. Am. Soc. Nephrol. 2017, 28, 586–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Tang, W.; Zhou, J.; Stubbs, J.R.; Luo, Q.; Pi, M.; Quarles, L.D. Fibroblast Growth Factor 23 Is a Counter-Regulatory Phosphaturic Hormone for Vitamin D. J. Am. Soc. Nephrol. 2006, 17, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 Is a Potent Regulator of Vitamin D Metabolism and Phosphate Homeostasis. J. Bone Min. Res. 2004, 19, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro-o, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. The Parathyroid Is a Target Organ for FGF23 in Rats. J. Clin. Investig. 2007, 117, 4003–4008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, S.A.; Miller, P.D. Secondary and Tertiary Hyperparathyroidism. J. Clin. Densitom. 2013, 16, 64–68. [Google Scholar] [CrossRef]
- Chandran, M.; Wong, J. Secondary and Tertiary Hyperparathyroidism in Chronic Kidney Disease: An Endocrine and Renal Perspective. Indian J. Endocrinol. Metab. 2019, 23, 391–399. [Google Scholar] [CrossRef]
- Pourshahidi, L.K. Vitamin D and Obesity: Current Perspectives and Future Directions. Proc. Nutr. Soc. 2015, 74, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal Relationship between Obesity and Vitamin D Status: Bi-Directional Mendelian Randomization Analysis of Multiple Cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef] [PubMed]
- Yetley, E.A. Assessing the Vitamin D Status of the US Population. Am. J. Clin. Nutr. 2008, 88, 558S–564S. [Google Scholar] [CrossRef]
- Cheng, S.; Massaro, J.M.; Fox, C.S.; Larson, M.G.; Keyes, M.J.; McCabe, E.L.; Robins, S.J.; O’Donnell, C.J.; Hoffmann, U.; Jacques, P.F.; et al. Adiposity, Cardiometabolic Risk, and Vitamin D Status: The Framingham Heart Study. Diabetes 2010, 59, 242–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, J.L.C.; de Miranda, I.S.M.; Sarquis, M.M.S.; Borba, V.; Maeda, S.S.; Lazaretti-Castro, M.; Blinkey, N. Obesity, Bariatric Surgery, and Vitamin D. J. Clin. Densitom. 2018, 21, 157–162. [Google Scholar] [CrossRef]
- Chakhtoura, M.T.; Nakhoul, N.N.; Shawwa, K.; Mantzoros, C.; El Hajj Fuleihan, G.A. Hypovitaminosis D in Bariatric Surgery: A Systematic Review of Observational Studies. Metabolism 2016, 65, 574–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.-H.; Lee, W.-J.; Chong, K.; Lee, Y.-C.; Chen, S.-C.; Huang, P.-H.; Lin, S.-J. High Incidence of Secondary Hyperparathyroidism in Bariatric Patients: Comparing Different Procedures. Obes. Surg. 2018, 28, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Kozak, U. Pathologic Bone Alterations in Celiac Disease: Etiology, Epidemiology, and Treatment. Nutrition 2014, 30, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, P.L.; Davies, M.; Adams, J.E.; Mawer, E.B. Bone Loss in Celiac Disease Is Related to Secondary Hyperparathyroidism. J. Bone Min. Res. 1999, 14, 652–657. [Google Scholar] [CrossRef]
- Jahnsen, J.; Falch, J.A.; Mowinckel, P.; Aadland, E. Vitamin D Status, Parathyroid Hormone and Bone Mineral Density in Patients with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2002, 37, 192–199. [Google Scholar] [CrossRef]
- Nordin, B.E.C.; Morris, H.A.; Horowitz, M.; Coates, P.S.; O’Loughlin, P.D.; Need, A.G. Calcium Malabsorption Does Not Cause Secondary Hyperparathyroidism. Calcif. Tissue Int. 2009, 85, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Arasaradnam, R.P.; Bolton, R.P. Hypomagnesaemia Due to Malabsorption Is Not Always Responsive to Oral Magnesium Oxide Supplementation Alone. Gut 2002, 50, 897. [Google Scholar] [CrossRef] [Green Version]
- Fatemi, S.; Ryzen, E.; Flores, J.; Endres, D.B.; Rude, R.K. Effect of Experimental Human Magnesium Depletion on Parathyroid Hormone Secretion and 1,25-Dihydroxyvitamin D Metabolism. J. Clin. Endocrinol. Metab. 1991, 73, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, T.; Ohkido, I.; Nakashima, A.; Saito, Y.; Okabe, M.; Yokoo, T. Severe Chronic Kidney Disease Environment Reduced Calcium-Sensing Receptor Expression in Parathyroid Glands of Adenine-Induced Rats Even without High Phosphorus Diet. BMC Nephrol. 2020, 21, 219. [Google Scholar] [CrossRef]
- Dhayat, N.A.; Ackermann, D.; Pruijm, M.; Ponte, B.; Ehret, G.; Guessous, I.; Leichtle, A.B.; Paccaud, F.; Mohaupt, M.; Fiedler, G.-M.; et al. Fibroblast Growth Factor 23 and Markers of Mineral Metabolism in Individuals with Preserved Renal Function. Kidney Int. 2016, 90, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.M. Extracellular Ca2+ Sensing, Regulation of Parathyroid Cell Function, and Role of Ca2+ and Other Ions as Extracellular (First) Messengers. Physiol. Rev. 1991, 71, 371–411. [Google Scholar] [CrossRef] [PubMed]
- Slatopolsky, E.; Brown, A.; Dusso, A. Calcium, Phosphorus and Vitamin D Disorders in Uremia. Cardiovasc. Disord. Hemodial. 2005, 149, 261–271. [Google Scholar] [CrossRef]
- Komaba, H.; Fukagawa, M. FGF23-Parathyroid Interaction: Implications in Chronic Kidney Disease. Kidney Int. 2010, 77, 292–298. [Google Scholar] [CrossRef] [Green Version]
- González, E.A.; Sachdeva, A.; Oliver, D.A.; Martin, K.J. Vitamin D Insufficiency and Deficiency in Chronic Kidney Disease. A Single Center Observational Study. Am. J. Nephrol. 2004, 24, 503–510. [Google Scholar] [CrossRef]
- Silver, J.; Yalcindag, C.; Sela-Brown, A.; Kilav, R.; Naveh-Many, T. Regulation of the Parathyroid Hormone Gene by Vitamin D, Calcium and Phosphate. Kidney Int. Suppl. 1999, 73, S2–S7. [Google Scholar] [CrossRef] [Green Version]
- Gogusev, J.; Duchambon, P.; Hory, B.; Giovannini, M.; Goureau, Y.; Sarfati, E.; Drüeke, T.B. Depressed Expression of Calcium Receptor in Parathyroid Gland Tissue of Patients with Hyperparathyroidism. Kidney Int. 1997, 51, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Yano, S.; Sugimoto, T.; Tsukamoto, T.; Chihara, K.; Kobayashi, A.; Kitazawa, S.; Maeda, S.; Kitazawa, R. Association of Decreased Calcium-Sensing Receptor Expression with Proliferation of Parathyroid Cells in Secondary Hyperparathyroidism. Kidney Int. 2000, 58, 1980–1986. [Google Scholar] [CrossRef]
- Centeno, P.P.; Herberger, A.; Mun, H.-C.; Tu, C.; Nemeth, E.F.; Chang, W.; Conigrave, A.D.; Ward, D.T. Phosphate Acts Directly on the Calcium-Sensing Receptor to Stimulate Parathyroid Hormone Secretion. Nat. Commun. 2019, 10, 4693. [Google Scholar] [CrossRef]
- Garfia, B.; Cañadillas, S.; Canalejo, A.; Luque, F.; Siendones, E.; Quesada, M.; Almadén, Y.; Aguilera-Tejero, E.; Rodríguez, M. Regulation of Parathyroid Vitamin D Receptor Expression by Extracellular Calcium. J. Am. Soc. Nephrol. 2002, 13, 2945–2952. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, O.; Isakova, T.; Rhee, E.; Shah, A.; Holmes, J.; Collerone, G.; Jüppner, H.; Wolf, M. Fibroblast Growth Factor-23 Mitigates Hyperphosphatemia but Accentuates Calcitriol Deficiency in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2005, 16, 2205–2215. [Google Scholar] [CrossRef] [PubMed]
- Wahl, P.; Wolf, M. FGF23 in Chronic Kidney Disease. Adv. Exp. Med. Biol. 2012, 728, 107–125. [Google Scholar] [CrossRef]
- Rotondi, S.; Pasquali, M.; Tartaglione, L.; Muci, M.L.; Mandanici, G.; Leonangeli, C.; Sales, S.; Farcomeni, A.; Mazzaferro, S. Soluble α -Klotho Serum Levels in Chronic Kidney Disease. Int. J. Endocrinol. 2015, 2015, 872193. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, O.M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J.A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Jüppner, H.; et al. Fibroblast Growth Factor 23 and Mortality among Patients Undergoing Hemodialysis. N. Engl. J. Med. 2008, 359, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Isakova, T.; Gutiérrez, O.M.; Chang, Y.; Shah, A.; Tamez, H.; Smith, K.; Thadhani, R.; Wolf, M. Phosphorus Binders and Survival on Hemodialysis. J. Am. Soc. Nephrol. 2009, 20, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Ix, J.H.; Shlipak, M.G.; Wassel, C.L.; Whooley, M.A. Fibroblast Growth Factor-23 and Early Decrements in Kidney Function: The Heart and Soul Study. Nephrol. Dial. Transpl. 2010, 25, 993–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, I.; Haffner, D.; Leifheit-Nestler, M. FGF23 and Phosphate-Cardiovascular Toxins in CKD. Toxins 2019, 11, 647. [Google Scholar] [CrossRef] [Green Version]
- Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; et al. Fibroblast Growth Factor 23 Is Elevated before Parathyroid Hormone and Phosphate in Chronic Kidney Disease. Kidney Int. 2011, 79, 1370–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimbo, R.; Shimosawa, T. Cardiovascular Risk Factors and Chronic Kidney Disease-FGF23: A Key Molecule in the Cardiovascular Disease. Int. J. Hypertens. 2014, 2014, 381082. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.; Hayen, A.; Macaskill, P.; Pellegrini, F.; Craig, J.C.; Elder, G.J.; Strippoli, G.F.M. Serum Levels of Phosphorus, Parathyroid Hormone, and Calcium and Risks of Death and Cardiovascular Disease in Individuals with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. JAMA 2011, 305, 1119–1127. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Katz, R.; de Boer, I.; Hoofnagle, A.; Sarnak, M.J.; Shlipak, M.G.; Jenny, N.S.; Siscovick, D.S. Vitamin D, Parathyroid Hormone, and Cardiovascular Events among Older Adults. J. Am. Coll Cardiol. 2011, 58, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Komaba, H.; Fukagawa, M. Emerging Association Between Parathyroid Hormone and Anemia in Hemodialysis Patients. Apher Dial. 2018, 22, 242–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messa, P.; Alfieri, C.M. Secondary and Tertiary Hyperparathyroidism. Front. Horm Res. 2019, 51, 91–108. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Cianciolo, G.; De Pascalis, A.; Guglielmo, C.; Urena Torres, P.A.; Bover, J.; Tartaglione, L.; Pasquali, M.; La Manna, G. Bone, Inflammation and the Bone Marrow Niche in Chronic Kidney Disease: What Do We Know? Nephrol. Dial. Transpl. 2018, 33, 2092–2100. [Google Scholar] [CrossRef]
- Aleksinskaya, M.A.; Monge, M.; Siebelt, M.; Slot, E.M.; Koekkoek, K.M.; de Bruin, R.G.; Massy, Z.A.; Weinans, H.; Rabelink, T.J.; Fibbe, W.E.; et al. Chronic Kidney Failure Mineral Bone Disorder Leads to a Permanent Loss of Hematopoietic Stem Cells through Dysfunction of the Stem Cell Niche. Sci. Rep. 2018, 8, 15385. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Diet, Nutrition, and Bone Health. J. Nutr. 2007, 137, 2507S–2512S. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, M.P.; Jacobson, E.H.; Layman, D.K.; He, X.; Kris-Etherton, P.M.; Evans, E.M. A Diet High in Protein, Dairy, and Calcium Attenuates Bone Loss over Twelve Months of Weight Loss and Maintenance Relative to a Conventional High-Carbohydrate Diet in Adults. J. Nutr. 2008, 138, 1096–1100. [Google Scholar] [CrossRef] [Green Version]
- Sukumar, D.; Ambia-Sobhan, H.; Zurfluh, R.; Schlussel, Y.; Stahl, T.J.; Gordon, C.L.; Shapses, S.A. Areal and Volumetric Bone Mineral Density and Geometry at Two Levels of Protein Intake during Caloric Restriction: A Randomized, Controlled Trial. J. Bone Min. Res. 2011, 26, 1339–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tengstrand, B.; Cederholm, T.; Söderqvist, A.; Tidermark, J. Effects of Protein-Rich Supplementation and Nandrolone on Bone Tissue after a Hip Fracture. Clin. Nutr. 2007, 26, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Schürch, M.A.; Rizzoli, R.; Slosman, D.; Vadas, L.; Vergnaud, P.; Bonjour, J.P. Protein Supplements Increase Serum Insulin-like Growth Factor-I Levels and Attenuate Proximal Femur Bone Loss in Patients with Recent Hip Fracture. A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Intern. Med. 1998, 128, 801–809. [Google Scholar] [CrossRef]
- Tirosh, A.; de Souza, R.J.; Sacks, F.; Bray, G.A.; Smith, S.R.; LeBoff, M.S. Sex Differences in the Effects of Weight Loss Diets on Bone Mineral Density and Body Composition: POUNDS LOST Trial. J. Clin. Endocrinol. Metab. 2015, 100, 2463–2471. [Google Scholar] [CrossRef] [Green Version]
- Jesudason, D.; Nordin, B.C.; Keogh, J.; Clifton, P. Comparison of 2 Weight-Loss Diets of Different Protein Content on Bone Health: A Randomized Trial. Am. J. Clin. Nutr. 2013, 98, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Kerstetter, J.E.; Bihuniak, J.D.; Brindisi, J.; Sullivan, R.R.; Mangano, K.M.; Larocque, S.; Kotler, B.M.; Simpson, C.A.; Cusano, A.M.; Gaffney-Stomberg, E.; et al. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults. J. Clin. Endocrinol. Metab. 2015, 100, 2214–2222. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Meng, X.; Kerr, D.A.; Devine, A.; Solah, V.; Binns, C.W.; Prince, R.L. The Effects of a Two-Year Randomized, Controlled Trial of Whey Protein Supplementation on Bone Structure, IGF-1, and Urinary Calcium Excretion in Older Postmenopausal Women. J. Bone Min. Res. 2011, 26, 2298–2306. [Google Scholar] [CrossRef]
- Flodin, L.; Sääf, M.; Cederholm, T.; Al-Ani, A.N.; Ackermann, P.W.; Samnegård, E.; Dalen, N.; Hedström, M. Additive Effects of Nutritional Supplementation, Together with Bisphosphonates, on Bone Mineral Density after Hip Fracture: A 12-Month Randomized Controlled Study. Clin. Interv. Aging 2014, 9, 1043–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Treyzon, L.; Chen, S.; Yan, E.; Thames, G.; Carpenter, C.L. Protein-Enriched Meal Replacements Do Not Adversely Affect Liver, Kidney or Bone Density: An Outpatient Randomized Controlled Trial. Nutr. J. 2010, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukuljan, S.; Nowson, C.A.; Bass, S.L.; Sanders, K.; Nicholson, G.C.; Seibel, M.J.; Salmon, J.; Daly, R.M. Effects of a Multi-Component Exercise Program and Calcium-Vitamin-D3-Fortified Milk on Bone Mineral Density in Older Men: A Randomised Controlled Trial. Osteoporos. Int. 2009, 20, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.T.; Tucker, K.L.; Dawson-Hughes, B.; Cupples, L.A.; Felson, D.T.; Kiel, D.P. Effect of Dietary Protein on Bone Loss in Elderly Men and Women: The Framingham Osteoporosis Study. J. Bone Min. Res. 2000, 15, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Recker, R.R.; Davies, K.M.; Hinders, S.M.; Heaney, R.P.; Stegman, M.R.; Kimmel, D.B. Bone Gain in Young Adult Women. JAMA 1992, 268, 2403–2408. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S. Calcium Intake Influences the Association of Protein Intake with Rates of Bone Loss in Elderly Men and Women. Am. J. Clin. Nutr. 2002, 75, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.C.; Chan, S.G.; Yip, Y.B.; Chan, C.S.Y.; Woo, J.L.F.; Sham, A. Change in Bone Mineral Density and Its Determinants in Pre- and Perimenopausal Chinese Women: The Hong Kong Perimenopausal Women Osteoporosis Study. Osteoporos. Int. 2008, 19, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Broe, K.E.; Tucker, K.L.; McLean, R.R.; Kiel, D.P.; Cupples, L.A.; Hannan, M.T. Association of Total Protein Intake with Bone Mineral Density and Bone Loss in Men and Women from the Framingham Offspring Study. Public Health Nutr. 2014, 17, 2570–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourrin, S.; Ammann, P.; Bonjour, J.P.; Rizzoli, R. Dietary Protein Restriction Lowers Plasma Insulin-like Growth Factor I (IGF-I), Impairs Cortical Bone Formation, and Induces Osteoblastic Resistance to IGF-I in Adult Female Rats. Endocrinology 2000, 141, 3149–3155. [Google Scholar] [CrossRef] [PubMed]
- Bourrin, S.; Toromanoff, A.; Ammann, P.; Bonjour, J.P.; Rizzoli, R. Dietary Protein Deficiency Induces Osteoporosis in Aged Male Rats. J. Bone Min. Res. 2000, 15, 1555–1563. [Google Scholar] [CrossRef]
- Rouy, E.; Vico, L.; Laroche, N.; Benoit, V.; Rousseau, B.; Blachier, F.; Tomé, D.; Blais, A. Protein Quality Affects Bone Status during Moderate Protein Restriction in Growing Mice. Bone 2014, 59, 7–13. [Google Scholar] [CrossRef]
- Uenishi, K.; Ishida, H.; Toba, Y.; Aoe, S.; Itabashi, A.; Takada, Y. Milk Basic Protein Increases Bone Mineral Density and Improves Bone Metabolism in Healthy Young Women. Osteoporos. Int. 2007, 18, 385–390. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Naidu, A.G.T.; Betageri, G.V.; Prasadarao, N.V.; Naidu, A.S. Milk Ribonuclease-Enriched Lactoferrin Induces Positive Effects on Bone Turnover Markers in Postmenopausal Women. Osteoporos. Int. 2009, 20, 1603–1611. [Google Scholar] [CrossRef]
- Aoe, S.; Toba, Y.; Yamamura, J.; Kawakami, H.; Yahiro, M.; Kumegawa, M.; Itabashi, A.; Takada, Y. Controlled Trial of the Effects of Milk Basic Protein (MBP) Supplementation on Bone Metabolism in Healthy Adult Women. Biosci. Biotechnol. Biochem. 2001, 65, 913–918. [Google Scholar] [CrossRef]
- Aoe, S.; Koyama, T.; Toba, Y.; Itabashi, A.; Takada, Y. A Controlled Trial of the Effect of Milk Basic Protein (MBP) Supplementation on Bone Metabolism in Healthy Menopausal Women. Osteoporos. Int. 2005, 16, 2123–2128. [Google Scholar] [CrossRef]
- Cao, J.J.; Johnson, L.K.; Hunt, J.R. A Diet High in Meat Protein and Potential Renal Acid Load Increases Fractional Calcium Absorption and Urinary Calcium Excretion without Affecting Markers of Bone Resorption or Formation in Postmenopausal Women. J. Nutr. 2011, 141, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Sherman, H.; Rose, M. Calcium requirement of maintenance in man. J. Biol. Chem. 1920, 44, 21–27. [Google Scholar] [CrossRef]
- Lemann, J.; Bushinsky, D.A.; Hamm, L.L. Bone Buffering of Acid and Base in Humans. Am. J. Physiol. Ren. Physiol. 2003, 285, F811–F832. [Google Scholar] [CrossRef] [Green Version]
- Kerstetter, J.E.; O’Brien, K.O.; Insogna, K.L. Dietary Protein, Calcium Metabolism, and Skeletal Homeostasis Revisited. Am. J. Clin. Nutr. 2003, 78, 584S–592S. [Google Scholar] [CrossRef] [Green Version]
- Krieger, N.S.; Frick, K.K.; Bushinsky, D.A. Mechanism of Acid-Induced Bone Resorption. Curr. Opin. Nephrol. Hypertens. 2004, 13, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Mangano, K.M.; Walsh, S.J.; Kenny, A.M.; Insogna, K.L.; Kerstetter, J.E. Dietary Acid Load Is Associated with Lower Bone Mineral Density in Men with Low Intake of Dietary Calcium. J. Bone Min. Res. 2014, 29, 500–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinchieri, A.; Zanetti, G.; Currò, A.; Lizzano, R. Effect of Potential Renal Acid Load of Foods on Calcium Metabolism of Renal Calcium Stone Formers. Eur. Urol. 2001, 39 (Suppl. 2), 33–36. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian–Vegan Diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraro, P.M.; Bargagli, M. Dietetic and Lifestyle Recommendations for Stone Formers. Arch. Esp. Urol. 2021, 74, 112–122. [Google Scholar]
- Maalouf, N.M.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Hypercalciuria Associated with High Dietary Protein Intake Is Not Due to Acid Load. J. Clin. Endocrinol. Metab. 2011, 96, 3733–3740. [Google Scholar] [CrossRef] [PubMed]
- Calvez, J.; Poupin, N.; Chesneau, C.; Lassale, C.; Tomé, D. Protein Intake, Calcium Balance and Health Consequences. Eur. J. Clin. Nutr. 2012, 66, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.R.; Johnson, L.K.; Fariba Roughead, Z.K. Dietary Protein and Calcium Interact to Influence Calcium Retention: A Controlled Feeding Study. Am. J. Clin. Nutr. 2009, 89, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remer, T.; Manz, F. Potential Renal Acid Load of Foods and Its Influence on Urine PH. J. Am. Diet. Assoc. 1995, 95, 791–797. [Google Scholar] [CrossRef]
- Hanley, D.A.; Whiting, S.J. Does a High Dietary Acid Content Cause Bone Loss, and Can Bone Loss Be Prevented with an Alkaline Diet? J. Clin. Densitom. 2013, 16, 420–425. [Google Scholar] [CrossRef]
- Frassetto, L.A.; Hardcastle, A.C.; Sebastian, A.; Aucott, L.; Fraser, W.D.; Reid, D.M.; Macdonald, H.M. No Evidence That the Skeletal Non-Response to Potassium Alkali Supplements in Healthy Postmenopausal Women Depends on Blood Pressure or Sodium Chloride Intake. Eur. J. Clin. Nutr. 2012, 66, 1315–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, H.M.; Black, A.J.; Aucott, L.; Duthie, G.; Duthie, S.; Sandison, R.; Hardcastle, A.C.; Lanham New, S.A.; Fraser, W.D.; Reid, D.M. Effect of Potassium Citrate Supplementation or Increased Fruit and Vegetable Intake on Bone Metabolism in Healthy Postmenopausal Women: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2008, 88, 465–474. [Google Scholar] [CrossRef]
- Jehle, S.; Hulter, H.N.; Krapf, R. Effect of Potassium Citrate on Bone Density, Microarchitecture, and Fracture Risk in Healthy Older Adults without Osteoporosis: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2013, 98, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Moon, H.-J.; Paik, D.-J.; Kim, D.-Y. Effect of Dietary Legumes on Bone-Specific Gene Expression in Ovariectomized Rats. Nutr. Res. Pr. 2013, 7, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Kajarabille, N.; Díaz-Castro, J.; Hijano, S.; López-Frías, M.; López-Aliaga, I.; Ochoa, J.J. A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids. Sci. World J. 2013, 2013, 589641. [Google Scholar] [CrossRef] [Green Version]
- Anandacoomarasamy, A.; Fransen, M.; March, L. Obesity and the Musculoskeletal System. Curr. Opin. Rheumatol. 2009, 21, 71–77. [Google Scholar] [CrossRef]
- Elefteriou, F.; Takeda, S.; Ebihara, K.; Magre, J.; Patano, N.; Kim, C.A.; Ogawa, Y.; Liu, X.; Ware, S.M.; Craigen, W.J.; et al. Serum Leptin Level Is a Regulator of Bone Mass. Proc. Natl. Acad. Sci. USA 2004, 101, 3258–3263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stendig-Lindberg, G.; Tepper, R.; Leichter, I. Trabecular Bone Density in a Two Year Controlled Trial of Peroral Magnesium in Osteoporosis. Magnes. Res. 1993, 6, 155–163. [Google Scholar]
- Abraham, G.E.; Grewal, H. A Total Dietary Program Emphasizing Magnesium Instead of Calcium. Effect on the Mineral Density of Calcaneous Bone in Postmenopausal Women on Hormonal Therapy. J. Reprod. Med. 1990, 35, 503–507. [Google Scholar]
- Dimai, H.P.; Porta, S.; Wirnsberger, G.; Lindschinger, M.; Pamperl, I.; Dobnig, H.; Wilders-Truschnig, M.; Lau, K.H. Daily Oral Magnesium Supplementation Suppresses Bone Turnover in Young Adult Males. J. Clin. Endocrinol. Metab. 1998, 83, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Prince, R.L. Calcium and Bone. Clin. Biochem. 2012, 45, 936–942. [Google Scholar] [CrossRef]
- Gemeinschaften, E.; Kommission, E. (Eds.) Report on Osteoporosis in the European Community: Action for Prevention; Employment & Social Affairs Health; Publications Office of the European Union Communities: Luxembourg, 1998; ISBN 978-92-828-5333-7. [Google Scholar]
- Matkovic, V.; Goel, P.K.; Badenhop-Stevens, N.E.; Landoll, J.D.; Li, B.; Ilich, J.Z.; Skugor, M.; Nagode, L.A.; Mobley, S.L.; Ha, E.-J.; et al. Calcium Supplementation and Bone Mineral Density in Females from Childhood to Young Adulthood: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2005, 81, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Vatanparast, H.; Baxter-Jones, A.; Faulkner, R.A.; Bailey, D.A.; Whiting, S.J. Positive Effects of Vegetable and Fruit Consumption and Calcium Intake on Bone Mineral Accrual in Boys during Growth from Childhood to Adolescence: The University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am. J. Clin. Nutr. 2005, 82, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Greenfield, H.; Zhang, Q.; Du, X.; Ma, G.; Foo, L.H.; Cowell, C.T.; Fraser, D.R. Growth and Bone Mineral Accretion during Puberty in Chinese Girls: A Five-Year Longitudinal Study. J. Bone Min. Res. 2008, 23, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Ishida, H.; Uenishi, K.; Murakami, K.; Sasaki, S. The Relationship between Habitual Dietary Phosphorus and Calcium Intake, and Bone Mineral Density in Young Japanese Women: A Cross-Sectional Study. Asia Pac. J. Clin. Nutr. 2011, 20, 411–417. [Google Scholar]
- Tang, B.M.P.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of Calcium or Calcium in Combination with Vitamin D Supplementation to Prevent Fractures and Bone Loss in People Aged 50 Years and Older: A Meta-Analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef]
- Spiegel, D.M.; Brady, K. Calcium Balance in Normal Individuals and in Patients with Chronic Kidney Disease on Low- and High-Calcium Diets. Kidney Int. 2012, 81, 1116–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, A.V.; Picotto, G.; Carpentieri, A.R.; Rivoira, M.A.; Peralta López, M.E.; Tolosa de Talamoni, N.G. Minireview on Regulation of Intestinal Calcium Absorption. Emphasis on Molecular Mechanisms of Transcellular Pathway. Digestion 2008, 77, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Gannagé-Yared, M.-H.; Chemali, R.; Sfeir, C.; Maalouf, G.; Halaby, G. Dietary Calcium and Vitamin D Intake in an Adult Middle Eastern Population: Food Sources and Relation to Lifestyle and PTH. Int. J. Vitam. Nutr. Res. 2005, 75, 281–289. [Google Scholar] [CrossRef]
- Kinyamu, H.K.; Gallagher, J.C.; Rafferty, K.A.; Balhorn, K.E. Dietary Calcium and Vitamin D Intake in Elderly Women: Effect on Serum Parathyroid Hormone and Vitamin D Metabolites. Am. J. Clin. Nutr. 1998, 67, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.-L.; Wu, B.-H.; Xue, W.-Q.; He, M.-G.; Fan, F.; Ouyang, W.-F.; Tu, S.-L.; Zhu, H.-L.; Chen, Y.-M. Greater Intake of Fruit and Vegetables Is Associated with a Lower Risk of Osteoporotic Hip Fractures in Elderly Chinese: A 1:1 Matched Case-Control Study. Osteoporos. Int. 2013, 24, 2827–2836. [Google Scholar] [CrossRef]
- Prynne, C.J.; Mishra, G.D.; O’Connell, M.A.; Muniz, G.; Laskey, M.A.; Yan, L.; Prentice, A.; Ginty, F. Fruit and Vegetable Intakes and Bone Mineral Status: A Cross Sectional Study in 5 Age and Sex Cohorts. Am. J. Clin. Nutr. 2006, 83, 1420–1428. [Google Scholar] [CrossRef]
- Lamberg-Allardt, C.; Kärkkäinen, M.; Seppänen, R.; Biström, H. Low Serum 25-Hydroxyvitamin D Concentrations and Secondary Hyperparathyroidism in Middle-Aged White Strict Vegetarians. Am. J. Clin. Nutr. 1993, 58, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.S.; Kumar, R.; Heath, H. Persistently Elevated Parathyroid Hormone Secretion and Action in Young Women after Four Weeks of Ingesting High Phosphorus, Low Calcium Diets. J. Clin. Endocrinol. Metab. 1990, 70, 1334–1340. [Google Scholar] [CrossRef]
- Calvo, M.S.; Heath, H. Acute Effects of Oral Phosphate-Salt Ingestion on Serum Phosphorus, Serum Ionized Calcium, and Parathyroid Hormone in Young Adults. Am. J. Clin. Nutr. 1988, 47, 1025–1029. [Google Scholar] [CrossRef] [Green Version]
- Brixen, K.; Nielsen, H.K.; Charles, P.; Mosekilde, L. Effects of a Short Course of Oral Phosphate Treatment on Serum Parathyroid Hormone(1-84) and Biochemical Markers of Bone Turnover: A Dose-Response Study. Calcif. Tissue Int. 1992, 51, 276–281. [Google Scholar] [CrossRef]
- Kärkkäinen, M.; Lamberg-Allardt, C. An Acute Intake of Phosphate Increases Parathyroid Hormone Secretion and Inhibits Bone Formation in Young Women. J. Bone Min. Res. 1996, 11, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Whybro, A.; Jagger, H.; Barker, M.; Eastell, R. Phosphate Supplementation in Young Men: Lack of Effect on Calcium Homeostasis and Bone Turnover. Eur. J. Clin. Nutr. 1998, 52, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, M.; Müller, A.; Hein, G.; Fünfstück, R.; Jahreis, G. High Phosphorus Intake Only Slightly Affects Serum Minerals, Urinary Pyridinium Crosslinks and Renal Function in Young Women. Eur. J. Clin. Nutr. 2001, 55, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Kemi, V.E.; Kärkkäinen, M.U.M.; Lamberg-Allardt, C.J.E. High Phosphorus Intakes Acutely and Negatively Affect Ca and Bone Metabolism in a Dose-Dependent Manner in Healthy Young Females. Br. J. Nutr. 2006, 96, 545–552. [Google Scholar]
- Hayakawa, Y.; Tanaka, Y.; Funahashi, H.; Imai, T.; Matsuura, N.; Oiwa, M.; Kikumori, T.; Mase, T.; Tominaga, Y.; Nakao, A. Hyperphosphatemia Accelerates Parathyroid Cell Proliferation and Parathyroid Hormone Secretion in Severe Secondary Parathyroid Hyperplasia. Endocr. J. 1999, 46, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanni, R.; vonRotz, M.; Jehle, S.; Hulter, H.N.; Krapf, R. The Human Response to Acute Enteral and Parenteral Phosphate Loads. J. Am. Soc. Nephrol. 2014, 25, 2730–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barger-Lux, M.J.; Heaney, R.P.; Lanspa, S.J.; Healy, J.C.; DeLuca, H.F. An Investigation of Sources of Variation in Calcium Absorption Efficiency. J. Clin. Endocrinol. Metab. 1995, 80, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, S.; Matsuzaki, H.; Uehara, M.; Suzuki, K. Effects of Dietary Calcium Supplementation on Bone Metabolism, Kidney Mineral Concentrations, and Kidney Function in Rats Fed a High-Phosphorus Diet. J. Nutr. Sci. Vitam. 2015, 61, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.W.; Cho, S.S. Association between Phosphorus Intake and Bone Health in the NHANES Population. Nutr. J. 2015, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-J.; Kim, K.-S.; Kim, H.-N.; Seo, J.-A.; Song, S.-W. Association between Dietary Calcium and Phosphorus Intakes, Dietary Calcium/Phosphorus Ratio and Bone Mass in the Korean Population. Nutr. J. 2014, 13, 114. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.M.; Park, C.Y.; Han, S.N. High Fat Diet-Induced Obesity Alters Vitamin D Metabolizing Enzyme Expression in Mice. Biofactors 2015, 41, 175–182. [Google Scholar] [CrossRef]
- Martínez-Ramírez, M.J.; Palma, S.; Martínez-González, M.A.; Delgado-Martínez, A.D.; de la Fuente, C.; Delgado-Rodríguez, M. Dietary Fat Intake and the Risk of Osteoporotic Fractures in the Elderly. Eur. J. Clin. Nutr. 2007, 61, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Georgiou, E.; Bassiakos, Y.; Lipworth, L.; Lagiou, P.; Proukakis, C.; Trichopoulos, D. Energy Intake and Monounsaturated Fat in Relation to Bone Mineral Density among Women and Men in Greece. Prev. Med. 1997, 26, 395–400. [Google Scholar] [CrossRef]
- Hagiwara, K.; Goto, T.; Araki, M.; Miyazaki, H.; Hagiwara, H. Olive Polyphenol Hydroxytyrosol Prevents Bone Loss. Eur. J. Pharm. 2011, 662, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Puel, C.; Mathey, J.; Agalias, A.; Kati-Coulibaly, S.; Mardon, J.; Obled, C.; Davicco, M.-J.; Lebecque, P.; Horcajada, M.-N.; Skaltsounis, A.L.; et al. Dose-Response Study of Effect of Oleuropein, an Olive Oil Polyphenol, in an Ovariectomy/Inflammation Experimental Model of Bone Loss in the Rat. Clin. Nutr. 2006, 25, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Emond, J.A.; Flatt, S.W.; Heath, D.D.; Karanja, N.; Pakiz, B.; Sherwood, N.E.; Thomson, C.A. Weight Loss Is Associated with Increased Serum 25-Hydroxyvitamin D in Overweight or Obese Women. Obes. Silver Spring 2012, 20, 2296–2301. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.; Xiao, L.; Imayama, I.; Duggan, C.R.; Bain, C.; Foster-Schubert, K.E.; Kong, A.; Campbell, K.L.; Wang, C.-Y.; Neuhouser, M.L.; et al. Effects of Weight Loss on Serum Vitamin D in Postmenopausal Women. Am. J. Clin. Nutr. 2011, 94, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Tzotzas, T.; Papadopoulou, F.G.; Tziomalos, K.; Karras, S.; Gastaris, K.; Perros, P.; Krassas, G.E. Rising Serum 25-Hydroxy-Vitamin D Levels after Weight Loss in Obese Women Correlate with Improvement in Insulin Resistance. J. Clin. Endocrinol. Metab. 2010, 95, 4251–4257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slatopolsky, E.; Caglar, S.; Pennell, J.P.; Taggart, D.D.; Canterbury, J.M.; Reiss, E.; Bricker, N.S. On the Pathogenesis of Hyperparathyroidism in Chronic Experimental Renal Insufficiency in the Dog. J. Clin. Investig. 1971, 50, 492–499. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Su, G.; Guo, X.; Wu, Y.; Liu, X.; Zou, C.; Zhang, L.; Yang, Q.; Xu, Y.; Ma, W. Dietary Interventions for Mineral and Bone Disorder in People with Chronic Kidney Disease. Cochrane Database Syst. Rev. 2015, 2015. [Google Scholar] [CrossRef]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Sherman, R.A.; Mehta, O. Phosphorus and Potassium Content of Enhanced Meat and Poultry Products: Implications for Patients Who Receive Dialysis. Clin. J. Am. Soc. Nephrol. 2009, 4, 1370–1373. [Google Scholar] [CrossRef] [PubMed]
- Kloppenburg, W.D.; Stegeman, C.A.; Hovinga, T.K.K.; Vastenburg, G.; Vos, P.; de Jong, P.E.; Huisman, R.M. Effect of Prescribing a High Protein Diet and Increasing the Dose of Dialysis on Nutrition in Stable Chronic Haemodialysis Patients: A Randomized, Controlled Trial. Nephrol. Dial. Transpl. 2004, 19, 1212–1223. [Google Scholar] [CrossRef] [Green Version]
- Cianciaruso, B.; Pota, A.; Bellizzi, V.; Giuseppe, D.D.; Di Micco, L.; Minutolo, R.; Pisani, A.; Sabbatini, M.; Ravani, P. Effect of a Low—Versus Moderate-Protein Diet on Progression of CKD: Follow-up of a Randomized Controlled Trial. Am. J. Kidney Dis. 2009, 54, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive Summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s Changed and Why It Matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, G.A.; Wheeler, D.C.; Persky, M.S.; Kestenbaum, B.; Ketteler, M.; Spiegel, D.M.; Allison, M.A.; Asplin, J.; Smits, G.; Hoofnagle, A.N.; et al. Effects of Phosphate Binders in Moderate CKD. J. Am. Soc. Nephrol. 2012, 23, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, B.; Molony, D.; Bell, C.; Cucciniello, E.; Bellizzi, V.; Russo, D.; Bellasi, A. INDEPENDENT Study Investigators Sevelamer versus Calcium Carbonate in Incident Hemodialysis Patients: Results of an Open-Label 24-Month Randomized Clinical Trial. Am. J. Kidney Dis. 2013, 62, 771–778. [Google Scholar] [CrossRef]
- Iorio, B.D.; Bellasi, A.; Russo, D. Mortality in Kidney Disease Patients Treated with Phosphate Binders: A Randomized Study. Clin. J. Am. Soc. Nephrol. 2012, 7, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Isakova, T.; Gutiérrez, O.M.; Smith, K.; Epstein, M.; Keating, L.K.; Jüppner, H.; Wolf, M. Pilot Study of Dietary Phosphorus Restriction and Phosphorus Binders to Target Fibroblast Growth Factor 23 in Patients with Chronic Kidney Disease. Nephrol. Dial. Transpl. 2011, 26, 584–591. [Google Scholar] [CrossRef]
- Seifert, M.E.; de las Fuentes, L.; Rothstein, M.; Dietzen, D.J.; Bierhals, A.J.; Cheng, S.C.; Ross, W.; Windus, D.; Dávila-Román, V.G.; Hruska, K.A. Effects of Phosphate Binder Therapy on Vascular Stiffness in Early-Stage Chronic Kidney Disease. Am. J. Nephrol. 2013, 38, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.B.; Cancela, A.L.E.; Graciolli, F.G.; Dos Reis, L.M.; Draibe, S.A.; Cuppari, L.; Carvalho, A.B.; Jorgetti, V.; Canziani, M.E.; Moysés, R.M.A. Early Control of PTH and FGF23 in Normophosphatemic CKD Patients: A New Target in CKD-MBD Therapy? Clin. J. Am. Soc. Nephrol. 2010, 5, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Ritter, C.S.; Martin, D.R.; Lu, Y.; Slatopolsky, E.; Brown, A.J. Reversal of Secondary Hyperparathyroidism by Phosphate Restriction Restores Parathyroid Calcium-Sensing Receptor Expression and Function. J. Bone Miner. Res. 2002, 17, 2206–2213. [Google Scholar] [CrossRef]
- Sigrist, M.; Tang, M.; Beaulieu, M.; Espino-Hernandez, G.; Er, L.; Djurdjev, O.; Levin, A. Responsiveness of FGF-23 and Mineral Metabolism to Altered Dietary Phosphate Intake in Chronic Kidney Disease (CKD): Results of a Randomized Trial. Nephrol. Dial. Transpl. 2013, 28, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murtaugh, M.A.; Filipowicz, R.; Baird, B.C.; Wei, G.; Greene, T.; Beddhu, S. Dietary Phosphorus Intake and Mortality in Moderate Chronic Kidney Disease: NHANES III. Nephrol. Dial. Transpl. 2012, 27, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Selamet, U.; Tighiouart, H.; Sarnak, M.J.; Beck, G.; Levey, A.S.; Block, G.; Ix, J.H. Relationship of Dietary Phosphate Intake with Risk of End-Stage Renal Disease and Mortality in Chronic Kidney Disease Stages 3–5: The Modification of Diet in Renal Disease Study. Kidney Int. 2016, 89, 176–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a Very Low-Protein Diet on Outcomes: Long-Term Follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Mazzaferro, S.; de Martini, N.; Cannata-Andía, J.; Cozzolino, M.; Messa, P.; Rotondi, S.; Tartaglione, L.; Pasquali, M.; On Behalf of The Era-Edta Ckd-Mbd Working Group. Null Focus on the Possible Role of Dietary Sodium, Potassium, Phosphate, Magnesium, and Calcium on CKD Progression. J. Clin. Med. 2021, 10, 958. [Google Scholar] [CrossRef]
- Vervloet, M.G.; van Ittersum, F.J.; Büttler, R.M.; Heijboer, A.C.; Blankenstein, M.A.; ter Wee, P.M. Effects of Dietary Phosphate and Calcium Intake on Fibroblast Growth Factor-23. Clin. J. Am. Soc. Nephrol. 2011, 6, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Savica, V.; Calò, L.A.; Caldarera, R.; Cavaleri, A.; Granata, A.; Santoro, D.; Savica, R.; Muraca, U.; Mallamace, A.; Bellinghieri, G. Phosphate Salivary Secretion in Hemodialysis Patients: Implications for the Treatment of Hyperphosphatemia. Nephron. Physiol. 2007, 105, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Savica, V.; Calò, L.; Santoro, D.; Monardo, P.; Granata, A.; Bellinghieri, G. Salivary Phosphate Secretion in Chronic Kidney Disease. J. Ren. Nutr. 2008, 18, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Pannu, N.; Manns, B. Oral Phosphate Binders in Patients with Kidney Failure. N. Engl. J. Med. 2010, 362, 1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendón-Ruiz de Mier, M.V.; Vergara, N.; Rodelo-Haad, C.; López-Zamorano, M.D.; Membrives-González, C.; López-Baltanás, R.; Muñoz-Castañeda, J.R.; Caravaca, F.; Martín-Malo, A.; Felsenfeld, A.J.; et al. Assessment of Inorganic Phosphate Intake by the Measurement of the Phosphate/Urea Nitrogen Ratio in Urine. Nutrients 2021, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Scialla, J.J.; Appel, L.J.; Wolf, M.; Yang, W.; Zhang, X.; Sozio, S.M.; Miller, E.R.; Bazzano, L.A.; Cuevas, M.; Glenn, M.J.; et al. Plant Protein Intake Is Associated with Fibroblast Growth Factor 23 and Serum Bicarbonate Levels in Patients with Chronic Kidney Disease: The Chronic Renal Insufficiency Cohort Study. J. Ren. Nutr. 2012, 22, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Benini, O.; D’Alessandro, C.; Gianfaldoni, D.; Cupisti, A. Extra-Phosphate Load From Food Additives in Commonly Eaten Foods: A Real and Insidious Danger for Renal Patients. J. Ren. Nutr. 2011, 21, 303–308. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in Foods and Significance for Humans: Food Sources, Intake, Processing, Bioavailability, Protective Role and Analysis. Mol. Nutr. Food Res. 2009, 53 (Suppl. 2), S330–S375. [Google Scholar] [CrossRef]
- Campion, K.L.; McCormick, W.D.; Warwicker, J.; Khayat, M.E.B.; Atkinson-Dell, R.; Steward, M.C.; Delbridge, L.W.; Mun, H.-C.; Conigrave, A.D.; Ward, D.T. Pathophysiologic Changes in Extracellular PH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. J. Am. Soc. Nephrol. 2015, 26, 2163–2171. [Google Scholar] [CrossRef] [Green Version]
- Disthabanchong, S.; Martin, K.J.; McConkey, C.L.; Gonzalez, E.A. Metabolic Acidosis Up-Regulates PTH/PTHrP Receptors in UMR 106-01 Osteoblast-like Cells. Kidney Int. 2002, 62, 1171–1177. [Google Scholar] [CrossRef]
- Krieger, N.S.; Culbertson, C.D.; Kyker-Snowman, K.; Bushinsky, D.A. Metabolic Acidosis Increases Fibroblast Growth Factor 23 in Neonatal Mouse Bone. Am. J. Physiol. Ren. Physiol. 2012, 303, F431–F436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphael, K.L. Metabolic Acidosis in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Ikizler, H.O.; Zelnick, L.; Ruzinski, J.; Curtin, L.; Utzschneider, K.M.; Kestenbaum, B.; Himmelfarb, J.; de Boer, I.H. Dietary Acid Load Is Associated with Serum Bicarbonate but Not Insulin Sensitivity in Chronic Kidney Disease. J. Ren. Nutr. 2016, 26, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Khairallah, P.; Isakova, T.; Asplin, J.; Hamm, L.; Dobre, M.; Rahman, M.; Sharma, K.; Leonard, M.; Miller, E.; Jaar, B.; et al. Acid Load and Phosphorus Homeostasis in CKD. Am. J. Kidney Dis. 2017, 70, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.M.; Martin, B.R.; Wastney, M.E.; McCabe, G.P.; Moe, S.M.; Weaver, C.M.; Peacock, M. Oral Calcium Carbonate Affects Calcium but Not Phosphorus Balance in Stage 3-4 Chronic Kidney Disease. Kidney Int. 2013, 83, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US). Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Lai, S.; Amabile, M.I.; Bargagli, M.B.; Musto, T.G.; Martinez, A.; Testorio, M.; Mastroluca, D.; Lai, C.; Aceto, P.; Molfino, A.; et al. Peritoneal Dialysis in Older Adults: Evaluation of Clinical, Nutritional, Metabolic Outcomes, and Quality of Life. Medicine 2018, 97, e11953. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestenbaum, B.; Sampson, J.N.; Rudser, K.D.; Patterson, D.J.; Seliger, S.L.; Young, B.; Sherrard, D.J.; Andress, D.L. Serum Phosphate Levels and Mortality Risk among People with Chronic Kidney Disease. J. Am. Soc. Nephrol. 2005, 16, 520–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, G.A.; Kilpatrick, R.D.; Lowe, K.A.; Wang, W.; Danese, M.D. CKD–Mineral and Bone Disorder and Risk of Death and Cardiovascular Hospitalization in Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 2132–2140. [Google Scholar] [CrossRef] [Green Version]
- Danese, M.D.; Belozeroff, V.; Smirnakis, K.; Rothman, K.J. Consistent Control of Mineral and Bone Disorder in Incident Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2008, 3, 1423–1429. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.; Sayre, S.S.; Leon, J.B.; Machekano, R.; Love, T.E.; Porter, D.; Marbury, M.; Sehgal, A.R. Effect of Food Additives on Hyperphosphatemia among Patients with End-Stage Renal Disease: A Randomized Controlled Trial. JAMA 2009, 301, 629–635. [Google Scholar] [CrossRef]
- Gotch, F.; Levin, N.W.; Kotanko, P. Calcium Balance in Dialysis Is Best Managed by Adjusting Dialysate Calcium Guided by Kinetic Modeling of the Interrelationship between Calcium Intake, Dose of Vitamin D Analogues and the Dialysate Calcium Concentration. Blood Purif. 2010, 29, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Bushinsky, D.A. Contribution of Intestine, Bone, Kidney, and Dialysis to Extracellular Fluid Calcium Content. Clin. J. Am. Soc. Nephrol. 2010, 5 (Suppl. 1), S12–S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- London, G.M.; Guérin, A.P.; Marchais, S.J.; Métivier, F.; Pannier, B.; Adda, H. Arterial Media Calcification in End-Stage Renal Disease: Impact on All-Cause and Cardiovascular Mortality. Nephrol. Dial. Transpl. 2003, 18, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Comparative Analysis of Nutritional Guidelines for Vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef]
Cereal and Grain | Fish and Shellfish | Meat and Poultry | Others |
---|---|---|---|
Wheat (12.26) | Tuna (9.19–12.71) | Chicken (8.73–13.84) | Leavening agents (270.16) |
Rye (11.95) | Salmon (11.11) | Veal (4.96–12.64) | Sweets (0.38–85.40) |
Couscous (7.60) | Mackerel (5.13–8.42) | Beef (4.83–12.53) | Cheese (6.18–21.29) |
Rice (6.98) | Crab (8.37) | Pork (3.99–12.44) | Eggs (9.42) |
Macaroni (6.93) | Lobster (7.44) | Turkey (7.37–10.49) | Nuts (−16.04; 8.71) |
Breakfast cereals (0.23) | Cod (6.53) | Lamb (4.41) |
Dairy | Animal-Derived | Vegetables | Others |
---|---|---|---|
Milk (276 mg) | Sardines (286 mg) | Lamb’s quarters (362 mg) | Tahini (902 mg) |
Kefir (247 mg) | Salmon (179–212 mg) | Nettles (334 mg) | Almond milk (345 mg) |
Buttermilk (222 mg) | Amaranth (216 mg) | Rice milk (221 mg) | |
Yogurt (216 mg) | Spinach (191 mg) | ||
Cheese (138–333 mg) | Soybeans (175 mg) | ||
Greek yogurt (116 mg) | Kale (94 mg) |
Dairy Products | Meat and Fish | Legumes and Vegetables | Others |
---|---|---|---|
Cheese (464–602 mg) | Canned sardines (489 mg) | Soybeans (180 mg) | Sesame seeds (616 mg) |
Cottage cheese (116–143 mg) | Canned salmon (326 mg) | Mushrooms (140 mg) | Walnuts (510 mg) |
Yogurt, all types (89–141 mg) | Pork (173–294 mg) | Chickpeas (130 mg) | Pistachio nuts (500 mg) |
Milk (87–110 mg) | Veal (237–258 mg) | Beans (103 mg) | Almonds (440 mg) |
Beef (178–231 mg) | Cabbage (70 mg) | Curry powder (260 mg) | |
Tuna (138 mg) | Broccoli (60 mg) | Peanuts (250 mg) |
Dietary Factors | Potential Effect on Bone and Mineral Metabolism |
---|---|
High protein intake | Increased IGF-I and osteocalcin |
High dietary acid load | Increased urinary calcium excretion |
Low calcium intake | Increased 1,25(OH)2D3 and PTH |
Insufficient vitamin D supplementation | Reduced renal reabsorption and intestinal uptake of calcium |
Low fruits and vegetables intake | Potential decrease in BMD |
Low magnesium intake | Potential osteopenia and negative calcium balance |
Higher phosphate intake | Increased FGF23 and PTH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bargagli, M.; Arena, M.; Naticchia, A.; Gambaro, G.; Mazzaferro, S.; Fuster, D.; Ferraro, P.M. The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021, 13, 2328. https://doi.org/10.3390/nu13072328
Bargagli M, Arena M, Naticchia A, Gambaro G, Mazzaferro S, Fuster D, Ferraro PM. The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients. 2021; 13(7):2328. https://doi.org/10.3390/nu13072328
Chicago/Turabian StyleBargagli, Matteo, Maria Arena, Alessandro Naticchia, Giovanni Gambaro, Sandro Mazzaferro, Daniel Fuster, and Pietro Manuel Ferraro. 2021. "The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism" Nutrients 13, no. 7: 2328. https://doi.org/10.3390/nu13072328
APA StyleBargagli, M., Arena, M., Naticchia, A., Gambaro, G., Mazzaferro, S., Fuster, D., & Ferraro, P. M. (2021). The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients, 13(7), 2328. https://doi.org/10.3390/nu13072328