Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Recruitment and Sampling
2.2. Fecal Microbiota Analyses
2.3. Anthropometrical Determinations
2.4. Statistical Analyses
3. Results
3.1. General Description of the Population
3.2. Gut Microbiota Composition and Weight Gain Are Affected by Different Variables
3.3. Gut Microbial Groups at 1 Month Are Associated with Weight Gain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition. Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [Green Version]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef] [Green Version]
- O’Mahony, S.M.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle? Neuroscience 2017, 342, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Wang, G.; Hong, X.; Yao, T.C.; Ji, Y.; Radovick, S.; Ji, H.; Cheng, T.L.; Wang, X. Early Life Weight Gain and Development of Childhood Asthma in a Prospective Birth Cohort. Ann. Am. Thorac. Soc. 2018, 15, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Schulfer, A.F.; Schluter, J.; Zhang, Y.; Brown, Q.; Pathmasiri, W.; McRitchie, S.; Sumner, S.; Li, H.; Xavier, J.B.; Blaser, M.J. The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. ISME J. 2019, 13, 1280–1292. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.W.; Bjerregaard, L.G.; Ängquist, L.; Gögenur, I.; Renehan, A.G.; Osler, M.; Sørensen, T.I.A.; Baker, J.L. Change in weight status from childhood to early adulthood and late adulthood risk of colon cancer in men: A population-based cohort study. Int. J. Obes. (Lond.) 2018, 42, 1797–1803. [Google Scholar] [CrossRef]
- Crowther, N.J. Early determinants of chronic disease in developing countries. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 655–665. [Google Scholar] [CrossRef]
- Ferraro, A.A.; Bechere Fernandes, M.T. Relationship between childhood growth and later outcomes. Nestle Nutr. Inst. Workshop Ser. 2013, 71, 191–197. [Google Scholar]
- Cox, L.M.; Blaser, M.J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 2015, 11, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Moossavi, S.; Owora, A.; Sepehri, S. Early-Life Antibiotic Exposure. Gut Microbiota Development, and Predisposition to Obesity. Nestle Nutr. Inst. Workshop Ser. 2017, 88, 67–79. [Google Scholar]
- Block, J.P.; Bailey, L.C.; Gillman, M.W.; Lunsford, D.; Daley, M.F.; Eneli, I.; Finkelstein, J.; Heerman, W.; Horgan, C.E.; Hsia, D.S.; et al. PCORnet Antibiotics and Childhood Growth Study Group. Early Antibiotic Exposure and Weight Outcomes in Young Children. Pediatrics 2018, 143, e20180290. [Google Scholar] [CrossRef] [Green Version]
- Uzan-Yulzari, A.; Turta, O.; Belogolovski, A.; Ziv, O.; Kunz, C.; Perschbacher, S.; Neuman, H.; Pasolli, E.; Oz, A.; Ben-Amram, H.; et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat. Commun. 2021, 12, 443. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.T.; Reimer, R.A. Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms 2021, 9, 413. [Google Scholar] [CrossRef]
- Sacco, M.R.; de Castro, N.P.; Euclydes, V.L.; Souza, J.M.; Rondó, P.H. Birth weight, rapid weight gain in infancy and markers of overweight and obesity in childhood. Eur. J. Clin. Nutr. 2013, 67, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Sutharsan, R.; O’Callaghan, M.J.; Williams, G.; Najman, J.M.; Mamun, A.A. Rapid growth in early childhood associated with young adult overweight and obesity-evidence from a community based cohort study. J. Health Popul. Nutr. 2015, 33, 13. [Google Scholar] [CrossRef] [Green Version]
- Matthews, E.K.; Wei, J.; Cunningham, S.A. Relationship between prenatal growth, postnatal growth and childhood obesity: A review. Eur. J. Clin. Nutr. 2017, 71, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Geserick, M.; Vogel, M.; Gausche, R.; Lipek, T.; Spielau, U.; Keller, E.; Pfäffle, R.; Kiess, W.; Körner, A. N Acceleration of BMI in Early Childhood and Risk of Sustained Obesity. N. Engl. J. Med. 2018, 379, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.; Bann, D.; Hardy, R. Infant weight gain and adolescent body mass index: Comparison across two British cohorts born in 1946 and 2001. Arch. Dis. Child. 2018, 103, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Renko, M.; Vänni, P.; Paalanne, N.; Salo, J.; Tejesvi, M.V.; Koivusaari, P.; Ojaniemi, M.; Pokka, T.; Kaukola, T.; et al. Microbiome of the first stool and overweight at age 3 years: A prospective cohort study. Pediatr. Obes. 2020, 15, e12680. [Google Scholar] [CrossRef]
- Kalliomäki, M.; Collado, M.C.; Salminen, S.; Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 2008, 87, 534–538. [Google Scholar] [CrossRef]
- Stanislawski, M.A.; Dabelea, D.; Wagner, B.D.; Iszatt, N.; Dahl, C.; Sontag, M.K.; Knight, R.; Lozupone, C.A.; Eggesbø, M. Gut Microbiota in the First 2 Years of Life and the Association with Body Mass Index at Age 12 in a Norwegian Birth Cohort. mBio 2018, 9, e01751-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dror, T.; Dickstein, Y.; Dubourg, G.; Paul, M. Microbiota manipulation for weight change. Microb. Pathog. 2017, 106, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Blanton, L.V.; Charbonneau, M.R.; Salih, T.; Barratt, M.J.; Venkatesh, S.; Ilkaveya, O.; Subramanian, S.; Manary, M.J.; Trehan, I.; Jorgensen, J.M.; et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016, 351, aad3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arboleya, S.; Martinez-Camblor, P.; Solís, G.; Suárez, M.; Fernández, N.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. Intestinal Microbiota and Weight-Gain in Preterm Neonates. Front. Microbiol. 2017, 8, 183. [Google Scholar] [CrossRef]
- Yee, A.L.; Miller, E.; Dishaw, L.J.; Gordon, J.M.; Ji, M.; Dutra, S.; Ho, T.T.B.; Gilbert, J.A.; Groer, M. Longitudinal microbiome composition and stability correlate with increased weight and length of very-low-birth-weight infants. mSystems 2019, 4, e00229-18. [Google Scholar] [CrossRef] [Green Version]
- Arboleya, S.; Binetti, A.; Salazar, N.; Fernández, N.; Solís, G.; Hernández-Barranco, A.; Margolles, A.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 2012, 79, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueimonde, M.; Tölkko, S.; Korpimäki, T.; Salminen, S. New real-time quantitative PCR procedure for quantification of Bibidobacteria in human fecal samples. Appl. Environ. Microbiol. 2004, 70, 4165–4169. [Google Scholar] [CrossRef] [Green Version]
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 2004, 70, 3575–3581. [Google Scholar] [CrossRef] [Green Version]
- Rinttila, T.; Kassinen, A.; Malinen, E.; Krogius, L.; Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 2004, 97, 1166–1177. [Google Scholar] [CrossRef]
- Walter, J.; Hertel, C.; Tannock, G.W.; Lis, C.M.; Munro, K.; Hammes, W.P. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2001, 67, 2578–2585. [Google Scholar] [CrossRef] [Green Version]
- Heilig, H.G.; Zoetendal, E.G.; Vaughan, E.E.; Marteau, P.; Akkermans, A.D.; de Vos, W.M. Molecular diversity of lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16s ribosomal DNA. Appl. Environ. Microbiol. 2002, 68, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Tsuji, H.; Asahara, T.; Kado, Y.; Nomoto, K. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl. Environ. Microbiol. 2007, 73, 32–39, Erratum in Appl. Environ. Microbiol. 2007, 73, 6695. [Google Scholar] [CrossRef] [Green Version]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, E.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data. R Package Version 3.1.1. Available online: https://CRAN.R-project.org/package=gplots (accessed on 7 June 2021).
- Arboleya, S.; Sánchez, B.; Milani, C.; Duranti, S.; Solís, G.; Fernández, N.; de los Reyes-Gavilán, C.G.; Ventura, M.; Margolles, A.; Gueimonde, M. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J. Pediatr. 2015, 166, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echarri, P.P.; Graciá, C.M.; Berruezo, G.R.; Vives, I.; Ballesta, M.; Solís, G.; Morillas, I.V.; Reyes-Gavilán, C.G.; Margolles, A.; Gueimonde, M. Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Hum. Dev. 2011, 87, 511–513. [Google Scholar] [CrossRef] [Green Version]
- Cong, X.; Xu, W.; Janton, S.; Henderson, W.A.; Matson, A.; McGrath, J.M.; Maas, K.; Graf, J. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender. PLoS ONE 2016, 11, e0152751. [Google Scholar] [CrossRef]
- Kozyrskyj, A.L.; Kalu, R.; Koleva, P.T.; Bridgman, S.L. Fetal programming of overweight through the microbiome: Boys are disproportionately affected. J. Dev. Orig. Health Dis. 2016, 7, 25–34. [Google Scholar] [CrossRef]
- Vemuri, R.; Sylvia, K.E.; Klein, S.L.; Forster, S.C.; Plebanski, M.; Eri, R.; Flanagan, K.L. The microgenderome revealed: Sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin. Immunopathol. 2019, 41, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Kobayashi, T.; Songjinda, P.; Tateyama, A.; Tsubouchi, M.; Kiyohara, C.; Shirakawa, T.; Sonomoto, K.; Nakayama, J. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol. Med. Microbiol. 2009, 56, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.B.; Bridgman, S.L.; Becker, A.B.; Kozyrskyj, A.L. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int. J. Obes. 2014, 38, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.C.; Forrest, C.B.; Zhang, P.; Richards, T.M.; Livshits, A.; DeRusso, P.A. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014, 168, 1063–1069. [Google Scholar] [CrossRef] [Green Version]
- Cox, L.M.; Yamanishi, S.; Sohn, J.; Alekseyenko, A.V.; Leung, J.M.; Cho, I.; Kim, S.G.; Li, H.; Gao, Z.; Mahana, D.; et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014, 158, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Laursen, M.F.; Larsson, M.W.; Lind, M.V.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F.; Bahl, M.I.; Licht, T.R. Intestinal Enterococcus abundance correlates inversely with excessive weight gain and increased plasma leptin in breastfed infants. FEMS Microbiol. Ecol. 2020, 96, fiaa066. [Google Scholar] [CrossRef]
- Mitchell, C.M.; Mazzoni, C.; Hogstrom, L.; Bryant, A.; Bergerat, A.; Cher, A.; Pochan, S.; Herman, P.; Carrigan, M.; Sharp, K.; et al. Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Rep. Med. 2020, 1, 100156. [Google Scholar] [CrossRef] [PubMed]
- Selma-Royo, M.; Calatayud Arroyo, M.; García-Mantrana, I.; Parra-Llorca, A.; Escuriet, R.; Martínez-Costa, C.; Collado, M.C. Perinatal environment shapes microbiota colonization and infant growth: Impact on host response and intestinal function. Microbiome 2020, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Gaskins, A.J.; Blaine, A.I.; Zhang, C.; Gillman, M.W.; Missmer, S.A.; Field, A.E.; Chavarro, J.E. Association Between Cesarean Birth and Risk of Obesity in Offspring in Childhood, Adolescence, and Early Adulthood. JAMA Pediatr. 2016, 170, e162385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, E.; Delgado, S.; Maldonado, A.; Arroyo, R.; Albújar, M.; García, N.; Jariod, M.; Fernández, L.; Gómez, A.; Rodríguez, J.M. Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 2008, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Li, Z.; Zhang, W.; Zhang, C.; Zhang, Y.; Mei, H.; Zhuo, N.; Wang, H.; Wang, L.; Wu, D. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: A study of 91 term infants. Sci. Rep. 2020, 10, 15792. [Google Scholar] [CrossRef]
Bacterial Group | Primers | Tm | Reference |
---|---|---|---|
Bacteroides-group | F-GAGAGGAAGGTCCCCCAC R-CGCKACTTGGCTGGTTCAG | 56·°C | [26] |
Bifidobacterium genus | F-GATTCTGGCTCAGGATGAACGC R-CTGATAGGACGCGACCCCAT | 60 °C | [27] |
Enterobacteriaceae family | F-CATTGACGTTACCCGCAGAAGAAGC R-CTCTACGAGACTCAAGCTTGC | 63 °C | [28] |
Enterococcus genus | F-CCCTTATTGTTAGTTGCCATCATT R-ACTCGTTGTACTTCCCATTGT | 61 °C | [29] |
Lactobacillus-group | F-AGCAGTAGGGAATCTTCCA R-CACCGCTACACATGGAG | 58 °C | [30,31] |
Staphylococcus genus | F-ACGGTCTTGCTGTCACTTATA R-TACACATATGTTCTTCCCTAATAA | 56 °C | [32] |
Vaginally Delivered Babies (n = 88) | C-Section-Delivered Babies (n = 36) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bacterial Groups | Gender | Feeding Type | Gender | Feeding Type | |||||
Phyla | Male | Female | EBF | MF | Male | Female | EBF | MF | |
(n = 33) | (n = 55) | (n = 56) | (n = 31) | (n = 22) | (n = 14) | (n = 18) | (n = 18) | ||
Bacteroidetes | Bacteroides group | 7.63 ± 1.57 $ | 7.67 ± 1.34 $ | 7.55 ± 1.57 | 7.79 ± 1.08 $ | 6.67 ± 0.97 $ | 6.85 ± 1.03 $ | 6.85 ± 0.88 | 6.63 ± 1.09 $ |
Actinobacteria | Bifidobacterium genus | 8.45 ± 0.92 | 8.57 ± 0.65 $ | 8.48 ± 0.76 | 8.60 ± 0.78 $ | 8.16 ± 1.01 | 7.89 ± 1.06 $ | 8.05 ± 1.10 | 8.05 ± 0.98 $ |
Proteobacteria | Enterobacteriaceae | 8.18 ± 1.11 | 8.01 ± 1.12 | 8.01 ± 1.00 | 8.17 ± 1.33 | 7.51 ± 1.38 | 7.89 ± 1.39 | 7.69 ± 1.31 | 7.62 ± 1.48 |
Firmicutes | Enterococcus genus | 6.64 ± 1.64 | 7.15 ± 1.16 | 6.54 ± 1.31 * | 7.77 ± 1.13 * | 6.89 ± 1.38 | 7.10 ± 1.87 | 6.60 ± 1.68 | 7.34 ± 1.38 |
Lactobacillus group | 6.05 ± 1.63 | 6.10 ± 1.47 | 6.08 ± 1.55 | 6.10 ± 1.52 | 5.95 ± 1.63 | 5.55 ± 1.52 | 5.41 ± 1.66 | 6.17 ± 1.44 | |
Staphylococcus genus | 6.00 ± 1.48 | 6.02 ± 1.41 | 6.15 ± 1.47 | 5.71 ± 1.34 | 5.43 ± 1.55 | 6.48 ± 1.51 | 5.98 ± 1.62 | 5.70 ± 1.61 |
Vaginally Delivered Babies (n = 88) | C-Section-Delivered Babies (n = 36) | |||||||
---|---|---|---|---|---|---|---|---|
Gender | Feeding Type | Gender | Feeding Type | |||||
Male | Female | EBF | MF | Male | Female | EBF | MF | |
Variable | (n = 33) | (n = 55) | (n = 56) | (n = 31) | (n = 22) | (n = 14) | (n = 18) | (n = 18) |
Weight birth (g) | 3358 ± 520 * | 3036 ± 579 * | 3202 ± 328 | 3087 ± 867 | 3317 ± 629 | 3055 ± 479 | 3504 ± 479 * | 2927 ± 508 * |
Height birth (cm) | 49.9 ± 2.6 | 48.7 ± 1.8 | 49.2 ± 1.8 | 48.9 ± 2.9 | 49.7 ± 2.6 | 48.6 ± 2.1 | 50.0 ± 2.3 | 48.5 ± 2.4 |
Weight 1 month (g) | 4310 ± 531 * | 3898 ± 497 * | 4117 ± 428 $ | 3954 ± 702 | 4235 ± 751 | 3887 ± 602 | 4415 ± 769 *,$ | 3784 ± 482 * |
Height 1 month (cm) | 54.1 ± 2.0 | 53.2 ± 2.7 | 53.7 ± 2.2 | 53.3 ± 3.1 | 53.5 ± 2.8 | 52.6 ± 2.8 | 54.6 ± 2.2 * | 51.7 ± 2.6 * |
Weight 6 month (g) | 8129 ± 712 * | 7106 ± 738 * | 7355 ± 860 | 7721 ± 877 | 8142 ± 972 * | 7206 ± 890 * | 7951 ± 1169 | 7606 ± 886 |
Height 6 month (cm) | 68.4 ± 2.3 * | 65.9 ± 2.5 * | 66.6 ± 2.8 | 67.2 ± 2.6 | 67.4 ± 2.5 * | 65.7 ± 2.5 * | 67.2 ± 2.5 | 66.3 ± 2.7 |
Weight 12 month (g) | 10369 ± 1003 * | 8921 ± 921 * | 9414 ± 1204 | 9515 ± 1142 | 9971 ± 1019 * | 9020 ± 937 * | 9838 ± 1227 | 9363 ± 885 |
Height 12 month (cm) | 76.7 ± 2.9 * | 73.5 ± 2.9 * | 74.9 ± 3.3 | 74.4 ± 3.3 | 75.3 ± 2.5 | 73.5 ± 3.8 | 75.5 ± 2.8 | 73.7 ± 3.4 |
Weight gain 1 month (g) | 952 ± 305 | 872 ± 511 | 914 ± 334 | 884 ± 609 | 917 ± 344 | 832 ± 292 | 911 ± 397 | 857 ± 235 |
Weight gain 6 month (g) | 4717 ± 633 * | 4071 ± 876 * | 4208 ± 882 | 4499 ± 767 | 4824 ± 1058 * | 4151 ± 746 * | 4446 ± 905 | 4679 ± 1091 |
Weight gain 12 month (g) | 7015 ± 882 * | 5886 ± 1030 * | 6271 ± 1200 | 6350 ± 950 | 6653 ± 1026 * | 5965 ± 831 * | 6334 ± 1007 | 6437 ± 1024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, S.; Selma-Royo, M.; Arboleya, S.; Martínez-Costa, C.; Solís, G.; Suárez, M.; Fernández, N.; de los Reyes-Gavilán, C.G.; Díaz-Coto, S.; Martínez-Camblor, P.; et al. Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients 2021, 13, 2412. https://doi.org/10.3390/nu13072412
González S, Selma-Royo M, Arboleya S, Martínez-Costa C, Solís G, Suárez M, Fernández N, de los Reyes-Gavilán CG, Díaz-Coto S, Martínez-Camblor P, et al. Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients. 2021; 13(7):2412. https://doi.org/10.3390/nu13072412
Chicago/Turabian StyleGonzález, Sonia, Marta Selma-Royo, Silvia Arboleya, Cecilia Martínez-Costa, Gonzalo Solís, Marta Suárez, Nuria Fernández, Clara G. de los Reyes-Gavilán, Susana Díaz-Coto, Pablo Martínez-Camblor, and et al. 2021. "Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life" Nutrients 13, no. 7: 2412. https://doi.org/10.3390/nu13072412
APA StyleGonzález, S., Selma-Royo, M., Arboleya, S., Martínez-Costa, C., Solís, G., Suárez, M., Fernández, N., de los Reyes-Gavilán, C. G., Díaz-Coto, S., Martínez-Camblor, P., Collado, M. C., & Gueimonde, M. (2021). Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients, 13(7), 2412. https://doi.org/10.3390/nu13072412