Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Extraction of APC
2.3. Cells and Cell Culture
2.4. Total RNA Extraction
2.5. Quantitative Real-Time PCR Analysis
2.6. DNA Microarrays
2.7. Statistical Analysis
3. Results
3.1. Gene Expression Profile of APC Extract-Treated Cells
3.2. Validation of Global Gene Expression Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Msanda, F.; El Aboudi, A.; Peltier, J.P. Biodiversité et biogéographie de l’arganeraie marocaine. Cah. Agric. 2005, 14, 357–364. [Google Scholar]
- Lybbert, T.J.; Aboudrare, A.; Chaloud, D.; Magnan, N.; Nash, M. Booming markets for Moroccan argan oil appear to benefit some rural households while threatening the endemic argan forest. Proc. Natl. Acad. Sci. USA 2011, 108, 13963–13968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera-Vique, C.; Marfil, R.; Giménez, R.; Martínez-Augustin, O. Bioactive compounds and nutritional significance of virgin argan oil–an edible oil with potential as a functional food. Nutr. Rev. 2012, 70, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Lizard, G.; Filali-Zegzouti, Y.; Midaoui, A.E. Benefits of Argan Oil on Human Health. Int. J. Mol. Sci. 2017, 18, 1383. [Google Scholar] [CrossRef] [PubMed]
- Charrouf, Z.; Guillaume, D.; Driouich, A. Argan tree: An asset for Morocco. Biofutur 2002, 220, 54–57. (In French) [Google Scholar]
- Boucetta, K.Q.; Charrouf, Z.; Aguenaou, H.; Derouiche, A.; Bensouda, Y. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity. Clin. Interv. Aging 2015, 10, 339–349. [Google Scholar] [PubMed] [Green Version]
- Boucetta, K.Q.; Charrouf, Z.; Derouiche, A.; Rahali, Y.; Bensouda, Y. Skin hydration in postmenopausal women: Argan oil benefit with oral and/or topical use. Prz. Menopauzalny 2014, 13, 280–288. [Google Scholar] [CrossRef] [Green Version]
- De Waroux, Y.L.P.; Lambin, E.F. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl. Geogr. 2012, 32, 777–786. [Google Scholar] [CrossRef]
- El Monfalouti, H.; Charrouf, Z.; Belviso, S.; Ghirardello, D.; Scursatone, B.; Guillaume, G.; Denhez, C.; Zeppa, G. Analysis and antioxidant capacity of the phenolic compounds from argan fruit (Argania spinosa (L.) Skeels). Eur. J. Lipid Sci. Technol. 2012, 114, 446–452. [Google Scholar] [CrossRef]
- Henry, M.; Kowalczyk, M.; Maldini, M.; Piacente, S.; Stochma, A.; Oleszek, W. Saponin inventory from Argania spinosa kernel cakes by liquid chromatography and mass spectrometry. Phytochem. Anal. 2013, 24, 616–622. [Google Scholar] [CrossRef]
- Perez Davo, A.; Truchuelo, M.T.; Vitale, M.; Gonzalez-Castro, J. Efficacy of an antiaging treatment against environmental factors: Deschampsia antarctica extract and high-tolerance retinoids combination. J. Clin. Aesthet. Dermatol. 2019, 12, E65–E70. [Google Scholar] [PubMed]
- Bonaventure, J.; Domingues, M.J.; Larue, L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment. Cell Melanoma Res. 2013, 26, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment. Cell Melanoma Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Hearing, V.J. Physiological factors that regulate skin pigmentation. Biofactors 2009, 35, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Drira, R.; Sakamoto, K. Sakuranetin induces melanogenesis in B16 melanoma cells through inhibition of ERK and PI3K/AKT signaling pathways. Phytother. Res. 2016, 30, 997–1002. [Google Scholar] [CrossRef]
- D’Mello, S.A.; Finlay, G.J.; Baguley, B.C.; Askarian-Amri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef] [Green Version]
- Goding, C.R. Mitf from neural crest to melanoma: Signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000, 14, 1712–1728. [Google Scholar] [PubMed]
- Steingrimsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 2004, 38, 365–411. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.J.; Brady, M.; Ochsenbauer-Jambor, C.; Snyder, S.; Incao, A.; Pavan, W.J. WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment. Cell Res. 2005, 18, 167–180. [Google Scholar] [CrossRef]
- Wu, M.; Hemesath, T.J.; Takemoto, C.M.; Horstmann, M.A.; Wells, A.G.; Price, E.R.; Fisher, D.Z.; Fisher, D.E. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000, 14, 301–312. [Google Scholar]
- Gu, W.J.; Ma, H.J.; Zhao, G.; Yuan, X.Y.; Zhang, P.; Liu, W.; Ma, L.J.; Lei, X.B. Additive effect of heat on the UVB-induced tyrosinase activation and melanogenesis via ERK/p38/MITF pathway in human epidermal melanocytes. Arch. Dermatol. Res. 2014, 306, 583–590. [Google Scholar] [CrossRef]
- Karunarathne, W.A.H.M.; Molagoda, I.M.N.; Kim, M.S.; Choi, Y.H.; Oren, M.; Park, E.K.; Kim, G.Y. Flumequine-mediated upregulation of p38 MAPK and JNK results in melanogenesis in B16F10 cells and zebrafish larvae. Biomolecules 2019, 9, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellei, B.; Pitisci, A.; Catricalà, C.; Larue, L.; Picardo, M. Wnt/β-catenin signaling is stimulated by α-melanocyte-stimulating hormone in melanoma and melanocyte cells: Implication in cell differentiation. Pigment. Cell Melanoma Res. 2011, 24, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.J. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 1995, 80, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Hong, A.R.; Kim, Y.H.; Yoo, H.; Kang, S.W.; Chang, S.E.; Song, Y. JNK suppresses melanogenesis by interfering with CREB-regulated transcription coactivator 3-dependent MITF expression. Theranostics 2020, 10, 4017. [Google Scholar] [CrossRef]
- Ancans, J.; Tobin, D.J.; Hoogduijn, M.J.; Smit, N.P.; Wakamatsu, K.; Thody, A.J. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp. Cell Res. 2001, 268, 26–35. [Google Scholar] [CrossRef]
- Bourhim, T.; Villareal, M.O.; Gadhi, C.; Hafidi, A.; Isoda, H. Depigmenting effect of argan press-cake extract through the down-regulation of Mitf and melanogenic enzymes expression in B16 murine melanoma cells. Cytotechnology 2018, 70, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Roesler, W.J.; Park, E.A.; McFie, P.J. Characterization of CCAAT: Enhancer-binding protein alpha as a cyclic AMP-responsive nuclear regulator. J. Biol. Chem. 1998, 273, 14950–14957. [Google Scholar] [CrossRef] [Green Version]
- Chiaverini, C.; Beuret, L.; Flori, E.; Busca, R.; Abbe, P.; Bille, K.; Bahadoran, P.; Ortonne, J.P.; Bertolotto, C.; Ballotti, R. Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J. Biol. Chem. 2008, 283, 12635–12642. [Google Scholar] [CrossRef] [Green Version]
- Schepsky, A.; Bruser, K.; Gunnarsson, G.J.; Goodall, J.; Hallsson, J.H.; Goding, C.R.; Steingrimsson, E.; Hecht, A. The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol. Cell. Biol. 2006, 26, 8914–8927. [Google Scholar] [CrossRef] [Green Version]
- Vachtenheim, J.; Borovanský, J. “Transcription physiology” of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 2010, 19, 617–627. [Google Scholar] [CrossRef]
- Wang, J.S.; Wang, F.B.; Zhang, Q.G.; Shen, Z.Z.; Shao, Z.M. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol. Cancer Res. 2008, 6, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Bobrie, A.; Krumeich, S.; Reyal, F.; Recchi, C.; Moita, L.F.; Seabra, M.C.; Ostrowski, M.; Théry, C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012, 72, 4920–4930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, F.; Jiang, Y.; Lu, H.; Lu, X.; Wang, S.; Wang, L.; Wei, M.; Lu, W.; Du, Z.; Ye, Z.; et al. Rab27A mediated by NF-κB promotes the stemness of colon cancer cells via up-regulation of cytokine secretion. Oncotarget 2016, 7, 63342–63351. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ni, Q.; Wang, X.; Zhu, H.; Wang, Z.; Huang, J. High expression of RAB27A and TP53 in pancreatic cancer predicts poor survival. Med. Oncol. 2015, 32, 372. [Google Scholar] [CrossRef] [PubMed]
- Cheli, Y.; Luciani, F.; Khaled, M.; Beuret, L.; Bille, K.; Gounon, P.; Ortonne, J.P.; Bertolotto, C.; Ballotti, R. α-MSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J. Biol. Chem. 2009, 284, 18699–18706. [Google Scholar] [CrossRef] [Green Version]
- Fuller, B.B.; Spaulding, D.T.; Smith, D.R. Regulation of the catalytic activity of preexisting tyrosinase in black and caucasian human melanocyte cell cultures. Exp. Cell. Res. 2001, 262, 197–208. [Google Scholar] [CrossRef]
- Chintala, S.; Li, W.; Lamoreux, M.L.; Ito, S.; Wakamatsu, K.; Sviderskaya, E.V.; Bennett, D.C.; Park, Y.M.; Gahl, W.A.; Huizing, M.; et al. Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc. Natl. Acad. Sci. USA 2005, 102, 10964–10969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Kraft, P.; Nan, H.; Guo, Q.; Chen, C.; Qureshi, A.; Hankinson, S.E.; Hu, F.B.; Duffy, D.L.; Zhao, Z.Z.; et al. Genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008, 4, 1000074. [Google Scholar] [CrossRef]
- Halaban, R.; Pomerantz, S.H.; Marshall, S.; Lambert, D.T.; Lerner, A.B. Regulation of tyrosinase in human melanocytes grown in culture. J. Cell Biol. 1983, 97, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Shallreuter, K.U.; Kothari, S.; Chavan, B.; Spencer, J.D. Regulation of melanogenesis–controversies and new concepts. Exp. Dermatol. 2008, 17, 395–404. [Google Scholar] [CrossRef]
- Migas, P.; Krauze-Baranowska, M. The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem. Lett. 2015, 13, 35–40. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, J.; Li, A.; Reetz, M.T. Chemical and Biocatalytic Routes to Arbutin. Molecules 2019, 24, 3303. [Google Scholar] [CrossRef] [Green Version]
- Englaro, W.; Bertolotto, C.; Buscà, R.; Brunet, A.; Pagès, G.; Ortonne, J.P.; Ballotti, R. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 1998, 273, 9966–9970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Pan, S.; Yang, Y.; Sun, J.; Liang, D.; Wang, X.; Xie, X.; Hu, J. Toll-like receptor 9 regulates melanogenesis through NF-κB activation. Exp. Biol. Med. 2016, 241, 1497–1504. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Choi, H.; Kim, H.J.; Lee, T.R. TNFSF14 inhibits melanogenesis via NF-kB signaling in melanocytes. Cytokine 2018, 110, 126–130. [Google Scholar] [CrossRef]
- Ahn, K.S.; Moon, K.Y.; Lee, J.; Kim, Y.S. Downregulation of NF-κB activation in human keratinocytes by melanogenic inhibitors. J. Dermatol. Sci. 2003, 31, 193–201. [Google Scholar] [CrossRef]
- Malinin, N.L.; Boldin, M.P.; Kovalenko, A.V.; Wallach, D. MAP3K-related kinase involved in NFkappaB induction by TNF, CD95 and IL-1. Nature 1997, 385, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Sun, S.C. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways. Front. Immunol. 2018, 9, 1849. [Google Scholar] [CrossRef]
- Villareal, M.O.; Kume, S.; Bourhim, T.; Bakhtaoui, F.Z.; Kashiwagi, K.; Han, J.; Gadhi, C.; Isoda, H. Activation of MITF by argan oil leads to the inhibition of the tyrosinase and dopachrome tautomerase expressions in B16 murine melanoma cells. Evid. Based Complement. Alternat. Med. 2013, 2013, 340107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makbal, R.; Villareal, O.M.; Gadhi, C.; Hafidi, A.; Isoda, H. Argania spinosa fruit shell extract-induced melanogenesis via cAMP signaling pathway activation. Int. J. Mol. Sci. 2020, 21, 2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourhim, T.; Villareal, M.O.; Couderc, F.; Hafidi, A.; Isoda, H.; Gadhi, C. Melanogenesis promoting effect, antioxidant activity, and UPLC-ESI-HRMS characterization of phenolic compounds of argan leaves extract. Molecules 2021, 26, 371. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Gene Name | Function | Fold Change | |
---|---|---|---|---|
ARB | APC | |||
Brca1 | Breast cancer 1 | Double-strand break repair via homologous recombination, DNA repair, lipid metabolic process | −1.5 | −2.5 |
Slc24a4 | Solute carrier family 24 (sodium/potassium/calcium exchanger), member 4 | Calcium, potassium: Sodium transporter activity | 1.0 | −2.1 |
Ctnnb1 | Catenin (cadherin associated protein), beta 1 | Wnt receptor signaling pathway, positive regulation of I-kappaB kinase/NF-kappaB cascade, positive regulation of MAPK cascade, skin development | −1.1 | −1.8 |
Trpm1 | Transient receptor potential cation channel, subfamily M, member 1 | G-protein coupled glutamate receptor signaling pathway, calcium ion transport into cytosol | −1.0 | −1.7 |
Oca2 | Oculocutaneous albinism II | Transport, spermatid development, cell proliferation, melanocyte differentiation, melanin biosynthetic process, pigmentation, developmental pigmentation, transmembrane transport | −1.0 | −1.7 |
Tyr | Tyrosinase | Melanin biosynthetic process | −1.0 | −1.6 |
Rab27a | RAB27A, member RAS oncogene family | Protein transport, melanocyte differentiation, melanosome localization, melanosome transport, pigmentation | −1.2 | −1.6 |
Map3k12 | Mitogen-activated protein kinase kinase kinase 12 | Activation of MAPKK activity, protein phosphorylation, JNK cascade | −2.3 | −1.6 |
Slc6a17 | Solute carrier family 6 (neurotransmitter transporter), member 17 | Neurotransmitter: sodium symporter activity, neurotransmitter transport | 1.2 | −1.6 |
Vat1 | Vesicle amine transport protein 1 homolog (T californica) | Zinc ion binding, oxidoreductase activity, negative regulation of mitochondrial fusion | −1.1 | −1.6 |
Atp6v0b | Atpase, H+ transporting, lysosomal V0 subunit B | Hydrogen-exporting ATPase activity, phosphorylative mechanism, hydrogen ion transmembrane transporter activity ATP catabolic process, ion transport, ATP hydrolysis coupled proton transport | −1.1 | −1.5 |
Rbm39 | RNA binding motif protein 39 | Nucleotide binding, transcription coactivator activity, poly(A) RNA binding, regulation of transcription, DNA-templated | −1.6 | −1.5 |
Usp9x | Ubiquitin specific peptidase 9, X chromosome | Cysteine-type peptidase activity, hydrolase activity, transforming growth factor beta receptor signaling pathway, BMP signaling pathway, hippocampus development | −1.5 | −1.5 |
Ccs | Copper chaperone for superoxide dismutase | ROS catabolism, superoxide dismutase copper chaperone activity | 1.5 | 1.4 |
Hbegf | Heparin-binding EGF-like growth factor | Positive regulation of keratinocyte migration, positive regulation of protein kinase B signaling cascade, positive regulation of wound healing | −1.1 | 1.5 |
Plcb1 | Phospholipase C, beta 1 | Enzyme binding, positive regulation of JNK cascade, | −1.1 | 1.5 |
Prkar1b | Protein kinase, camp dependent regulatory, type I beta | Camp-dependent protein kinase inhibitor activity, camp-dependent protein kinase regulator activity, regulation of protein phosphorylation | 1.3 | 1.5 |
Slc7a11 | Solute carrier family 7 (cationic amino acid transporter, y+ system), member 11 | Amino acid transmembrane transporter activity, response to toxic substance, platelet aggregation | 1.1 | 1.5 |
Maoa | Monoamine oxidase A | Primary amine oxidase activity, oxidoreductase activity, dopamine catabolic process | −1.2 | 1.5 |
Mcm3 | Minichromosome maintenance deficient 3 | DNA replication initiation | 1.5 | 1.6 |
Erbb3 | V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) | Protein tyrosine kinase activity, receptor signaling protein tyrosine kinase activity, protein phosphorylation | 1.1 | 1.6 |
Rasa1 | RAS p21 protein activator 1 | Positive regulation of Ras GTPase activity, negative regulation of Ras protein signal transduction | 1.1 | 1.6 |
Slc4a4 | Solute carrier family 4 (anion exchanger), member 4 | Transporter activity, inorganic anion exchanger activity, sodium/bicarbonate symporter activity, regulation of pH | −1.2 | 1.6 |
Dzip3 | DAZ interacting protein 3, zinc finger | Zinc ion binding | −1.1 | 1.6 |
Slc35a5 | Solute carrier family 35, member A5 | Nucleotide-sugar transmembrane transporter activity, carbohydrate transport | 1.2 | 1.6 |
Slc12a6 | Solute carrier family 12, member 6 | Potassium/chloride symporter activity, ion transport, cation chloride transport | 1.4 | 1.6 |
Cbl | Casitas B-lineage lymphoma | Phosphotyrosine binding, positive regulation of phosphatidylinositol 3-kinase cascade, protein binding, calcium ion binding, zinc ion binding | 1.2 | 1.6 |
Tcf7l2 | Transcription factor 7 like 2, T cell specific, HMG box | Protein kinase binding, skin development, canonical Wnt receptor signaling pathway involved in positive regulation of epithelial to mesenchymal transition | 1.0 | 1.6 |
Figf | C-fos induced growth factor | Protein binding, vascular endothelial growth factor receptor binding | 1.2 | 1.6 |
Ccrl1 | Atypical chemokine receptor 4 | G-protein coupled receptor signaling pathway, scavenger receptor activity | 1.5 | 1.7 |
Slc6a6 | Solute carrier family 6 (neurotransmitter transporter, taurine), member 6 | Neurotransmitter/sodium symporter activity, beta-alanine transport | 1.1 | 1.7 |
Slc4a4 | Solute carrier family 4 (anion exchanger), member 4 | Anion transmembrane transporter activity, sodium/bicarbonate symporter activity, regulation of pH, bicarbonate transport | 1.1 | 1.7 |
Braf | Braf transforming gene | MAP kinase kinase kinase activity, activation of MAPKK activity, positive regulation of ERK1 and ERK2 cascade | 1.1 | 1.7 |
Akap12 | A kinase (PRKA) anchor protein 13 | Regulation of protein kinase activity, phosphorylation | 1.2 | 1.7 |
Akap13 | A kinase (PRKA) anchor protein (gravin) 12 | Positive regulation of protein kinase A signaling cascade | 1.1 | 1.7 |
Tpr | Translocated promoter region | MAPK import into nucleus | 1.1 | 1.8 |
Crebbp | CREB binding protein | Negative regulation of transcription from RNA polymerase II promoter, p53 binding | −1.0 | 1.8 |
Adh7 | Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide | Aldehyde oxidase activity, oxidoreductase activity | 1.1 | 1.9 |
Cxcl10 | Chemokine (C-X-C motif) ligand 10 | Protein secretion | 1.4 | 1.9 |
Taok1 | TAO kinase 1 | Protein kinase activator activity, protein phosphorylation | 1.2 | 1.9 |
Atp2b1 | Atpase, Ca++ transporting, plasma membrane 1 | Nucleotide binding, hydrolase activity, calcium ion transport | 1.1 | 2.2 |
Slc7a11 | Solute carrier family 7 (cationic amino acid transporter, y+ system), member 11 | Amino acid transmembrane transporter activity, response to toxic substance, platelet aggregation | −1.2 | 2.2 |
Gclm | Glutamate-cysteine ligase, modifier subunit | Glutamate-cysteine ligase activity, glutamate-cysteine ligase catalytic subunit, protein heterodimerization activity, cysteine, glutamate and glutathione metabolic process, response to oxidative stress, apoptotic mitochondrial changes, negative regulation of neuron apoptotic process, negative regulation of extrinsic apoptotic signaling pathway | −1.1 | 2.3 |
Spry4 | Sprouty homolog 4 (Drosophila) | Protein binding, multicellular organismal development, regulation of signal transduction, negative regulation of MAP kinase activity | 1.5 | 2.4 |
Gsta3 | Glutathione S-transferase, alpha 3 | Glutathione transferase activity, metabolic process | 1.1 | 2.7 |
Cluster No. (p-Value) | Signaling Pathway | Genes |
---|---|---|
1 (0.52) | Transporter activity | Slc24a4, Slc6a17 |
2 (1.04) | DNA repair | Brca1 |
3 (0.30) | Melanogenesis regulation, melanosome transport, ATP binding, ion transport, metal binding | Tyr, Rab27a, Trpm1, Vat1, Atp6v0b, Cxxc4, Adam10, Epb41l2 |
4 (0.34) | Wnt signaling pathway, MAP kinase activity | Ctnnb1, Map3k12 |
5 (0.33) | Wnt signaling pathway, metal binding, protein binding c-AMP signaling pathway | Rbm39, Usp9x, Ghrhr, Pkia, Nfkbia, Ctnna1 |
6 (0.68) | Positive regulation of keratinocyte migration, positive regulation of JNK cascade, transporter activity, glutamate-cysteine ligase activity | Hbegf, Plcb, Slc4a4, Slc7a11, Gclm |
7 (0.37) | Ros catabolism, transporter activity, cAMP dependent regulatory, protein binding, regulation of Ras GTPase activity, Wnt signaling | Ccs, Slc12a6, Prkar1b, Slc35a5, Figf, Rasa1, Tcf7l2, Slc6a6 |
8 (0.50) | Protein binding, MAP kinase activity, glutathione transferase activity | Spry4, Gsta3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourhim, T.; Villareal, M.O.; Gadhi, C.; Isoda, H. Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells. Nutrients 2021, 13, 2697. https://doi.org/10.3390/nu13082697
Bourhim T, Villareal MO, Gadhi C, Isoda H. Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells. Nutrients. 2021; 13(8):2697. https://doi.org/10.3390/nu13082697
Chicago/Turabian StyleBourhim, Thouria, Myra O. Villareal, Chemseddoha Gadhi, and Hiroko Isoda. 2021. "Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells" Nutrients 13, no. 8: 2697. https://doi.org/10.3390/nu13082697
APA StyleBourhim, T., Villareal, M. O., Gadhi, C., & Isoda, H. (2021). Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells. Nutrients, 13(8), 2697. https://doi.org/10.3390/nu13082697