Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements
2.2. Bioimpedance Analysis (BIA)
2.3. Nutritional Status
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H.; American Heart Association; Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 968–976. [Google Scholar] [CrossRef]
- Kim, J.A.; Choi, K.M. Newly Discovered Adipokines: Pathophysiological Link Between Obesity and Cardiometabolic Disorders. Front. Physiol. 2020, 11, 568800. [Google Scholar] [CrossRef]
- Yoo, H.J.; Choi, K.M. Adipokines as a novel link between obesity and atherosclerosis. World J. Diabetes 2014, 5, 357–363. [Google Scholar] [CrossRef]
- Aparecida Silveira, E.; Vaseghi, G.; de Carvalho Santos, A.S.; Kliemann, N.; Masoudkabir, F.; Noll, M.; Mohammadifard, N.; Sarrafzadegan, N.; de Oliveira, C. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int. J. Mol. Sci. 2020, 21, 9042. [Google Scholar] [CrossRef]
- Despres, J.P. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreoli, A.; Scalzo, G.; Masala, S.; Tarantino, U.; Guglielmi, G. Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol. Med. 2009, 114, 286–300. [Google Scholar] [CrossRef]
- Goh, L.G.; Dhaliwal, S.S.; Welborn, T.A.; Lee, A.H.; Della, P.R. Anthropometric measurements of general and central obesity and the prediction of cardiovascular disease risk in women: A cross-sectional study. BMJ Open 2014, 4, e004138. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.J.; Lagerpusch, M.; Enderle, J.; Schautz, B.; Heller, M.; Bosy-Westphal, A. Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes. Rev. 2012, 13 (Suppl. S2), 6–13. [Google Scholar] [CrossRef]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Yesil, E.; Kose, B.; Ozdemir, M. Is Body Adiposity Index a Better and Easily Applicable Measure for Determination of Body Fat? J. Am. Coll. Nutr. 2020, 39, 700–705. [Google Scholar] [CrossRef]
- Lam, B.C.; Lim, S.C.; Wong, M.T.; Shum, E.; Ho, C.Y.; Bosco, J.I.E.; Chen, C.; Koh, G.C.H. A method comparison study to validate a novel parameter of obesity, the body adiposity index, in Chinese subjects. Obesity 2013, 21, E634–E639. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.C.; Pizzolanti, G.; Torregrossa, V.; Misiano, G.; Milano, S.; Giordano, C. Visceral adiposity index (VAI) is predictive of an altered adipokine profile in patients with type 2 diabetes. PLoS ONE 2014, 9, e91969. [Google Scholar] [CrossRef] [Green Version]
- Amato, M.C.; Giordano, C. Visceral adiposity index: An indicator of adipose tissue dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef] [Green Version]
- Kurmus, O.; Aslan, T.; Eren, M.; Akbuga, K.; Erkan, A.F.; Ekici, B.; Ercan, E.A.; Kervancioglu, C. Nutritional status and severity of coronary artery disease. Coron Artery Dis. 2021. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-C.; Yang, Y.-L.; Wu, C.-H.; Huang, S.-S.; Chan, W.L.; Lin, S.-J.; Chou, C.-Y.; Chen, J.-W.; Pan, J.-P.; Charng, M.-J.; et al. Association between Preoperative Nutritional Status and Clinical Outcomes of Patients with Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. Nutrients 2020, 12, 1295. [Google Scholar] [CrossRef]
- Kouli, G.M.; Panagiotakos, D.B.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Visceral adiposity index and 10-year cardiovascular disease incidence: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Fu, K.L.; Zhao, J.; Wang, Z.-H.; Tang, M.-X.; Wang, J.; Wang, H.; Zhang, Y.; Zhang, W.; Zhong, M. Visceral adiposity index score indicated the severity of coronary heart disease in Chinese adults. Diabetol. Metab. Syndr. 2014, 6, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudzik, B.; Nowak, J.; Szkodzinski, J.; Danikiewicz, A.; Korzonek-Szlacheta, I.; Zubelewicz-Szkodzinska, B. Discordance between Body-Mass Index and Body Adiposity Index in the Classification of Weight Status of Elderly Patients with Stable Coronary Artery Disease. J. Clin. Med. 2021, 10, 943. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk. National Academy Press: Washington, DC, USA, 1989; Available online: http://www.nap.edu/openbook.php?isbn=0309039940 (accessed on 20 February 2021).
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Houtkooper, L.B.; Lohman, T.G.; Going, S.B.; Howell, W.H. Why bioelectrical impedance analysis should be used for estimating adiposity. Am. J. Clin. Nutr. 1996, 64, 436S–448S. [Google Scholar] [CrossRef]
- Willett, K.; Jiang, R.; Lenart, E.; Spiegelman, D.; Willett, W. Comparison of bioelectrical impedance and BMI in predicting obesity-related medical conditions. Obesity 2006, 14, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulibarri, J.; Gonzalez-Madrono, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Labounty, T.M.; Gomez, M.J.; Achenbach, S.; Al-Mallah, M.; Berman, D.S.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q.; Chang, H.-J.; Cheng, V.; et al. Body mass index and the prevalence, severity, and risk of coronary artery disease: An international multicentre study of 13,874 patients. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Flint, A.J.; Rexrode, K.M.; Hu, F.B.; Glynn, R.J.; Caspard, H.; Manson, J.E.; Willett, W.C.; Rimm, E.B. Body mass index, waist circumference, and risk of coronary heart disease: A prospective study among men and women. Obes. Res. Clin. Pract. 2010, 4, e171–e181. [Google Scholar] [CrossRef] [Green Version]
- Niraj, A.; Pradhan, J.; Fakhry, H.; Veeranna, V.; Afonso, L. Severity of coronary artery disease in obese patients undergoing coronary angiography: “obesity paradox” revisited. Clin. Cardiol. 2007, 30, 391–396. [Google Scholar] [CrossRef]
- Gregory, A.B.; Lester, K.K.; Gregory, D.M.; Twells, L.K.; Midodzi, W.K.; Pearce, N.J. The Relationship between Body Mass Index and the Severity of Coronary Artery Disease in Patients Referred for Coronary Angiography. Cardiol. Res. Pract. 2017, 2017, 5481671. [Google Scholar] [CrossRef]
- Despres, J.P.; Moorjani, S.; Lupien, P.J.; Tremblay, A.; Nadeau, A.; Bouchard, C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990, 10, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shu, X.-O.; Li, H.; Yang, G.; Xiang, Y.-B.; Cai, Q.; Ji, B.-T.; Gao, Y.-T.; Zheng, W. Visceral adiposity and risk of coronary heart disease in relatively lean Chinese adults. Int. J. Cardiol. 2013, 168, 2141–2145. [Google Scholar] [CrossRef] [Green Version]
- Canoy, D.; Boekholdt, S.M.; Wareham, N.; Luben, R.; Welch, A.; Bingham, S.; Buchan, I.; Day, N.; Khaw, K.-T. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation into Cancer and Nutrition in Norfolk cohort: A population-based prospective study. Circulation 2007, 116, 2933–2943. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, T.; Goel, K.; Correa de Sa, D.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; Park, J.-S.; Kober, L.; Torp-Pedersen, C.; Cottin, Y.; et al. Central obesity and survival in subjects with coronary artery disease: A systematic review of the literature and collaborative analysis with individual subject data. J. Am. Coll. Cardiol. 2011, 57, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- Dallongeville, J.; Bhatt, D.L.; Steg, P.H.; Ravaud, P.; Wilson, P.W.; Eagle, K.A.; Goto, S.; Mas, J.-L.; Montalescot, G.; REACH Registry Investigators. Relation between body mass index, waist circumference, and cardiovascular outcomes in 19,579 diabetic patients with established vascular disease: The REACH Registry. Eur. J. Prev. Cardiol. 2012, 19, 241–249. [Google Scholar] [CrossRef]
- Despres, J.P. Excess visceral adipose tissue/ectopic fat the missing link in the obesity paradox? J. Am. Coll. Cardiol. 2011, 57, 1887–1889. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.S.; Santos, C.A.D.; Silva, D.A.S.; Amorim, P.; Marins, J.C.B.; Franceschini, S. Validity of the Body Adiposity Index in Predicting Body Fat in Adults: A Systematic Review. Adv. Nutr. 2018, 9, 617–624. [Google Scholar] [CrossRef]
- Lopez, A.A.; Cespedes, M.L.; Vicente, T.; Tomas, M.; Bennasar-Veny, M.; Tauler, P.; Aguilo, A. Body adiposity index utilization in a Spanish Mediterranean population: Comparison with the body mass index. PLoS ONE 2012, 7, e35281. [Google Scholar] [CrossRef]
- Robinson, M.K.; Mogensen, K.M.; Casey, J.D.; McKane, C.K.; Moromizato, T.; Rawn, J.D.; Christopher, K.B. The relationship among obesity, nutritional status, and mortality in the critically ill. Crit. Care Med. 2015, 43, 87–100. [Google Scholar] [CrossRef]
- Lasocki, S. The true obesity paradox: Obese and malnourished? Crit. Care Med. 2015, 43, 240–241. [Google Scholar] [CrossRef]
- Patel, V.B.; Preedy, V.R.; Rajendram, R. Diet, Nutrition, and Fetal Programming, 1st ed.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Tamang, M.K.; Yadav, U.N.; Hosseinzadeh, H.; Kafle, B.; Paudel, G.; Khatiwada, S.; Sekaran, V.C. Nutritional assessment and factors associated with malnutrition among the elderly population of Nepal: A cross-sectional study. BMC Res. Notes 2019, 12, 246. [Google Scholar] [CrossRef] [Green Version]
VAI | ||
Visceral Adiposity | Age ≥ 66 years | |
No ATD | ≤2.00 | |
Mild ATD | 2.01–2.41 | |
Moderate ATD | 2.42–3.17 | |
Severe ATD | >3.17 | |
BMI | ||
Weight status | Age ≥ 65 years | |
Underweight | ≤24.0 | |
Normal weight | 24.1–29.0 | |
Overweight | 29.1–35.0 | |
Obesity | >35.0 | |
BAI | ||
Weight status | Age ≥ 60 years | |
Men | Women | |
Underweight | <13% | <25% |
Normal weight | 13–25% | 25–38% |
Overweight | 26–31% | 39–43% |
Obesity | >31% | >43% |
Parameter | Score | |||
---|---|---|---|---|
Serum albumin [g/mL] | ≥3.50 | 3.00–3.49 | 2.50–2.99 | <2.50 |
Albumin score | 0 | 2 | 4 | 6 |
Total cholesterol [mg/dL] | >180 | 140–180 | 100–139 | <100 |
Cholesterol score | 0 | 1 | 2 | 3 |
Lymphocyte count [count/mL] | ≥1600 | 1200–1599 | 8000–1199 | <800 |
Lymphocyte score | 0 | 1 | 2 | 3 |
Total CONUT score | 0–1 | 2–4 | 5–8 | 9–12 |
Nutritional status | Normal | Mild malnutrition | Moderate malnutrition | Severe malnutrition |
Group 1 No ATD (N = 66) | Group 2 Mild ATD (N = 50) | Group 3 Moderate ATD (N = 48) | Group4 Severe ATD (N = 40) | p | |
---|---|---|---|---|---|
Sex, men n (%) | 22 (34.8) | 16 (32.0) | 20 (41.7) | 18 (45.0) | <0.001 |
Age (years) | 73 ± 5 | 72 ± 7 | 67 ± 3 | 67 ± 3 | <0.001 |
Prior myocardial infarction n (%) | 16 (24.0) | 15 (30.0) | 12 (25.0) | 14 (35.0) | 0.40 |
Heart failure n (%) | 31 (47.0) | 24 (48.0) | 24 (50.0) | 18 (45.0) | 0.97 |
Atrial fibrillation n (%) | 9 (13.6) | 0 (0) | 12 (25.0) | 10 (25.0) | 0.01 |
Hyperlipidemia n (%) | 20 (33.3) | 15 (30.0) | 20 (41.7) | 20 (50.0) | 0.02 |
Diabetes mellitus n (%) | 23 (24.8) | 18 (36.0) | 12 (25.0) | 16 (40.0) | 0.47 |
Hypertension n (%) | 59 (89.4) | 48 (96.0) | 46 (96.0) | 28 (70.0) | <0.001 |
CONUT score | 2 (1–3) | 1 (0–3) | 1 (1–2) | 1 (0–2) | 0.18 |
Nutritional status | |||||
Normal | 29 (43.9) | 30 (60.0) | 28 (58.3) | 22 (55.0) | |
Mild malnutrition | 28 (42.4) | 10 (20.0) | 20 (41.7) | 10 (25.0) | 0.008 |
Moderate or severe malnutrition | 9 (13.7) | 10 (20.0) | 0 (0) | 8 (20.0) | |
Leucocytes (103/mm3) | 6.9 ± 2.9 | 7.9 ± 3.2 | 7.8 ± 1.6 | 7.9 ± 2.0 | 0.10 |
Erythrocytes (106/mm3) | 4.2 ± 0.5 | 4.3 ± 0.3 | 4.3 ± 0.5 | 4.3 ± 0.5 | 0.14 |
Hemoglobin (g/dL) | 12.3 ± 1.5 | 12.8 ± 0.6 | 12.3 ± 1.2 | 13.4 ± 1.5 | 0.01 |
Hematocrit (%) | 38 ± 4 | 39 ± 2 | 38 ± 3 | 41 ± 4 | 0.01 |
Platelets (103/mm3) | 243 ± 70 | 197 ± 24 | 263 ± 89 | 189 ± 34 | <0.001 |
Total cholesterol (mmol/L) | 4.3 ± 1.0 | 5.2 ± 1.9 | 4.6 ± 0.5 | 4.6 ± 1.1 | <0.001 |
HDL cholesterol (mmol/L) | 1.5 ± 0.4 | 1.2 ± 0.2 | 0.9 ± 0.2 | 0.7 ± 0.1 | <0.001 |
LDL cholesterol (mmol/L) | 2.3 ± 0.9 | 3.3 ± 1.8 | 2.7 ± 0.8 | 2.9 ± 0.8 | <0.001 |
Triglycerides (mmol/L) | 1.1 ± 0.3 | 1.8 ± 0.4 | 1.7 ± 0.4 | 2.4 ± 0.7 | <0.001 |
Serum creatinine (μmol/L) | 80 ± 25 | 73 ± 14 | 95 ± 32 | 91 ± 38 | <0.001 |
eGFR (mL/min/1.73 m2) | 77 ± 20 | 79 ± 26 | 69 ± 25 | 75 ± 22 | 0.14 |
Group 1 No ATD (n = 66) | Group 2 Mild ATD (n = 50) | Group 3 Moderate ATD (n = 48) | Group4 Severe ATD (n = 40) | p | |
---|---|---|---|---|---|
Weight (kg) | 72 (59–79) | 63 (62–65) | 70 (64–77) | 89 (87–95) | <0.001 |
Height (m) | 1.62 (1.51–1.70) | 1.64 (1.50–1.71) | 1.65 (1.55–1.73) | 1.65 (1.55–1.72) | 0.7 |
BMI | 26 (24–31) | 27 (24–28) | 28 (27–30) | 36 (3039) | <0.001 |
VAI | 1.05 (0.80–1.37) | 2.09 (2.00–2.17) | 2.69 (2.57–2.99) | 4.60 (3.62–5.43) | <0.001 |
BAI | 34.1 (28.4–40.0) | 36.2 (32.0–37.2) | 34.2 (31.6–39.9) | 43.7 (30.3–52.6) | <0.001 |
Hip circumference (cm) | 104 (94–110) | 102 (101–105) | 109 (102–112) | 120 (110–125) | <0.001 |
Waist circumference (cm) | 103 (87–109) | 100 (93–111) | 113 (110–118) | 122 (111–126) | <0.001 |
Mid-upper arm circumference (cm) | 28 (25–31) | 29 (28–32) | 27 (26–29) | 30 (27–32) | 0.7 |
Calf circumference (cm) | 34 (33–36) | 32 (31–35) | 33 (30–37) | 39 (38–40) | <0.001 |
Waist-to-hip ratio | 0.97 (0.90–1.00) | 1.00 (0.95–1.03) | 1.04 (1.00–1.07) | 1.00 (0.97–1.02) | <0.001 |
Waist-to-height ratio | 0.61 (0.57–0.69) | 0.65 (0.56–0.74) | 0.69 (0.68–0.76) | 0.77 (0.67–0.83) | <0.001 |
Fat (%) | 31.6 (25.0–39.6) | 37.8 (33.4–42.2) | 43.3 (26.6–45.0) | 44.6 (33.7–46.7) | <0.001 |
Fat (kg) | 20.7 (15.2–31.6) | 23.5 (21.1–26.8) | 28.6 (20.6–31.6) | 41.2 (26.9–43.7) | <0.001 |
Visceral fat rating | 13 (10–16) | 13 (10–14) | 15 (14–18) | 16 (15–19) | <0.001 |
Lean mass (kg) | 42.9 (40.0–55.5) | 38.9 (37.8–42.2) | 42.5 (36.8–56.9) | 50.6 (48.2–55.3) | <0.001 |
Total body water (%) | 47.3 (41.3–51.1) | 42.1 (39.2–45.8) | 41.0 (37.1–49.6) | 39.2 (37.9–45.5) | <0.001 |
Total body water (kg) | 29.7 (27.0–37.6) | 26.4 (26.2–29.0) | 28.7 (24.8–40.1) | 36.3 (34.1–39.5) | <0.001 |
Metabolic age | 68 (65–77) | 65 (60–71) | 80 (68–83) | 84 (74–88) | <0.001 |
No ATD | |||||||
cutoff | AUC (95%CI) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | p | |
BMI | <26 | 0.63 (0.56–0.69) | 55 | 81 | 58 | 79 | 0.003 |
BAI | <35.9 | 0.59 (0.52–0.66) | 62 | 58 | 41 | 76 | 0.04 |
CONUT score | <2 | 0.60 (0.53–0.67) | 44 | 80 | 51 | 75 | 0.01 |
Mild ATD | |||||||
cutoff | AUC (95%CI) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | p | |
BMI | <28 | 0.62 (0.55–0.69) | 80 | 56 | 37 | 89 | 0.003 |
BAI | <40.8 | 0.51 (0.44–0.58) | 0.8 | ||||
CONUT score | 0 | 0.60 (0.48–0.65) | 0.1 | ||||
Moderate ATD | |||||||
cutoff | AUC (95%CI) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | p | |
BMI | <30 | 0.49 (0.42–0.56) | 0.9 | ||||
BAI | <36.3 | 0.55 (0.48–0.62) | 0.2 | ||||
CONUT score | >2 | 0.51 (0.44–0.58) | 0.8 | ||||
Severe ATD | |||||||
cutoff | AUC (95%CI) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | P | |
BMI | >32 | 0.78 (0.68–0.87) | 75 | 90 | 64 | 94 | <0.0001 |
BAI | >42.3 | 0.66 (0.62–0.75) | 65 | 86 | 54 | 91 | 0.003 |
CONUT score | <5 | 0.48 (0.41–0.55) | 0.7 |
Variable | OR | 95%CI | p |
---|---|---|---|
Adipose tissue dysfunction (mild, moderate, or severe) | |||
BMI (unadjusted) | 1.09 | 1.03–1.16 | 0.003 |
BMI (adjusted—Model 1) | 1.08 | 1.01–1.15 | 0.02 |
BMI (adjusted—Model 2) | 1.11 | 1.03–1.18 | 0.003 |
BMI (adjusted—Model 3) | 1.10 | 1.03–1.18 | 0.005 |
BMI (adjusted—Model 4) | 1.15 | 1.06–1.24 | <0.0001 |
In the case of BMI, OR should be interpreted in terms of one unit increase on the scale [per 1 kg/m2 increment]. Model 1—adjusted for age, sex, Model 2—adjusted for age, sex, hyperlipidemia, hypertension, Model 3—adjusted for age, sex, hyperlipidemia, hypertension, nutritional status, Model 4—adjusted for age, sex, hyperlipidemia, hypertension, nutritional status, total cholesterol | |||
CONUT score (unadjusted) | 0.91 | 0.80–1.05 | 0.16 |
CONUT score (adjusted—Model 1) | 0.90 | 0.83–1.07 | 0.30 |
CONUT score (adjusted—Model 2) | 0.92 | 0.80–1.05 | 0.25 |
CONUT score (adjusted—Model 3) | 0.97 | 0.84–1.13 | 0.70 |
CONUT score (adjusted—Model 4) | 1.28 | 0.91–1.68 | 0.21 |
In the case of CONUT score, OR should be interpreted in terms of a one point increase in the score [per 1 point increment]. Model 1—adjusted for age, sex, Model 2—adjusted for age, sex, hyperlipidemia, hypertension, Model 3—adjusted for age, sex, hyperlipidemia, hypertension, BMI, Model 4—adjusted for age, sex, hyperlipidemia, hypertension, BMI, total cholesterol | |||
Malnutrition (mild, moderate, or severe) | |||
BMI (unadjusted) | 0.89 | 0.83–0.94 | <0.0001 |
BMI (adjusted—Model 1) | 0.90 | 0.84–0.95 | <0.0001 |
BMI (adjusted—Model 2) | 0.88 | 0.83–0.94 | <0.0001 |
BMI (adjusted—Model 3) | 0.87 | 0.81–0.93 | <0.0001 |
BMI (adjusted—Model 4) | 0.79 | 0.72–0.87 | <0.0001 |
In the case of BMI, OR should be interpreted in terms of one unit increase on the scale [per 1 kg/m2 increment]. Model 1—adjusted for age, sex, Model 2—adjusted for age, sex, hyperlipidemia, hypertension, Model 3—adjusted for age, sex, hyperlipidemia, hypertension, VAI, Model 4—adjusted for age, sex, hyperlipidemia, hypertension, VAI, total cholesterol | |||
VAI (unadjusted) | 0.79 | 0.65–0.98 | 0.03 |
VAI (adjusted—Model 1) | 0.83 | 0.67–0.99 | 0.04 |
VAI (adjusted—Model 2) | 0.88 | 0.69–1.12 | 0.30 |
VAI (adjusted—Model 3) | 1.22 | 0.90–1.67 | 0.19 |
VAI (adjusted—Model 4) | 1.33 | 0.85–1.73 | 0.22 |
In the case of VAI, OR should be interpreted in terms of 0.5 unit increase of the index [per 0.5 unit increment of the index]. Model 1—adjusted for age, sex, Model 2—adjusted for age, sex, hyperlipidemia, hypertension, Model 3—adjusted for age, sex, hyperlipidemia, hypertension, BMI, Model 4—adjusted for age, sex, hyperlipidemia, hypertension, BMI, total cholesterol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudzik, B.; Nowak, J.; Szkodziński, J.; Zubelewicz-Szkodzińska, B. Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease. Nutrients 2021, 13, 2351. https://doi.org/10.3390/nu13072351
Hudzik B, Nowak J, Szkodziński J, Zubelewicz-Szkodzińska B. Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease. Nutrients. 2021; 13(7):2351. https://doi.org/10.3390/nu13072351
Chicago/Turabian StyleHudzik, Bartosz, Justyna Nowak, Janusz Szkodziński, and Barbara Zubelewicz-Szkodzińska. 2021. "Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease" Nutrients 13, no. 7: 2351. https://doi.org/10.3390/nu13072351
APA StyleHudzik, B., Nowak, J., Szkodziński, J., & Zubelewicz-Szkodzińska, B. (2021). Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease. Nutrients, 13(7), 2351. https://doi.org/10.3390/nu13072351