Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines
Abstract
:1. Introduction
2. Search Strategy
3. What Is Riboflavin?
4. Oxidative Stress in Migraines
4.1. Clinical Evidence of Oxidative Stress
4.1.1. Antioxidants, Total Antioxidant Capacity, and Total Oxidants
4.1.2. Peroxide and Malondialdehyde
4.1.3. 8-Hydroxy-2-deoxyguanosine
4.1.4. Alpha-Lipoic Acid
Markers | Design | Sample Size | Findings | Reference |
---|---|---|---|---|
Antioxidants (TAS), total antioxidant capacity (TAC), and total oxidants (TOS) | Case-control | 75/65 | Patients’ serum TAS levels were significantly lower than those of healthy controls. Serum TOS values were significantly higher in patients than in control. The mean values of oxidative stress index (OSI) were greater in patients than in controls. | Alp et al., 2010 [23] |
Case-control | 141/70 | TAS, TOS, OSI had no statistical difference between the patients and controls. | Eren et al., 2015 [26] | |
Case-control | 50/30 | No significantly different values of TAS, TOS, and OSI found in migraineurs. | Geyik et al., 2016 [27] | |
Before and after | 120/30 | TAC levels were increased following transcranial magnetic stimulation and amitriptyline. | Tripathi et al., 2018 [24] | |
Case series | 32/14 | Decreased serum TAC levels found in 37.5% of patients. | Gross et al., 2021 [25] | |
Peroxide and malondialdehyde (MDA) | Case-control | 39/30 | While migraine with/without aura patients had low platelet superoxide dismutase (SOD) concentrations, platelet SOD activity decreased only in migraine with aura patients. | Shimomura et al., 1994 [31] |
Case-control | 56/25 | The MDA levels of migraineurs were significantly higher than controls. The SOD activity was significantly higher in the migraine with aura than migraine without aura. No significant correlation was found between these levels and headache attack duration. | Tuncel et al., 2008 [22] | |
Case-control | 50/50 | Migraineurs had significantly high MDA and “ferric reducing ability of plasma” levels compared to the other two groups (tension-type headache and control group). | Gupta et al., 2009 [32] | |
Case-control | 48/48 | There was no significant difference in MDA concentration between migraineur and control groups. Significantly increased 4-hydroxynonenal levels were found in the migraine group compared to the control group. | Bernecker et al., 2011 [34] | |
Case-control | 32/14 | In the migraine group, catalase was significantly lower and MDA concentrations were higher than controls. Serum catalase levels were significantly lower in migraineurs with deep white matter hyperintensities than in migraineurs without deep white matter hyperintensities and in controls | Aytaç et al., 2014 [33] | |
Case series | 32 | High serum peroxide levels were found in 46.9% of patients. | Gross et al., 2021 [25] | |
8-hydroxy-2-deoxyguanosine (8-OHdG) | Case-control | 50/30 | Increased plasma 8-OHdG levels were shown in migraineurs. | Geyik et al., 2016 [27] |
Alpha-lipoic acid (ALA) | Randomized controlled trial | 44 | In a within-group analysis, patients who received thioctic acid (ALA) for three months had a significant reduction in the frequency of attacks, number of headache days, and severity of headaches, while these outcomes remained unchanged in the placebo group. The proportion of 50% responders was not significantly different between thioctic acid (30.8%) and the placebo (27.8%). | Magis et al., 2007 [37] |
Before and after | 32 | The percentage of patients with a 50% or greater reduction in attacks was significantly reduced at 2, 4, and 6 months. The incidence rate ratio of attacks at 6 months was significantly decreased compared to the baseline. | Cavestro et al., 2018 [38] | |
Case series | 32 | Decreased serum ALA levels were found in 87.5% of patients. | Gross et al., 2021 [25] |
4.2. Experimental Evidence of Oxidative Stress
4.3. Riboflavin as an Antioxidative Agent
5. Neuroinflammation
5.1. Clinical Evidence of Neuroinflammation
5.2. Experimental Evidence of Neuroinflammation
5.3. Riboflavin as an Anti-Inflammatory Agent
6. Mitochondrial Dysfunction
6.1. Clinical Evidence of Mitochondrial Dysfunction
6.2. Experimental Evidence of Mitochondrial Dysfunction
7. Clinical Evidence of Riboflavin Efficacy
Study Design | N | Intervention | Comparison | Outcomes | Reference |
---|---|---|---|---|---|
RCT | 48 | Riboflavin (200 mg daily) for 12 weeks (n = 27) | Placebo for 12 weeks (n = 21) | No difference between the comparison groups in terms of the proportion of participants with 50% or greater reduction in migraine frequency (p = 0.125) | * MacLennan et al., 2008 [93] |
Before-after study | 41 | Riboflavin (200 mg or 400 mg daily) for three, four, or six months | Baseline period | Significant reduction in headache frequency after treatment for three or four months (p < 0.01), which was not sustained at six months (p > 0.05) | Condo et al., 2009 [95] |
Crossover RCT | 42 | Riboflavin (50 mg daily) for four months (n = 20) | Placebo for four months(n = 22) | No difference between the comparison groups in terms of change in migraine frequency (p = 0.44); the riboflavin group showed a greater reduction in the frequency of tension-type headaches than the placebo group (p = 0.04) | * Bruijn et al., 2010 [94] |
RCT | 98 | Riboflavin (400 mg daily) for three months (n = 50) | Placebo for three months (n = 48) | Headache frequency decreased from the first month to the second month, and to the third month (3.7 per month); headache duration also decreased (p-values: 0.012 and 0.001, respectively) compared to the placebo group. Disability, as measured by the PedMIDAS, also decreased (p = 0.001). | Athaillah et al., 2012 [89] |
RCT | 90 | Riboflavin (200 mg or 400 mg daily) for 3 months (n = 30, and 30, respectively) | Placebo for three months (n = 30) | The riboflavin 400 mg group showed a greater reduction in the headache frequency and duration than the placebo (p = 0.00 for both). | Talebian et al., 2018 [90] |
Retrospective observational study | 68 | Riboflavin (10 or 40 mg daily) for three months (n = 13 and 55, respectively) | N/A | Significant overall reduction detected in the median frequency of headache episodes from baseline to three months (p = 0.00). | Yamanaka et al., 2020 [91] |
Retrospective observational study | 42 | Riboflavin (100 and 200 mg for children weighing 20 to 40 kg and greater than 40 kg, respectively) | N/A | Significant decrease in the frequency of headache days after 2–4 months compared to the baseline. Mean headache intensity (p < 0.001), and headache duration (p < 0.001) decreased significantly. | Das et al., 2020 [92] |
Study Design | N | Intervention | Comparison | Outcomes | Reference |
---|---|---|---|---|---|
Open label trial | 44 | Riboflavin 400 mg daily (23/44 received aspirin 75 mg daily) | N/A | A 68.2% improvement in migraine severity score, no difference between the aspirin-treated and non-aspirin-treated groups (p-value not reported) | Schoenen et al., 1994 [96] |
RCT | 55 | 400 mg daily | Placebo for three months (n = 27) | Riboflavin significantly reduced the frequency of seizures (p = 0.005) and the number of headache days (p = 0.012) when compared with the placebo group | Schoenen et al., 1998 [9] |
Open label trial | 26 | 400 mg daily vs. bisoprolol 10 mg daily or metoprolol 200 mg daily | N/A | Headache frequency was significantly reduced (p < 0.05) in both groups, but there was no difference between the two groups | Sándor et al., 2000 [97] |
Open label trial | 23 | 400 mg daily | N/A | Headache frequency significantly decreased from 4 days/month at baseline to 2 days/month at three and six months (p < 0.05) | Boehnke et al., 2004 [98] |
Open label trial | 64 | 400 mg daily | N/A | 62.5% responded and haplotype H was associated with a reduced probability of responding to riboflavin (OR, 0.24; 95% confidence interval [0.08, 0.71]) | Di Lorenzo et al., 2009 [99] |
RCT | 100 | 100 mg daily for at least three months | Propranolol 80 mg daily for at least three months (n = 50) | A greater reduction in migraine frequency in the propranolol group at one month (p < 0.001), but no difference between the groups at three and six months | Nambiar NJ et al., 2011 [11] |
RCT | 90 | 400 mg/day | Sodium valproate 500 mg/day | The frequency, median duration per month, and severity of headache decreased in both groups, but the difference between them was not significant (p > 0.05). However, the vitamin B2 group had significantly fewer side effects (p = 0.005). | Rahimd et al., 2015 [100] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef] [Green Version]
- Montagna, P.; Sacquegna, T.; Martinelli, P.; Cortelli, P.; Bresolin, N.; Moggio, M.; Baldrati, A.; Riva, R.; Lugaresi, E. Mitochondrial abnormalities in migraine. Preliminary findings. Headache 1988, 28, 477–480. [Google Scholar] [CrossRef]
- Stuart, S.; Griffiths, L.R. A possible role for mitochondrial dysfunction in migraine. Mol. Genet. Genom. 2012, 287, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.M.; McFarland, R.; Blakely, E.L.; He, L.; Whittaker, R.G.; Taylor, R.W.; Chinnery, P.F.; Turnbull, D.M. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008, 63, 35–39. [Google Scholar] [CrossRef]
- Ghaemi, A.; Alizadeh, L.; Babaei, S.; Jafarian, M.; Khaleghi Ghadiri, M.; Meuth, S.G.; Kovac, S.; Gorji, A. Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 2018, 38, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Marashly, E.T.; Bohlega, S.A. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine. Front. Neurol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moat, S.J.; Ashfield-Watt, P.A.; Powers, H.J.; Newcombe, R.G.; McDowell, I.F. Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. Clin. Chem. 2003, 49, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Schoenen, J.; Jacquy, J.; Lenaerts, M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology 1998, 50, 466–470. [Google Scholar] [CrossRef]
- Silberstein, S.D.; Holland, S.; Freitag, F.; Dodick, D.W.; Argoff, C.; Ashman, E. Evidence-based guideline update: Pharmacologic treatment for episodic migraine prevention in adults: Report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2012, 78, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Nambiar, N.J.; Aiyappa, C.; Srinivasa, R. Oral riboflavin versus oral propranolol in migraine prophylaxis: An open label randomized controlled trial. Neurol. Asia 2011, 16, 223–229. [Google Scholar]
- Orr, S.L.; Venkateswaran, S. Nutraceuticals in the prophylaxis of pediatric migraine: Evidence-based review and recommendations. Cephalalgia 2014, 34, 568–583. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, G.; Kanou, K.; Takamatsu, T.; Takeshita, M.; Morichi, S.; Suzuki, S.; Ishida, Y.; Watanabe, Y.; Go, S.; Oana, S.; et al. Complementary and Integrative Medicines as Prophylactic Agents for Pediatric Migraine: A Narrative Literature Review. J. Clin. Med. 2021, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.W.; Coffey, C.S.; Chamberlin, L.A.; Ecklund, D.J.; Klingner, E.A.; Yankey, J.W.; Korbee, L.L.; Porter, L.L.; Hershey, A.D. Trial of Amitriptyline, Topiramate, and Placebo for Pediatric Migraine. N. Engl. J. Med. 2017, 376, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Patterson-Gentile, C.; Szperka, C.L. The Changing Landscape of Pediatric Migraine Therapy: A Review. JAMA Neurol. 2018, 75, 881–887. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Libardi, S.H.; Skibsted, L.H. Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct. 2012, 3, 487–502. [Google Scholar] [CrossRef]
- Lienhart, W.D.; Gudipati, V.; Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys. 2013, 535, 150–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramaniam, S.; Christodoulou, J.; Rahman, S. Disorders of riboflavin metabolism. J. Inherit. Metab. Dis. 2019, 42, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Tozzi-Ciancarelli, M.G.; De Matteis, G.; Di Massimo, C.; Marini, C.; Ciancarelli, I.; Carolei, A. Oxidative stress and platelet responsiveness in migraine. Cephalalgia 1997, 17, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.; Sürer, H.; Inan, L.E.; Coskun, O.; Yücel, D. Increased nitrosative and oxidative stress in platelets of migraine patients. Tohoku J. Exp. Med. 2007, 211, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuncel, D.; Tolun, F.I.; Gokce, M.; Imrek, S.; Ekerbiçer, H. Oxidative stress in migraine with and without aura. Biol. Trace Elem. Res. 2008, 126, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47, 69–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, G.M.; Kalita, J.; Misra, U.K. A study of oxidative stress in migraine with special reference to prophylactic therapy. Int. J. Neurosci. 2018, 128, 318–324. [Google Scholar] [CrossRef]
- Gross, E.C.; Putananickal, N.; Orsini, A.L.; Vogt, D.R.; Sandor, P.S.; Schoenen, J.; Fischer, D. Mitochondrial function and oxidative stress markers in higher-frequency episodic migraine. Sci. Rep. 2021, 11, 4543. [Google Scholar] [CrossRef]
- Eren, Y.; Dirik, E.; Neşelioğlu, S.; Erel, Ö. Oxidative stress and decreased thiol level in patients with migraine: Cross-sectional study. Acta Neurol. Belg. 2015, 115, 643–649. [Google Scholar] [CrossRef]
- Geyik, S.; Altunısık, E.; Neyal, A.M.; Taysi, S. Oxidative stress and DNA damage in patients with migraine. J. Headache Pain 2016, 17, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doruk, S.; Ozyurt, H.; Inonu, H.; Erkorkmaz, U.; Saylan, O.; Seyfikli, Z. Oxidative status in the lungs associated with tobacco smoke exposure. Clin. Chem. Lab. Med. 2011, 49, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.J.; Fisher-Wellman, K.H. Blood oxidative stress biomarkers: Influence of sex, exercise training status, and dietary intake. Gend. Med. 2008, 5, 218–228. [Google Scholar] [CrossRef]
- Orhan, H.; Sahin, G. In vitro effects of NSAIDS and paracetamol on oxidative stress-related parameters of human erythrocytes. Exp. Toxicol. Pathol. 2001, 53, 133–140. [Google Scholar] [CrossRef]
- Shimomura, T.; Kitano, A.; Marukawa, H.; Mishima, K.; Isoe, K.; Adachi, Y.; Takahashi, K. Point mutation in platelet mitochondrial tRNA(Leu(UUR)) in patient with cluster headache. Lancet 1994, 344, 625. [Google Scholar] [CrossRef]
- Gupta, R.; Pathak, R.; Bhatia, M.S.; Banerjee, B.D. Comparison of oxidative stress among migraineurs, tension-type headache subjects, and a control group. Ann. Indian Acad. Neurol. 2009, 12, 167–172. [Google Scholar] [CrossRef]
- Aytaç, B.; Coşkun, Ö.; Alioğlu, B.; Durak, Z.E.; Büber, S.; Tapçi, E.; Ocal, R.; Inan, L.E.; Durak, İ.; Yoldaş, T.K. Decreased antioxidant status in migraine patients with brain white matter hyperintensities. Neurol. Sci. 2014, 35, 1925–1929. [Google Scholar] [CrossRef]
- Bernecker, C.; Ragginer, C.; Fauler, G.; Horejsi, R.; Möller, R.; Zelzer, S.; Lechner, A.; Wallner-Blazek, M.; Weiss, S.; Fazekas, F.; et al. Oxidative stress is associated with migraine and migraine-related metabolic risk in females. Eur. J. Neurol. 2011, 18, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Bast, A.; Haenen, G.R. Lipoic acid: A multifunctional antioxidant. Biofactors 2003, 17, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Packer, L.; Witt, E.H.; Tritschler, H.J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef]
- Magis, D.; Ambrosini, A.; Sándor, P.; Jacquy, J.; Laloux, P.; Schoenen, J. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache 2007, 47, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Cavestro, C.; Bedogni, G.; Molinari, F.; Mandrino, S.; Rota, E.; Frigeri, M.C. Alpha-Lipoic Acid Shows Promise to Improve Migraine in Patients with Insulin Resistance: A 6-Month Exploratory Study. J. Med. Food 2018, 21, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Somjen, G.G.; Aitken, P.G.; Czéh, G.L.; Herreras, O.; Jing, J.; Young, J.N. Mechanism of spreading depression: A review of recent findings and a hypothesis. Can. J. Physiol. Pharmacol. 1992, 70 (Suppl. S248–S254). [Google Scholar] [CrossRef] [PubMed]
- Somjen, G.G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 2001, 81, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- Takano, T.; Tian, G.F.; Peng, W.; Lou, N.; Lovatt, D.; Hansen, A.J.; Kasischke, K.A.; Nedergaard, M. Cortical spreading depression causes and coincides with tissue hypoxia. Nat. Neurosci. 2007, 10, 754–762. [Google Scholar] [CrossRef]
- Viggiano, A.; Viggiano, E.; Valentino, I.; Monda, M.; Viggiano, A.; De Luca, B. Cortical spreading depression affects reactive oxygen species production. Brain Res. 2011, 1368, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Shatillo, A.; Koroleva, K.; Giniatullina, R.; Naumenko, N.; Slastnikova, A.A.; Aliev, R.R.; Bart, G.; Atalay, M.; Gu, C.; Khazipov, R.; et al. Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 2013, 253, 341–349. [Google Scholar] [CrossRef]
- Benemei, S.; Fusi, C.; Trevisan, G.; Geppetti, P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 2014, 171, 2552–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, M.; Hara, T. Effects of riboflavin and selenium deficiencies on glutathione and its relating enzyme activities with respect to lipid peroxide content of rat livers. J. Nutr. Sci. Vitaminol. Tokyo 1983, 29, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Bates, C.J. Glutathione and related indices in rat lenses, liver and red cells during riboflavin deficiency and its correction. Exp. Eye Res. 1991, 53, 123–130. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Wu, X.; Yang, H.; Liu, Y. Effects of dietary riboflavin levels on antioxidant defense of the juvenile grouper Epinephelus coioides. Fish Physiol. Biochem. 2010, 36, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Bütün, A.; Nazıroğlu, M.; Demirci, S.; Çelik, Ö.; Uğuz, A.C. Riboflavin and vitamin E increase brain calcium and antioxidants, and microsomal calcium-ATP-ase values in rat headache models induced by glyceryl trinitrate. J. Membr. Biol. 2015, 248, 205–213. [Google Scholar] [CrossRef]
- Nazıroğlu, M.; Çelik, Ö.; Uğuz, A.C.; Bütün, A. Protective effects of riboflavin and selenium on brain microsomal Ca2+-ATPase and oxidative damage caused by glyceryl trinitrate in a rat headache model. Biol. Trace Elem. Res. 2015, 164, 72–79. [Google Scholar] [CrossRef]
- Ramachandran, R. Neurogenic inflammation and its role in migraine. Semin. Immunopathol. 2018, 40, 301–314. [Google Scholar] [CrossRef]
- Malhotra, R. Understanding migraine: Potential role of neurogenic inflammation. Ann. Indian Acad. Neurol. 2016, 19, 175–182. [Google Scholar] [CrossRef]
- Perini, F.; D’Andrea, G.; Galloni, E.; Pignatelli, F.; Billo, G.; Alba, S.; Bussone, G.; Toso, V. Plasma Cytokine Levels in Migraineurs and Controls. Headache J. Head Face Pain 2005, 45, 926–931. [Google Scholar] [CrossRef]
- Kacinski, M.; Gergont, A.; Kubik, A.; Steczkowska-Klucznik, M. Proinflammatory cytokines in children with migraine with or without aura. Przegl. Lek. 2005, 62, 1276–1280. [Google Scholar] [PubMed]
- Sarchielli, P.; Alberti, A.; Baldi, A.; Coppola, F.; Rossi, C.; Pierguidi, L.; Floridi, A.; Calabresi, P. Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 2006, 46, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Rozen, T.; Swidan, S.Z. Elevation of CSF Tumor Necrosis Factor α Levels in New Daily Persistent Headache and Treatment Refractory Chronic Migraine. Headache J. Head Face Pain 2007, 47, 1050–1055. [Google Scholar] [CrossRef]
- Wang, F.; He, Q.; Ren, Z.; Li, F.; Chen, W.; Lin, X.; Zhang, H.; Tai, G. Association of serum levels of intercellular adhesion molecule-1 and interleukin-6 with migraine. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2015, 36, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Boćkowski, L.; Sobaniec, W.; Zelazowska-Rutkowska, B. Proinflammatory plasma cytokines in children with migraine. Pediatr. Neurol. 2009, 41, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Durham, P.; Papapetropoulos, S. Biomarkers associated with migraine and their potential role in migraine management. Headache 2013, 53, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Karatas, H.; Erdener, S.E.; Gursoy-Ozdemir, Y.; Lule, S.; Eren-Kocak, E.; Sen, Z.D.; Dalkara, T. Spreading depression triggers headache by activating neuronal Panx1 channels. Science 2013, 339, 1092–1095. [Google Scholar] [CrossRef]
- Kraig, R.P.; Mitchell, H.M.; Christie-Pope, B.; Kunkler, P.E.; White, D.M.; Tang, Y.P.; Langan, G. TNF-alpha and Microglial Hormetic Involvement in Neurological Health & Migraine. Dose Response 2010, 8, 389–413. [Google Scholar] [CrossRef]
- Levy, D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: The role of immuno-vascular interactions and cortical spreading depression. Curr. Pain Headache Rep. 2012, 16, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kraig, R.P.; Dong, L.M.; Thisted, R.; Jaeger, C.B. Spreading depression increases immunohistochemical staining of glial fibrillary acidic protein. J. Neurosci. 1991, 11, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Sukhotinsky, I.; Dilekoz, E.; Wang, Y.; Qin, T.; Eikermann-Haerter, K.; Waeber, C.; Ayata, C. Chronic daily cortical spreading depressions suppress spreading depression susceptibility. Cephalalgia 2011, 31, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Jander, S.; Schroeter, M.; Peters, O.; Witte, O.W.; Stoll, G. Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J. Cereb. Blood Flow Metab. 2001, 21, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Ghaemi, A.; Sajadian, A.; Khodaie, B.; Lotfinia, A.A.; Lotfinia, M.; Aghabarari, A.; Khaleghi Ghadiri, M.; Meuth, S.; Gorji, A. Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression. Mol. Neurobiol. 2016, 53, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Tan, X.; Reis, J.C.; Badr, M.Z.; Papasian, C.J.; Morrison, D.C.; Qureshi, N. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, S.; Bishayi, B. Riboflavin along with antibiotics balances reactive oxygen species and inflammatory cytokines and controls Staphylococcus aureus infection by boosting murine macrophage function and regulates inflammation. J. Inflamm. Lond. 2016, 13, 36. [Google Scholar] [CrossRef] [Green Version]
- Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Q.; Qi, D.; Zhang, L.; Yi, L.; Li, Q.; Zhang, Z. Valproate ameliorates nitroglycerin-induced migraine in trigeminal nucleus caudalis in rats through inhibition of NF-κB. J. Headache Pain 2016, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Mazur-Bialy, A.I.; Pocheć, E. HMGB1 Inhibition During Zymosan-Induced Inflammation: The Potential Therapeutic Action of Riboflavin. Arch. Immunol. Ther. Exp. Warsz. 2016, 64, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Yorns, W.R., Jr.; Hardison, H.H. Mitochondrial dysfunction in migraine. Semin. Pediatr. Neurol. 2013, 20, 188–193. [Google Scholar] [CrossRef]
- Sparaco, M.; Bonilla, E.; DiMauro, S.; Powers, J.M. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J. Neuropathol. Exp. Neurol. 1993, 52, 1–10. [Google Scholar] [CrossRef]
- Tanji, K.; Kunimatsu, T.; Vu, T.H.; Bonilla, E. Neuropathological features of mitochondrial disorders. Semin. Cell Dev. Biol. 2001, 12, 429–439. [Google Scholar] [CrossRef]
- Bresolin, N.; Martinelli, P.; Barbiroli, B.; Zaniol, P.; Ausenda, C.; Montagna, P.; Gallanti, A.; Comi, G.P.; Scarlato, G.; Lugaresi, E. Muscle mitochondrial DNA deletion and 31P-NMR spectroscopy alterations in a migraine patient. J. Neurol. Sci. 1991, 104, 182–189. [Google Scholar] [CrossRef]
- Barbiroli, B.; Montagna, P.; Cortelli, P.; Funicello, R.; Iotti, S.; Monari, L.; Pierangeli, G.; Zaniol, P.; Lugaresi, E. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 1992, 42, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Montagna, P.; Cortelli, P.; Monari, L.; Pierangeli, G.; Parchi, P.; Lodi, R.; Iotti, S.; Frassineti, C.; Zaniol, P.; Lugaresi, E.; et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology 1994, 44, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Younis, S.; Hougaard, A.; Vestergaard, M.B.; Larsson, H.B.W.; Ashina, M. Migraine and magnetic resonance spectroscopy: A systematic review. Curr. Opin. Neurol. 2017, 30, 246–262. [Google Scholar] [CrossRef]
- Borkum, J.M. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef]
- Gross, E.C.; Lisicki, M.; Fischer, D.; Sándor, P.S.; Schoenen, J. The metabolic face of migraine—From pathophysiology to treatment. Nat. Rev. Neurol. 2019, 15, 627–643. [Google Scholar] [CrossRef]
- Welch, K.M.; Levine, S.R.; D’Andrea, G.; Schultz, L.R.; Helpern, J.A. Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 1989, 39, 538–541. [Google Scholar] [CrossRef]
- Schoenen, J. Pathogenesis of migraine: The biobehavioural and hypoxia theories reconciled. Acta Neurol. Belg. 1994, 94, 79–86. [Google Scholar] [PubMed]
- Zaki, E.A.; Freilinger, T.; Klopstock, T.; Baldwin, E.E.; Heisner, K.R.; Adams, K.; Dichgans, M.; Wagler, S.; Boles, R.G. Two common mitochondrial DNA polymorphisms are highly associated with migraine headache and cyclic vomiting syndrome. Cephalalgia 2009, 29, 719–728. [Google Scholar] [CrossRef]
- Okada, H.; Araga, S.; Takeshima, T.; Nakashima, K. Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache 1998, 38, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, M.; Feleppa, M.; Lipton, R.B.; Rapoport, A.M.; Bigal, M.E. Mitochondrial dysfunction and migraine: Evidence and hypotheses. Cephalalgia 2006, 26, 361–372. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, S.K.; Zhou, J.L.; Taglialatela, G.; Chung, K.; Coggeshall, R.E.; Chung, J.M. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004, 111, 116–124. [Google Scholar] [CrossRef]
- Metea, M.R.; Newman, E.A. Glial cells dilate and constrict blood vessels: A mechanism of neurovascular coupling. J. Neurosci. 2006, 26, 2862–2870. [Google Scholar] [CrossRef]
- Dong, X.; Guan, X.; Chen, K.; Jin, S.; Wang, C.; Yan, L.; Shi, Z.; Zhang, X.; Chen, L.; Wan, Q. Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci. Lett. 2017, 636, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Lee, G.S. Riboflavin, vitamin B2, attenuates NLRP3, NLRC4, AIM2, and non-canonical inflammasomes by the inhibition of caspase-1 activity. Sci. Rep. 2020, 10, 19091. [Google Scholar] [CrossRef]
- Athaillah, A.; Dimyati, Y.; Saing, J.H.; Hakimi, B.S.; Aznan, L. Riboflavin as migraine prophylaxis in adolescents. Paediatr. Indones. 2012, 52, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Talebian, A.; Soltani, B.; Banafshe, H.R.; Moosavi, G.A.; Talebian, M.; Soltani, S. Prophylactic effect of riboflavin on pediatric migraine: A randomized, double-blind, placebo-controlled trial. Electron. Physician 2018, 10, 6279–6285. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, G.; Suzuki, S.; Takeshita, M.; Go, S.; Morishita, N.; Takamatsu, T.; Daida, A.; Morichi, S.; Ishida, Y.; Oana, S.; et al. Effectiveness of low-dose riboflavin as a prophylactic agent in pediatric migraine. Brain Dev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Qubty, W. Retrospective Observational Study on Riboflavin Prophylaxis in Child and Adolescent Migraine. Pediatr. Neurol. 2020, 114, 5–8. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, S.C.; Wade, F.M.; Forrest, K.M.; Ratanayake, P.D.; Fagan, E.; Antony, J. High-dose riboflavin for migraine prophylaxis in children: A double-blind, randomized, placebo-controlled trial. J. Child Neurol. 2008, 23, 1300–1304. [Google Scholar] [CrossRef]
- Bruijn, J.; Duivenvoorden, H.; Passchier, J.; Locher, H.; Dijkstra, N.; Arts, W.F. Medium-dose riboflavin as a prophylactic agent in children with migraine: A preliminary placebo-controlled, randomised, double-blind, cross-over trial. Cephalalgia 2010, 30, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condo, M.; Posar, A.; Arbizzani, A.; Parmeggiani, A. Riboflavin prophylaxis in pediatric and adolescent migraine. J. Headache Pain 2009, 10, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Schoenen, J.; Lenaerts, M.; Bastings, E. High-dose riboflavin as a prophylactic treatment of migraine: Results of an open pilot study. Cephalalgia 1994, 14, 328–329. [Google Scholar] [CrossRef] [PubMed]
- Sándor, P.S.; Afra, J.; Ambrosini, A.; Schoenen, J. Prophylactic treatment of migraine with beta-blockers and riboflavin: Differential effects on the intensity dependence of auditory evoked cortical potentials. Headache 2000, 40, 30–35. [Google Scholar] [CrossRef]
- Boehnke, C.; Reuter, U.; Flach, U.; Schuh-Hofer, S.; Einhaupl, K.M.; Arnold, G. High-dose riboflavin treatment is efficacious in migraine prophylaxis: An open study in a tertiary care centre. Eur. J. Neurol. 2004, 11, 475–477. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Pierelli, F.; Coppola, G.; Grieco, G.S.; Rengo, C.; Ciccolella, M.; Magis, D.; Bolla, M.; Casali, C.; Santorelli, F.M.; et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 2009, 72, 1588–1594. [Google Scholar] [CrossRef]
- Rahimdel, A.; Zeinali, A.; Yazdian-Anari, P.; Hajizadeh, R.; Arefnia, E. Effectiveness of Vitamin B2 versus Sodium Valproate in Migraine Prophylaxis: A randomized clinical trial. Electron. Physician 2015, 7, 1344–1348. [Google Scholar] [CrossRef]
- Zempleni, J.; Galloway, J.R.; McCormick, D.B. Pharmacokinetics of orally and intravenously administered riboflavin in healthy humans. Am. J. Clin. Nutr. 1996, 63, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamanaka, G.; Suzuki, S.; Morishita, N.; Takeshita, M.; Kanou, K.; Takamatsu, T.; Morichi, S.; Ishida, Y.; Watanabe, Y.; Go, S.; et al. Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients 2021, 13, 2612. https://doi.org/10.3390/nu13082612
Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T, Morichi S, Ishida Y, Watanabe Y, Go S, et al. Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients. 2021; 13(8):2612. https://doi.org/10.3390/nu13082612
Chicago/Turabian StyleYamanaka, Gaku, Shinji Suzuki, Natsumi Morishita, Mika Takeshita, Kanako Kanou, Tomoko Takamatsu, Shinichiro Morichi, Yu Ishida, Yusuke Watanabe, Soken Go, and et al. 2021. "Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines" Nutrients 13, no. 8: 2612. https://doi.org/10.3390/nu13082612
APA StyleYamanaka, G., Suzuki, S., Morishita, N., Takeshita, M., Kanou, K., Takamatsu, T., Morichi, S., Ishida, Y., Watanabe, Y., Go, S., Oana, S., & Kawashima, H. (2021). Experimental and Clinical Evidence of the Effectiveness of Riboflavin on Migraines. Nutrients, 13(8), 2612. https://doi.org/10.3390/nu13082612