Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Administrative Considerations
2.2. Double Blinding and Randomization
2.3. Verum and Placebo
2.4. Biomolecule Measurements (Plasma Total Fatty Acid/Cytokines/hsCRP)
2.5. Statistical Calculations
2.6. Crossover Trial Design, Procedures, and Sequence of Events
3. Results
3.1. Analysis of Compliance and Adverse Events
3.2. Two Independent Group Analysis
3.3. One Crossover Group Analysis
3.4. Fatty Acid Analysis
4. Discussion
- Three weeks of a 688 mg/day palmitoleate mixed fatty acids dietary supplement in a small, randomized, single crossover trial did not produce a statistically detectable change compared to an MCT placebo dietary supplement.
- When each time point was examined, improved subjective PROMIS® measures of fatigue and pain interference were observed between the baseline and first follow-up assessment for the placebo only by Fisher’s LSD adjustment (p < 0.03, pre-post paired F(2,75) = 2.51, two-tailed).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, D.M.; Bressan, J.; Hermsdorff, H.H. O papel da ingestão dos ácidos graxos da dieta na expressão de genes inflamatórios: Uma revisão crítica. Sao Paulo Med. J. 2017, 135, 157–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.O.; Valenzuela, C.A.; Baker, E.J.; Miles, E.A.; Rosa Neto, J.C.; Calder, P.C. Palmitoleic Acid has Stronger Anti-Inflammatory Potential in Human Endothelial Cells Compared to Oleic and Palmitic Acids. Mol. Nutr. Food Res. 2018, 62, e1800322. [Google Scholar] [CrossRef]
- Sorkin, B.C.; Kuszak, A.J.; Bloss, G.; Fukagawa, N.K.; Hoffman, F.A.; Jafari, M.; Barrett, B.; Brown, P.N.; Dushman, F.D.C.S. Improving natural product research translation: From source to clinical trial. FASEB J. 2020, 34, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Eissing, L.; Scherer, T.; Todter, K.; Knippschild, U.; Greve, J.W.; Buurman, W.A.; Pinnschmidt, H.O.; Rensen, S.S.; Wolf, A.M.; Bartelt, A.; et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 2013, 4, 1528. [Google Scholar] [CrossRef] [Green Version]
- RANDOM.ORG. True Random Number Service. Available online: https://www.random.org/lists/ (accessed on 3 June 2017).
- Esfarjani, F.; Khoshtinat, K.; Zargaraan, A.; Mohammadi-Nasrabadi, F.; Salmani, Y.; Saghafi, Z.; Hosseini, H.; Bahmaei, M. Evaluating the rancidity and quality of discarded oils in fast food restaurants. Food Sci. Nutr. 2019, 7, 2302–2311. [Google Scholar] [CrossRef]
- Hung, S.S.O.; Slinger, S.J. Effect of oxidized fish oil on the ascorbic acid nutrition of rainbow trout (Salmo gairdneri). Int. J. Vitam. Nutr. Res. 1980, 50, 393–400. [Google Scholar]
- Bligh, E.G.; DyerYER, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Morrison, W.R.; Smithmit, H.L. Preparation of Fatty Acid Methyl Esters and Dimethylacetals From Lipids. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Eve Technologies C. Assay Menu & Statement of Qualifications. 2017. Available online: https://www.evetechnologies.com/wp-content/uploads/2017/12/Assay-Menu_Statement-of-Qualifications_2017.pdf (accessed on 15 August 2021).
- ScienceDirect. Retraction Notice. Elsevier. Available online: https://www.lipidjournal.com/article/S1933-2874(14)00281-5/pdf (accessed on 30 November 2020).
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)-A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- PROMIS Adult Profile Instruments. Patient-Reported Outcomes Measurement Information System. Available online: http://www.healthmeasures.net/images/PROMIDS/manuals/PROMIS_Adult_Profile_Scoring_Manual.pdf (accessed on 28 July 2020).
- Cleophas, T.J.; Zwinderman, A.H. Crossover studies with continuous variables: Power analysis. Am. J. Ther. 2002, 9, 69–73. [Google Scholar] [CrossRef]
- De Souza, C.O.; Vannice, G.K.; Rosa Neto, J.C.; Calder, P.C. Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders? Mol. Nutr. Food Res. 2018, 62, 1700504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, P.M.; Weber, L.P.; Janz, D.M. Comparison of chloroform-methanol-extracted and solvent-free triglyceride determinations in four fish species. J. Aquat. Anim. Health 2007, 19, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.J.; Nandivada, P.; Chang MIMitchell, P.D.; O’Loughlin, A.; Cowan, E.; Gura, K.M.; Nose, V.; Bistrian, B.P.M. The addition of medium-chain triglycerides to a purified fish oil based diet alters inflmmatory profiles in mice. Metabolism 2015, 64, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.-X.; Chen, S.-N.; Zhu, H.-L.; Niu, X.; Li, J.; Fan, Y.-W.; Deng, Z.-Y.; Sunni, C. Consumption of Interesterified Medium- And Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. J. Agric. Food Chem. 2020, 68, 8255–8262. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Skeaff, C.M.; Crowe, F.L.; Green, T.J.; Hodson, L. Serum fatty acid reference ranges: Percentiles from a New Zealand national nutrition survey. Nutrients 2011, 3, 152–163. [Google Scholar] [CrossRef]
- Davidson, M.H.; Johnson, J.; Rooney, M.W.; Kyle, M.L.; Kling, D.F. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: The ECLIPSE (Epanova® compared to Lovaza® in a pharmacokinetic single-dose evaluation) study. J Clin. Lipidol. 2012, 6, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Morse, N. A Toxicity/Safety Assessment of Dietary Palmitoleic Acid (POA). Table of Contents Figures and Tables. Available online: http://tersuslifesciences.com/wp-content/uploads/2016/09/Safety-of-Palimitoleic-Acid-Morse-2016.pdf (accessed on 15 August 2021).
- Li, C.; Cobb, L.K.; Vesper, H.W.; Asma, S. Global surveillance of trans-fatty acids. Prev. Chronic Dis. 2019, 16, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Jaudszus, A.; Kramer, R.; Pfeuffer, M.; Roth, A.; Jahreis, G.; Kuhnt, K. Trans Palmitoleic acid arises endogenously from dietary vaccenic acid. Am. J. Clin. Nutr. 2014, 99, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef] [PubMed]
- Guillocheau, E.; Legrand, P.; Rioux, V. Trans-palmitoleic acid (trans-9-C16:1, or trans-C16:1 n-7): Nutritional impacts, metabolism, origin, compositional data, analytical methods and chemical synthesis. A review. Biochimie 2020, 169, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Julien, P.; Couture, P.; Lemieux, S.; Vohl, M.C.; Rudkowska, I. Associations between dairy intake and metabolic risk parameters in a healthy french-Canadian population. Appl. Physiol. Nutr. Metab. 2014, 39, 1323–1331. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.H.G. Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in US adults. Ann. Intern. Med. 2010, 153, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersson, H.; Lind, L.; Hulthe, J.; Elmgren, A.; Cederholm, T.; Risérus, U. Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population. Atherosclerosis 2009, 203, 298–303. [Google Scholar] [CrossRef]
- Perreault, M.; Roke, K.; Badawi, A.; Nielsen, D.; Abdelmagid, S.A.; El-Sohemy, A.; Ma, D.; Mutch, D. Plasma levels of 14:0, 16:0, 16:1n-7, and 20:3n-6 are positively associated, but 18:0 and 18:2n-6 are inversely associated with markers of inflammation in young healthy adults. Lipids 2014, 49, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.-J.; Wu, I.-W.; Hsu, K.-H.; Sun, C.-Y.; Hung, M.-J.; Chen, C.-Y.; Tsai, C.-J.; Wu, M.-S.; Lee, C.-C. The association between chronic musculoskeletal pain and clinical outcome in chronic kidney disease patients: A prospective cohort study. Ren. Fail. 2019, 41, 257–266. [Google Scholar] [CrossRef] [Green Version]
Title 1 | Group A (n = 26) | Group B (n = 26) | Multiple t-Test |
---|---|---|---|
Age | 55.5 ± 13.2 | 56.3 ± 14.4 | 0.84 |
Female | 20 (6 males) | 21 (3 males) | n/a |
BMI (kg/m2) | 30.4 ± 7.6 | 28.2 ± 7.0 | 0.29 |
Cannabis use | 5 | 4 | n/a |
Type of diet reported | Ketogenic/Low carb (4) | Ketogenic/Low carb (5) | n/a |
Vegetable-based (2) | Vegetable-based (5) | ||
Gluten free (3) | Gluten free (1) | ||
Low fat (1) | Low fat (2) | ||
Other healthy (5) | Other healthy (3) | ||
Std American (11) | Std American (8) | ||
Exercise Frequencies | |||
Never | 2 | 2 | n/a |
1–2 × per month | 1 | 2 | n/a |
Once a week | 4 | 5 | n/a |
2–3 × per week | 7 | 5 | n/a |
4–5 × per week | 10 | 7 | n/a |
>5 × per week | 2 | 3 | n/a |
Biological Measurements (mean ± standard deviation) | |||
hsCRP (mg/L) | 3.7 ± 3.8 | 2.2 ± 1.9 | 0.10 |
Total Cholesterol | 222.0 ± 37.9 | 208.3 ± 45.2 | 0.25 |
HDL (mg/dL) | 54.7 ± 15.0 | 65.5 ± 20.4 | 0.04 * |
LDL (mg/dL) | 130.3 ± 35.3 | 115.1 ± 43.5 | 0.18 |
VLDL (mg/dL) | 37.0 ± 17.2 | 27.8 ± 16.2 | 0.06 |
TG(mg/dL) | 184.8 ± 87.7 | 139.3 ± 81.5 | 0.01 * |
TNF (pg/mL) | 16.3 ± 11.0 | 17.8 ± 15.2 | 0.68 |
IL-6 (pg/mL) | 1.3 ± 1.7 | 0.9 ± 1.0 | 0.30 |
M ± SD | N | Difference ± SEM | Df | Holm-Sidak Method Adjusted p-Value | |
---|---|---|---|---|---|
hsCRP_p | −0.07 ± 1.70 | 49 | |||
hsCRP_v | 0.27 ± 1.51 | 50 | −0.31 ± 0.32 | 97 | 0.80 |
TNFα_p | −0.30 ± 4.85 | 49 | |||
TNFα_v | 0.94 ± 3.16 | 50 | −1.24 ± 0.82 | 97 | 0.58 |
IL6_p | −0.21 ± 1.50 | 49 | |||
IL6_v | 0.04 ± 1.45 | 50 | −0.25 ± 0.30 | 97 | 0.80 |
Fatigue_p | −0.23 ± 0.62 | 49 | |||
Fatigue_v | −0.11 ± 0.68 | 50 | −0.13 ± 0.13 | 97 | 0.80 |
PainInt_p | −0.35 ± 0.59 | 49 | |||
PainInt_v | −0.18 ± 0.82 | 50 | −0.17 ± 0.14 | 97 | 0.76 |
PhyFunc_p | −0.11 ± 0.49 | 49 | |||
PhyFunc_v | −0.17 ± 0.73 | 50 | 0.06 ± 0.12 | 97 | 0.80 |
Placebo Capsule (mg/g) | Verum Capsule (mg/g) | Baseline Plasma (µg/mL) | Placebo Plasma (µg/mL) | Verum Plasma (µg/mL) | |
---|---|---|---|---|---|
C8:0 | 526.58 ± 0.12 | 9.74 ± 1.13 | 0.04 ± 0.10 | 0.09 ± 0.24 | 0.00 ± 0.00 |
C10:0 | 359.20 ± 0.76 | 6.15 ± 0.78 | 1.05 ± 0.73 | 1.19 ± 1.28 | 1.02 ± 0.92 |
C12:0 | 0.44 ± 0.00 | 0.04 ± 0.01 | 0.86 ± 1.89 | 0.61 ± 1.25 | 0.12 ± 0.08 |
C16:0 | 0.23 ± 0.03 | 261.65 ± 0.91 | 1065.96 ± 282.45 | 995.13 ± 210.52 | 939.40 ± 308.84 |
C16:1n7 | 2.14 ± 0.10 | 452.16 ± 1.72 | 84.68 ± 41.96 | 71.40 ± 37.19 | 78.29 ± 46.55 |
C20:5n3 | 0.10 ± 0.07 | 1.71 ± 0.23 | 29.81 ± 14.82 | 31.52 ± 18.79 | 27.04 ± 10.08 |
C22:6n3 | 0.21 ± 0.07 | 4.92 ± 0.17 | 71.73 ± 53.74 | 78.09 ± 46.40 | 61.11 ± 23.85 |
Total | 891.28 ± 0.01 | 761.92 ± 2.34 | n/a | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasagawa, M.; Boclair, M.J.; Amieux, P.S. Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial. Nutrients 2021, 13, 2801. https://doi.org/10.3390/nu13082801
Sasagawa M, Boclair MJ, Amieux PS. Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial. Nutrients. 2021; 13(8):2801. https://doi.org/10.3390/nu13082801
Chicago/Turabian StyleSasagawa, Masa, Miranda J. Boclair, and Paul S. Amieux. 2021. "Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial" Nutrients 13, no. 8: 2801. https://doi.org/10.3390/nu13082801
APA StyleSasagawa, M., Boclair, M. J., & Amieux, P. S. (2021). Omega-7 Mixed Fatty Acid Supplementation Fails to Reduce Serum Inflammatory Biomarkers: A Placebo-Controlled, Double-Blind Randomized Crossover Trial. Nutrients, 13(8), 2801. https://doi.org/10.3390/nu13082801