Healthy Breastfeeding Infants Consume Different Quantities of Milk Fat Globule Membrane Lipids
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Lipid Extraction and Quantification
2.3. Infant Human Milk Fat Globule Membrane Lipid Intake
2.4. Statistical Analysis
3. Results
3.1. Human Milk Fat Globule Membrane Lipid Concentrations
3.2. Infant Intake of MFGM Lipids in Human Milk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, C.; Ménard, O. Human Milk Fat Globules: Polar Lipid Composition and In Situ Structural Investigations Revealing the Heterogeneous Distribution of Proteins and the Lateral Segregation of Sphingomyelin in the Biological Membrane. Colloids Surf. B Biointerfaces 2011, 83, 29–41. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Liu, L.; Da Zhang, H.; Zhang, Y.; Hao Chang, Y.; Peng, Z.Q. Comparative Lipidomics Analysis of Human, Bovine and Caprine Milk by UHPLC-Q-TOF-MS. Food Chem. 2019, 310, 125865. [Google Scholar]
- Alexandre-Gouabau, M.C.; Moyon, T.; Cariou, V.; Antignac, J.P.; Qannari, E.M.; Croyal, M.; Soumah, M.; Guitton, Y.; David-Sochardet, A.; Billard, H.; et al. Breast Milk Lipidome Is Associated with Early Growth Trajectory in Preterm Infants. Nutrients 2018, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Selvalatchmanan, J.; Rukmini, A.V.; Ji, S.; Triebl, A.; Gao, L.; Bendt, A.K.; Wenk, M.R.; Gooley, J.J.; Torta, F. Variability of Lipids in Human Milk. Metabolites 2021, 11, 104. [Google Scholar] [CrossRef]
- George, A.D.; Gay, M.C.L.; Wlodek, M.E.; Trengove, R.D.; Murray, K.; Geddes, D.T. Untargeted Lipidomics Using Liquid Chromatography-Ion Mobility-Mass Spectrometry Reveals Novel Triacylglycerides in Human Milk. Sci. Rep. 2020, 10, 9255. [Google Scholar] [CrossRef]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human Milk Fatty Acid Composition Is Associated with Dietary, Genetic, Sociodemographic, and Environmental Factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef]
- Dingess, K.A.; Valentine, C.J.; Ollberding, N.J.; Davidson, B.S.; Woo, J.G.; Summer, S.; Peng, Y.M.; Guerrero, M.L.; Ruiz-Palacios, G.M.; Ran-Ressler, R.R.; et al. Branched-Chain Fatty Acid Composition of Human Milk and the Impact of Maternal Diet: The Global Exploration of Human Milk (GEHM) Study. Am. J. Clin. Nutr. 2017, 105, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of Maternal Nutrition on Breast-Milk Composition: A Systematic Review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, A.D.; Gay, M.C.L.; Murray, K.; Muhlhausler, B.S.; Wlodek, M.E.; Geddes, D.T. Human Milk Sampling Protocols Affect Estimation of Infant Lipid Intake. J. Nutr. 2020, 150, 2924–2930. [Google Scholar] [CrossRef]
- Kent, J.C.; Mitoulas, L.R.; Cregan, M.D.; Ramsay, D.T.; Doherty, D.A.; Hartmann, P.E. Volume and Frequency of Breastfeedings and Fat Content of Breast Milk throughout the Day. Pediatrics 2006, 117, e387–e395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, A.D.; Gay, M.C.L.; Wlodek, M.E.; Geddes, D.T. The Importance of Infants’ Lipid Intake in Human Milk Research. Nutr. Rev. 2021. [Google Scholar] [CrossRef]
- Lee, H.; Padhi, E.; Hasegawa, Y.; Larke, J.; Parenti, M.; Wang, A.; Hernell, O.; Lönnerdal, B.; Slupsky, C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front. Pediatrics 2018, 6, 313. [Google Scholar] [CrossRef] [Green Version]
- Mitoulas, L.R.; Kent, J.C.; Cox, D.B.; Owens, R.A.; Sherriff, J.L.; Hartmann, P.E. Variation in Fat, Lactose and Protein in Human Milk Over 24 H and throughout the First Year of Lactation. Br. J. Nutr. 2002, 88, 29–37. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Dewey, K.G. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. Biol. Neonate 1998, 74, 94–105. [Google Scholar] [CrossRef]
- Giuffrida, F.; Cruz-Hernandez, C.; Flück, B.; Tavazzi, I.; Thakkar, S.K.; Destaillats, F.; Braun, M. Quantification of Phospholipids Classes in Human Milk. Lipids 2013, 48, 1051–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid Fingerprints of Milk from Different Mammalians Determined by 31P NMR: Towards Specific Interest in Human Health. Food Chem. 2012, 135, 1777–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, P.; Koulman, A.; Matthews, L.; Acerini, C.L.; Ong, K.K.; Dunger, D.B. Lipidomic Analyses, Breast- and Formula-Feeding, and Growth in Infants. J. Pediatrics 2015, 166, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; Franca, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Jeevam, M.; Sankar, D.M.; Walker, N.; et al. Breastfeeding in the 21st Century: Epidemiology, Mechanisms, and Lifelong Effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Ruiz, A.; Diéguez, E.; Sepúlveda-Valbuena, N.; Catena, E.; Jiménez, J.; Rodríguez-Palmero, M.; Catena, A.; Miranda, M.T.; García-Santos, J.A.; Bermúdez, M.G.; et al. Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old. Nutrients 2020, 12, 535. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wu, S.S.; Berseth, C.L.; Harris, C.L.; Richards, J.D.; Wampler, J.L.; Cleghorn, G.; Rudolphet, C.D.; Liu, B.; Shaddy, J.; et al. mproved Neurodevelopmental Outcomes Associated with Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula: A Randomized, Controlled Trial. J. Pediatrics 2019, 215, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Holmes-McNary, M.Q.; Cheng, W.L.; Mar, M.H.; Fussell, S.; Zeisel, S.H. Choline and Choline Esters in Human and Rat Milk and in Infant Formulas. Am. J. Clin. Nutr. 1996, 64, 572–576. [Google Scholar] [CrossRef]
- Vickers, M.H.; Guan, J.; Gustavsson, M.; Krägeloh, C.U.; Breier, B.H.; Davison, M.; Fong, B.; Norris, C.; McJarrow, P.; Hodgkinson, S.C. Supplementation with a Mixture of Complex Lipids Derived from Milk to Growing Rats Results in Improvements in Parameters Related to Growth and Cognition. Nutr. Res. 2009, 29, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. The Fetal Origins of Memory: The Role of Dietary Choline in Optimal Brain Development. J. Pediatrics 2006, 149, S131–S136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Delivery | Month 1 | Month 2 | Month 3 | Month 4 | Month 5 | Month 6 | p-Value |
---|---|---|---|---|---|---|---|---|
Infant weight (kg) | 3.7 ± 0.4 (3.2–4.4) | 4.5 ± 0.5 (4.0–5.5) | 5.4 ± 0.6 (4.8–7.1) | 6.1 ± 0.8 (5.3–8.3) | 6.7 ± 0.9 (5.7–9.3) | 7.3 ± 1.0 (6.2–10.0) | 7.6 ± 1.0 (6.4–10.1) | <0.0001 |
Infant length (cm) | 51.5 ± 2.1 (48.0–55.0) | 54.8 ± 1.7 (51.9–57.4) | 58.0 ± 2.1 (55.4–63.0) | 60.9 ± 2.2 (58.1–64.6) | 63.0 ± 2.0 (58.1–64.6) | 65.0 ± 1.6 (63.2–68.3) | 66.4 ± 1.9 (64.3–70.6) | <0.0001 |
Weight for length (z score) | 0.1 ± 0.8 (−1.7–1.4) | 0.2 ± 1.0 (−1.4–1.6) | 0.1 ± 1.4 (−1.7–2.8) | −0.1 ± 1.1 (−1.5–2.0) | 0.0 ± 1.3 (−1.4–2.9) | 0.2 ± 1.3 (−1.0–3.3) | 0.3 ± 1.3 (−1.4–2.9) | 0.981 |
Infant head circumference (cm) | - | 38.1 ± 0.9 (36.5–39.5) | 39.8 ± 1.4 (37.5–42.0) | 41.3 ± 1.2 (39.5–43.0) | 42.5 ± 1.6 (40.4–45.7) | 43.5 ± 1.4 (41.6–46.0) | 44.5 ± 1.8 (42.0–48.0) | <0.0001 |
Head circumference for age (z score) | - | −0.3 ± 0.5 (−1.1–0.4) | 0.9 ± 1.0 (−0.6–2.4) | 0.2 ± 0.7 (−1.2–0.9) | 1.2 ± 1.1 (−0.5–3.4) | 1.3 ± 1.0 (−0.05–2.9) | 0.9 ± 1.1 (−0.7–3.0) | <0.0001 |
Maternal weight (kg) | - | 71.0 ± 10.8 (53.7–93.2) | 70.7 ± 11.2 (51.5–93.1) | 70.2 ± 12.1 (50.5–95.4) | 70.2 ± 13.2 (50.0–98.3) | 69.7 ± 12.1 (50.3–98.0) | 70.1 ± 13.6 (50.1–97.4) | 0.617 |
Maternal BMI (kg/m2) | - | 25.5 ± 2.9 (21.8–31.9) | 25.4 ± 3.1 (20.9–31.8) | 25.2 ± 3.4 (20.5–32.6) | 25.2 ± 3.7 (20.3–33.6) | 25.0 ± 3.8 (20.4–33.5) | 25.2 ± 3.8 (20.3–33.3) | 0.479 |
Species | Intake |
---|---|
PI 36:2 | 17.15 ± 10.35 |
SM 40:1 | 13.64 ± 6.51 |
SM 36:1 | 11.05 ± 4.95 |
PC 36:2 | 10.27 ± 7.03 |
SM 42:2 | 9.71 ± 4.28 |
SM 34:1 | 8.24 ± 3.92 |
PI 38:4 | 7.21 ± 3.71 |
PI 36:1 | 7.17 ± 4.15 |
PI 38:3 | 7.10 ± 0.26 |
PC 34:1 | 6.35 ± 4.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, A.D.; Gay, M.C.L.; Selvalatchmanan, J.; Torta, F.; Bendt, A.K.; Wenk, M.R.; Murray, K.; Wlodek, M.E.; Geddes, D.T. Healthy Breastfeeding Infants Consume Different Quantities of Milk Fat Globule Membrane Lipids. Nutrients 2021, 13, 2951. https://doi.org/10.3390/nu13092951
George AD, Gay MCL, Selvalatchmanan J, Torta F, Bendt AK, Wenk MR, Murray K, Wlodek ME, Geddes DT. Healthy Breastfeeding Infants Consume Different Quantities of Milk Fat Globule Membrane Lipids. Nutrients. 2021; 13(9):2951. https://doi.org/10.3390/nu13092951
Chicago/Turabian StyleGeorge, Alexandra D., Melvin C. L. Gay, Jayashree Selvalatchmanan, Federico Torta, Anne K. Bendt, Markus R. Wenk, Kevin Murray, Mary E. Wlodek, and Donna T. Geddes. 2021. "Healthy Breastfeeding Infants Consume Different Quantities of Milk Fat Globule Membrane Lipids" Nutrients 13, no. 9: 2951. https://doi.org/10.3390/nu13092951
APA StyleGeorge, A. D., Gay, M. C. L., Selvalatchmanan, J., Torta, F., Bendt, A. K., Wenk, M. R., Murray, K., Wlodek, M. E., & Geddes, D. T. (2021). Healthy Breastfeeding Infants Consume Different Quantities of Milk Fat Globule Membrane Lipids. Nutrients, 13(9), 2951. https://doi.org/10.3390/nu13092951