Concurrent Chemoradiotherapy Induces Body Composition Changes in Locally Advanced Head and Neck Squamous Cell Carcinoma: Comparison between Oral Cavity and Non-Oral Cavity Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrollment
2.2. Treatment Schedule
2.3. Clinicopathological Data and Blood NIMs
2.4. Body Composition Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Decreases in Body Weight, BMI, and DXA-Derived Parameters following CCRT Completion
3.3. Factors Associated with Treatment-Interval Changes in LBM, TFM, and BMC following CCRT Completion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baxi, S.S.; Schwitzer, E.; Jones, L.W. A review of weight loss and sarcopenia in patients with head and neck cancer treated with chemoradiation. Cancers Head Neck 2016, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Alshadwi, A.; Nadershah, M.; Carlson, E.R.; Young, L.S.; Burke, P.A.; Daley, B.J. Nutritional Considerations for Head and Neck Cancer Patients: A Review of the Literature. J. Oral Maxillofac. Surg. 2013, 71, 1853–1860. [Google Scholar] [CrossRef]
- Capozzi, L.C.; McNeely, M.; Lau, H.Y.; Reimer, R.A.; Giese-Davis, J.; Fung, T.S.; Culos-Reed, S.N. Patient-reported outcomes, body composition, and nutrition status in patients with head and neck cancer: Results from an exploratory randomized controlled exercise trial. Cancer 2016, 122, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couch, M.; Lai, V.; Cannon, T.; Guttridge, D.; Zanation, A.; George, J.; Hayes, D.N.; Zeisel, S.; Shores, C. Cancer cachexia syndrome in head and neck cancer patients: Part I. Diagnosis, impact on quality of life and survival, and treatment. Head Neck 2007, 29, 401–411. [Google Scholar] [CrossRef]
- Lango, M.N. Multimodal Treatment for Head and Neck Cancer. Surg. Clin. N. Am. 2009, 89, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Almada-Correia, I.; Neves, P.M.; Mäkitie, A.; Ravasco, P. Body Composition Evaluation in Head and Neck Cancer Patients: A Review. Front. Oncol. 2019, 9, 1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, H.J.; Dietrich, M.S.; Murphy, B.A. Changes in body mass, energy balance, physical function, and inflammatory state in patients with locally advanced head and neck cancer treated with concurrent chemoradiation after low-dose induction chemotherapy. Head Neck 2007, 29, 893–900. [Google Scholar] [CrossRef]
- Dechaphunkul, T.; Martin, L.; Alberda, C.; Olson, K.; Baracos, V.; Gramlich, L. Malnutrition assessment in patients with cancers of the head and neck: A call to action and consensus. Crit. Rev. Oncol. Hematol. 2013, 88, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Fouladiun, M.; Körner, U.; Bosaeus, I.; Daneryd, P.; Hyltander, A.; Lundholm, K.G. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care—Correlations with food intake, metabolism, exercise capacity, and hormones. Cancer 2005, 103, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Couch, M.E.; Dittus, K.; Toth, M.J.; Willis, M.S.; Guttridge, D.C.; George, J.R.; Chang, E.Y.; Gourin, C.G.; Der-Torossian, H. Cancer cachexia update in head and neck cancer: Pathophysiology and treatment. Head Neck 2015, 37, 1057–1072. [Google Scholar] [CrossRef]
- Pring, E.T.; Malietzis, G.; Kennedy, R.H.; Athanasiou, T.; Jenkins, J.T. Cancer cachexia and myopenia—Update on management strategies and the direction of future research for optimizing body composition in cancer—A narrative review. Cancer Treat. Rev. 2018, 70, 245–254. [Google Scholar] [CrossRef]
- Wendrich, A.W.; Swartz, J.E.; Bril, S.I.; Wegner, I.; de Graeff, A.; Smid, E.J.; de Bree, R.; Pothen, A.J. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017, 71, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.; Alexander, N.; Schipper, M.; Fig, L.; Feng, F.; Jolly, S. Characterization of changes in total body composition for patients with head and neck cancer undergoing chemoradiotherapy using dual-energy X-ray absorptiometry. Head Neck 2014, 36, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Rd, H.J.; Dijkstra, P.U.; Vissink, A.; Langendijk, J.A.; Van Der Laan, B.F.; Pruim, J.; Roodenburg, J.L.N. Changes in nutritional status and dietary intake during and after head and neck cancer treatment. Head Neck 2011, 33, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Lønbro, S.; Dalgas, U.; Primdahl, H.; Johansen, J.; Nielsen, J.L.; Overgaard, J.; Overgaard, K. Lean body mass and muscle function in head and neck cancer patients and healthy individuals—Results from the DAHANCA 25 study. Acta Oncol. 2013, 52, 1543–1551. [Google Scholar] [CrossRef] [Green Version]
- Lonkvist, C.K.; Vinther, A.; Zerahn, B.; Rosenbom, E.; Deshmukh, A.; Hojman, P.; Gehl, J. Progressive resistance training in head and neck cancer patients undergoing concomitant chemoradiotherapy. Laryngoscope 2017, 2, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Ghadjar, P.; Hayoz, S.; Zimmermann, F.; Bodis, S.; Kaul, D.; Badakhshi, H.; Bernier, J.; Studer, G.; Plasswilm, L.; Budach, V.; et al. Impact of weight loss on survival after chemoradiation for locally advanced head and neck cancer: Secondary results of a randomized phase III trial (SAKK 10/94). Radiat. Oncol. 2015, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Gorenc, M.; Kozjek, N.R.; Strojan, P. Malnutrition and cachexia in patients with head and neck cancer treated with (chemo)radiotherapy. Rep. Pract. Oncol. Radiother. 2015, 20, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-H.; Wang, H.-M.; Pang, Y.-P.; Yeh, K.-Y. Early nutritional support in non-metastatic stage IV oral cavity cancer patients undergoing adjuvant concurrent chemoradiotherapy: Analysis of treatment tolerance and outcome in an area endemic for betel quid chewing. Support. Care Cancer 2012, 20, 1169–1174. [Google Scholar] [CrossRef]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.; Deutz, N.; Erickson, N.; Laviano, A.; Lisanti, M.; Lobo, D.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Bøje, C.R.; Dalton, S.O.; Primdahl, H.; Kristensen, C.A.; Andersen, E.; Johansen, J.; Andersen, L.J.; Overgaard, J. Evaluation of comorbidity in 9388 head and neck cancer patients: A national cohort study from the DAHANCA database. Radiother. Oncol. 2014, 110, 91–97. [Google Scholar] [CrossRef]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef]
- Hangartner, T.N.; Warner, S.; Braillon, P.; Jankowski, L.; Shepherd, J. The Official Positions of the International Society for Clinical Densitometry: Acquisition of Dual-Energy X-Ray Absorptiometry Body Composition and Considerations Regarding Analysis and Repeatability of Measures. J. Clin. Densitom. 2013, 16, 520–536. [Google Scholar] [CrossRef]
- Ng, K.; Leung, S.F.; Johnson, P.J.; Woo, J. Nutritional Consequences of Radiotherapy in Nasopharynx Cancer Patients. Nutr. Cancer 2004, 49, 156–161. [Google Scholar] [CrossRef]
- Grossberg, A.; Chamchod, S.; Fuller, C.D.; Mohamed, A.; Heukelom, J.; Eichelberger, H.; Kantor, M.E.; Hutcheson, K.; Gunn, G.B.; Garden, A.; et al. Association of Body Composition with Survival and Locoregional Control of Radiotherapy-Treated Head and Neck Squamous Cell Carcinoma. JAMA Oncol. 2016, 2, 782–789. [Google Scholar] [CrossRef]
- Conte, E.; Bresciani, E.; Rizzi, L.; Cappellari, O.; De Luca, A.; Torsello, A.; Liantonio, A. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 1242. [Google Scholar] [CrossRef] [Green Version]
- Pin, F.; Barreto, R.; Couch, M.E.; Bonetto, A.; O’Connell, T.M. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J. Cachex Sarcopenia Muscle 2019, 10, 140–154. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Pan, X.; Sun, Y.; Geng, Y.-J.; Yu, X.-Y.; Li, Y. The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging. Adv. Exp. Med. Biol. 2018, 1088, 347–368. [Google Scholar] [CrossRef]
- Sin, T.K.; Zhang, G.; Zhang, Z.; Zhu, J.Z.; Zuo, Y.; Frost, J.A.; Li, M.; Li, Y.-P. Cancer-Induced Muscle Wasting Requires p38β MAPK Activation of p300. Cancer Res. 2021, 81, 885–897. [Google Scholar] [CrossRef]
- Malavaki, C.J.; Sakkas, G.; Mitrou, G.I.; Kalyva, A.; Stefanidis, I.; Myburgh, K.; Karatzaferi, C. Skeletal muscle atrophy: Disease-induced mechanisms may mask disuse atrophy. J. Muscle Res. Cell Motil. 2015, 36, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Gould, D.W.; Lahart, I.; Carmichael, A.R.; Koutedakis, Y.; Metsios, G.S. Cancer cachexia prevention via physical exercise: Molecular mechanisms. J. Cachex Sarcopenia Muscle 2013, 4, 111–124. [Google Scholar] [CrossRef]
- Darabseh, M.Z.; Maden-Wilkinson, T.M.; Welbourne, G.; Wüst, R.C.I.; Ahmed, N.; Aushah, H.; Selfe, J.; Morse, C.I.; Degens, H. Fourteen days of smoking cessation improves muscle fatigue resistance and reverses markers of systemic inflammation. Sci. Rep. 2021, 11, 12286. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Cheng, A.-J.; Lee, L.-Y.; Huang, Y.-C.; Chang, J.T.-C. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: The Molecular Pathology from Precancerous Condition to Malignant Transformation. J. Cancer 2019, 10, 4054–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic Myopathy: Pathophysiologic Mechanisms and Clinical Implications. Alcohol Res. Curr. Rev. 2017, 38, 207–217. [Google Scholar]
- Duan, K.; Gao, X.; Zhu, D. The clinical relevance and mechanism of skeletal muscle wasting. Clin. Nutr. 2021, 40, 27–37. [Google Scholar] [CrossRef]
- Bozzetti, F. Chemotherapy-Induced Sarcopenia. Curr. Treat. Options Oncol. 2020, 21, 7. [Google Scholar] [CrossRef]
- Garcia, J.M.; Scherer, T.; Chen, J.-A.; Guillory, B.; Nassif, A.; Papusha, V.; Smiechowska, J.; Asnicar, M.; Buettner, C.; Smith, R.G. Inhibition of Cisplatin-Induced Lipid Catabolism and Weight Loss by Ghrelin in Male Mice. Endocrinology 2013, 154, 3118–3129. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, E.; Naito, T.; Nakashima, K.; Miyawaki, T.; Mamesaya, N.; Kawamura, T.; Shota, K.; Omori, H.; Wakuda, K.; Ono, A.; et al. Management of anorexia prevents skeletal muscle wasting during cisplatin-based chemotherapy for thoracic malignancies. JCSM Clin. Rep. 2020, 5, 8–15. [Google Scholar] [CrossRef]
- Nakano, J.; Ishii, S.; Fukushima, T.; Natsuzako, A.; Sakamoto, F.; Natsuzako, A.; Sakamoto, J.; Okitaet, M. Factors affecting muscle strength in cancer patients receiving chemotherapy. J. Nov. Physiother. Rehabil. 2017, 1, 56–66. [Google Scholar]
- Willemsen, A.C.H.; Degens, J.H.R.J.; Baijens, L.W.J.; Dingemans, A.-M.C.; Hoeben, A.; Hoebers, F.J.P.; De Ruysscher, D.K.M.; Schols, A.M.W.J. Early Loss of Fat Mass During Chemoradiotherapy Predicts Overall Survival in Locally Advanced Squamous Cell Carcinoma of the Lung, but Not in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Front. Nutr. 2020, 7, 600612. [Google Scholar] [CrossRef]
- Powrózek, T.; Brzozowska, A.; Mazurek, M.; Prendecka, M.; Homa-Mlak, I.; Mlak, R.; Małecka-Massalska, T. AA genotype of PLIN1 13041A>G as an unfavourable predictive factor of malnutrition associated with fat mass loss in locally advanced head and neck cancer male patients treated with radiotherapy. Support. Care Cancer 2021, 29, 1923–1932. [Google Scholar] [CrossRef]
- Donzelli, S.; Farneti, A.; Marucci, L.; Ganci, F.; Sacconi, A.; Strano, S.; Sanguineti, G.; Blandino, G. Non-coding RNAs as Putative Biomarkers of Cancer-Associated Cachexia. Front. Cell Dev. Biol. 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Landrier, J.-F.; Derghal, A.; Mounien, L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019, 8, 859. [Google Scholar] [CrossRef] [Green Version]
- Byerley, L.O.; Lee, S.H.; Redmann, S.; Culberson, C.; Clemens, M.; Lively, M.O. Evidence for a Novel Serum Factor Distinct from Zinc Alpha-2 Glycoprotein That Promotes Body Fat Loss Early in the Development of Cachexia. Nutr. Cancer 2010, 62, 484–494. [Google Scholar] [CrossRef]
- Nazari, V.; Pashaki, A.S.; Hasanzadeh, E. The reliable predictors of severe weight loss during the radiotherapy of Head and Neck Cancer. Cancer Treat. Res. Commun. 2021, 26, 100281. [Google Scholar] [CrossRef]
- Willemsen, A.C.; Hoeben, A.; Lalisang, R.I.; Van Helvoort, A.; Wesseling, F.W.; Hoebers, F.; Baijens, L.W.; Schols, A.M. Disease-induced and treatment-induced alterations in body composition in locally advanced head and neck squamous cell carcinoma. J. Cachex Sarcopenia Muscle 2020, 11, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Ehrsson, Y.T.; Langius-Eklöf, A.; Laurell, G. Nutritional surveillance and weight loss in head and neck cancer patients. Support. Care Cancer 2012, 20, 757–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lønbro, S.; Petersen, G.B.; Andersen, J.R.; Johansen, J. Prediction of critical weight loss during radiation treatment in head and neck cancer patients is dependent on BMI. Support. Care Cancer 2016, 24, 2101–2109. [Google Scholar] [CrossRef] [PubMed]
- Mangar, S.; Slevin, N.; Mais, K.; Sykes, A. Evaluating predictive factors for determining enteral nutrition in patients receiving radical radiotherapy for head and neck cancer: A retrospective review. Radiother. Oncol. 2006, 78, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Mifflin, M.D.; Jeor, S.T.S.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, T.M.R.; Marin, D.M.; Da Silva, C.A.; De Souza, A.L.; Talamoni, M.; Lima, C.S.P.; Alegre, S.M. Evaluation of patients with head and neck cancer performing standard treatment in relation to body composition, resting metabolic rate, and inflammatory cytokines. Head Neck 2015, 37, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Di Monaco, M.; Vallero, F.; Di Monaco, R.; Mautino, F.; Cavanna, A. Biochemical Markers of Nutrition and Bone Mineral Density in the Elderly. Gerontology 2003, 49, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, A.; Mautino, F.; Di Monaco, M.; Vallero, F.; Di Monaco, R. Total lymphocyte count and femoral bone mineral density in postmenopausal women. J. Bone Miner. Metab. 2004, 22, 58–63. [Google Scholar] [CrossRef]
- Valderrábano, R.J.; Lui, L.-Y.; Lee, J.; Cummings, S.R.; Orwoll, E.S.; Hoffman, A.R.; Wu, J.Y.; Osteoporotic Fractures in Men (MrOS) Study Research Group. Bone Density Loss Is Associated With Blood Cell Counts. J. Bone Miner. Res. 2017, 32, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Jiang, H.; Wang, Y.; Ji, Y.; Jiang, X. A correlative studies between osteoporosis and blood cell composition: Implications for auxiliary diagnosis of osteoporosis. Medicine 2020, 99, e20864. [Google Scholar] [CrossRef]
- Chusyd, D.E.; Wang, D.; Huffman, D.M.; Nagy, T.R. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Front. Nutr. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Rakotoarivelo, V.; Lacraz, G.; Mayhue, M.; Brown, C.; Rottembourg, D.; Fradette, J.; Ilangumaran, S.; Menendez, A.; Langlois, M.-F.; Ramanathan, S. Inflammatory Cytokine Profiles in Visceral and Subcutaneous Adipose Tissues of Obese Patients Undergoing Bariatric Surgery Reveal Lack of Correlation with Obesity or Diabetes. EBioMedicine 2018, 30, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Alemán, H.; Esparza, J.; Ramirez, F.A.; Astiazaran, H.; Payette, H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing 2011, 40, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Youm, Y.; Lee, W.J.; Choi, W.; Chu, S.H.; Park, Y.-R.; Kim, H.C. Appendicular Skeletal Muscle Mass and Insulin Resistance in an Elderly Korean Population: The Korean Social Life, Health and Aging Project-Health Examination Cohort. Diabetes Metab. J. 2015, 39, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Syu, R.-J.; Hsu, B.-G. Negative correlation between leptin serum levels and sarcopenia in hemodialysis patients. Int. J. Clin. Exp. Pathol. 2018, 11, 1715–1723. [Google Scholar]
- Möller-Loswick, A.-C.; Bennegård, K.; Lundholm, K. The forearm and leg perfusion techniques in man do not give the same metabolic information. Clin. Physiol. 1991, 11, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Going, S.B.; Massett, M.; Hall, M.C.; A Bare, L.; A Root, P.; Williams, D.P.; Lohman, T.G. Detection of small changes in body composition by dual-energy x-ray absorptiometry. Am. J. Clin. Nutr. 1993, 57, 845–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total | Oral Cavity with Adjuvant CCRT | Non-Oral Cavity with Primary CCRT | |
---|---|---|---|---|
Variables Expressed as Numbers (%) or Mean ± SD | p Value * | |||
Included patient number | 127 (100) | 69 (54.3) | 58 (45.7) | |
Age (years) | 53.98.8 | 53.28.4 | 54.69.2 | 0.374 |
Sex (male:female) | 123 (96.9):4 (3.1) | 68 (98.6):1 (1.4) | 55 (94.8):3 (5.2) | 0.231 |
Tumor subsites | ||||
Buccal mucosa | 20 (15.7) | 20 (29.0) | ||
Tongue | 28 (22.0) | 28 (40.6) | ||
Gingiva | 13 (10.2) | 13 (18.9) | ||
Mouth floor | 3 (2.4) | 3 (4.3) | ||
Retromolar | 2 (1.6) | 2 (2.9) | ||
Lip | 2 (1.6) | 2 (2.9) | ||
Hard palate | 1 (0.8) | 1 (1.4) | ||
Tonsil | 13 (10.2) | 13 (22.4) | ||
Tongue base | 6 (4.7) | 6 (10.3) | ||
Soft palate | 3 (2.4) | 3 (5.2) | ||
Hypopharynx | 24 (18.9) | 24 (41.4) | ||
Larynx | 8 (6.3) | 8 (13.8) | ||
Nasopharynx | 4 (3.2) | 4 (6.9) | ||
TNM Stage (III:IVA:IVB) | 10 (7.9):87 (68.5):30 (23.6) | 4 (5.8):50 (72.5):15 (21.7) | 6 (10.3):37 (63.8):15 (25.9) | 0.497 |
Tumor size | 0.004 * | |||
T0 | 2 (1.6) | 0 (0.0) | 2 (3.4) | |
T1 | 7 (5.5) | 2 (2.9) | 5 (8.6) | |
T2 | 21 (16.5) | 6 (8.7) | 15 (25.9) | |
T3 | 21 (16.5) | 11 (15.9) | 10 (17.2) | |
T4a | 64 (50.4) | 45 (65.2) | 19 (32.8) | |
T4b | 12 (9.4) | 5 (7.3) | 7 (12.1) | |
LN involvement | 0.035 * | |||
N0 | 25 (19.7) | 21 (30.4) | 4 (6.9) | |
N1 | 18 (14.2) | 9 (13.1) | 9 (15.5) | |
N2 | 64 (50.4) | 29 (42.0) | 35 (60.4) | |
N3 | 20 (15.7) | 10 (14.5) | 10 (17.2) | |
Histological grade (1:2:3) | 11 (8.7):86 (67.7):30 (23.6) | 8 (11.6):51 (73.9):10 (14.5) | 3 (5.2):35 (60.3):20 (34.5) | 0.021 * |
Smoking (no:yes) | 12 (9.4):115 (90.6) | 6 (8.7):63 (91.3) | 6 (10.3):52 (89.7) | 0.752 |
Alcohol (no:yes) | 32 (25.2):95 (74.8) | 18 (26.1):51 (73.9) | 14 (24.1):44 (75.9) | 0.801 |
Betel nut (no:yes) | 45 (35.4):82 (64.6) | 16 (23.2):53 (76.8) | 29 (50.0):29 (50.0) | 0.002 * |
HN-CCI (0:1:2: ≥3) | 0.408 | |||
0 | 50 (39.4) | 29 (42.1) | 21 (36.2) | |
1 | 31 (24.4) | 15 (21.7) | 16 (27.6) | |
2 | 14 (11.0) | 6 (8.7) | 8 (13.8) | |
≥3 | 31 (25.2) | 19 (27.5) | 13 (22.4) | |
ECOG performance status (0:1:2) | 10 (7.9):110 (86.6):7 (5.5) | 2 (2.9):61 (86.4):6 (8.6) | 8 (13.8):49 (84.5):1 (1.7) | 0.046 * |
Tracheostomy (no:yes) | 71 (55.9):56 (44.1) | 23 (33.3):46 (66.7) | 48 (82.8):10 (17.2) | <0.001 * |
PG-SGA (well:moderate:severe) | 19 (15.0):73 (57.4):35 (27.6) | 13 (18.8):38 (55.1):18 (26.1) | 6 (10.4):35 (60.3):17 (29.3) | 0.408 |
Anthropometric and biochemical data before CCRT | ||||
BW (kg) | 63.0 ± 12.1 | 63.6 ± 12.6 | 62.4 ± 11.7 | 0.583 |
BMI (kg/m2) | 22.7 ± 4.0 | 22.7 ± 4.3 | 22.8 ± 3.9 | 0.961 |
Hb (g/dL) | 11.9 ± 1.6 | 11.7 ± 1.5 | 12.1 ± 1.8 | 0.157 |
WBC (×103 cells/mm3) | 7.2 ± 2.7 | 7.3 ± 2.5 | 7.1 ± 2.9 | 0.811 |
Platelet count (×103/mm3) | 30.1.8 ± 127.9 | 341.1 ± 148.4 | 254.9 ± 76.2 | <0.001 * |
TLC (×103 cells/mm3) | 1.7 ± 0.6 | 1.6 ± 0.6 | 1.8 ± 0.7 | 0.134 |
Albumin (g/dL) | 3.8 ± 0.5 | 3.8 ± 0.6 | 3.8 ± 0.5 | 0.578 |
CRP (mg/dL) | 14.2 ± 11.6 | 11.2 ± 1.8 | 11.9 ± 6.1 | 0.260 |
ALT (U/L) | 23.0 ± 13.2 | 24.3 ± 1.6 | 21.4 ± 1.7 | 0.223 |
Creatinine (mg/dL) | 0.95 ± 1.28 | 0.81 ± 0.03 | 1.12 ± 0.24 | 0.184 |
eGFR (mL/min/1.73 m2) | 108.8 ± 35.8 | 113.9 ± 4.3 | 102.7 ± 4.6 | 0.079 |
DXA-related measurements before CCRT | ||||
LBM (kg) | 43.7 ± 5.9 | 43.8 ± 5.1 | 43.6 ± 6.7 | 0.868 |
TFM (kg) | 16.6 ± 7.6 | 17.0 ± 8.8 | 16.1 ± 5.9 | 0.516 |
ASM (kg) | 18.6 ± 5.4 | 18.4 ± 3.0 | 18.7 ± 3.7 | 0.582 |
BMC (kg) | 2.55 ± 0.38 | 1.35 ± 0.44 | 1.36 ± 0.55 | 0.023 * |
Mean daily calorie intake during CCRT (kcal/kg/day) | 27.2 ± 8.1 | 28.6 ± 8.6 | 25.7 ± 7.2 | 0.035 * |
CCRT regimen | ||||
Radiotherapy | ||||
Dose (Gy) | 66.8 ± 4.4 | 64.3 ± 3.8 | 69.9 ± 3.0 | <0.001 * |
Fractions | 32.6 ± 1.7 | 32.0 ± 1.5 | 33.4 ± 1.4 | <0.001 * |
Duration (days) | 49.7 ± 6.6 | 48.0 ± 4.8 | 51.6 ± 7.8 | 0.003 * |
Cisplatin dose (mg/m2) | 227.847.1 | 238.545.5 | 215.064.0 | 0.01 * |
Toxicity during CCRT | ||||
Non-hematologic (any Grade:Grade ¾) | ||||
Dermatitis | 121 (89.8):6 (4.7) | 66 (89.8):3 (4.3) | 55 (89.8):3 (5.2) | 0.827 |
Pharyngitis | 52 (40.9):14 (11.1) | 24 (34.8):4 (5.7) | 28 (48.3):10 (17.2) | 0.082 |
Infection | 31 (24.4):27 (21.2) | 13 (18.8):10 (14.4) | 18 (31.4):17 (29.3) | 0.042 * |
Mucositis | 46 (36.2):32 (25.2) | 27 (39.1):18 (26.0) | 19 (32.8):14 (24.1) | 0.653 |
Emesis | 61 (48.0):10 (7.5) | 33 (47.8):6 (8.7) | 28 (48.3):4 (6.9) | 0.708 |
Hematologic (any Grade:Grade ¾) | ||||
Anemia | 123 (96.9):12 (9.5) | 66 (95.8):5 (7.2) | 57 (98.3):7 (12.0) | 0.355 |
Neutropenia | 102 (80.3):45 (35.5) | 57 (82.6):23 (33.3) | 45 (77.6):22 (38.0) | 0.589 |
Thrombocytopenia | 85 (66.9):12 (9.5) | 42 (60.9):4 (5.7) | 43 (74.1):8 (13.8) | 0.125 |
Oral Cavity with Adjuvant CCRT | Non-Oral Cavity with Primary CCRT | |||||||
---|---|---|---|---|---|---|---|---|
Variables Expressed as Mean SD, kg | CCRT Starts | CCRT Ends | % Change | p Value * | CCRT Starts | CCRT Ends | % Change | p Value * |
BW | 63.6 ± 12.6 | 60.7 ± 11.2 | −4.1 | <0.001 | 62.4 ± 11.7 | 58.7 ± 9.9 | −3.7 | <0.001 |
BMI | 22.7 ± 4.3 | 21.8 ± 3.9 | −3.8 | <0.001 | 22.8 ± 3.9 | 21.4 ± 3.3 | −5.5 | <0.001 |
LBM | 43.8 ± 5.1 | 41.1 ± 5.0 | −6.1 | <0.001 | 43.6 ± 6.7 | 41.0 ± 5.8 | −5.6 | <0.01 |
Arm | 5.2 ± 0.8 | 4.6 ± 0.8 | −9.8 | <0.001 | 5.2 ± 1.1 | 4.7 ± 0.9 | −8.4 | <0.001 |
Leg | 13.2 ± 2.4 | 12.2 ± 2.2 | −6.8 | <0.001 | 13.4 ± 2.7 | 12.4 ± 2.4 | −7.5 | <0.001 |
Trunk | 21.9 ± 2.2 | 21.1 ± 2.0 | −0.7 | <0.001 | 21.4 ± 3.0 | 20.2 ± 2.7 | −1.1 | <0.001 |
Waist | 3.2 ± 0.4 | 3.1 ± 0.3 | −3.8 | <0.001 | 3.2 ± 0.5 | 2.9 ± 0.4 | −5.7 | <0.001 |
Hip | 6.2 ± 0.9 | 5.8 ± 0.8 | −6.0 | <0.001 | 6.3 ± 1.2 | 5.7 ± 1.1 | −8.0 | <0.001 |
TFM | 17.0 ± 8.8 | 16.2 ± 8.1 | −2.6 | 0.012 | 16.1 ± 5.9 | 14.9 ± 5.6 | −6.1 | 0.01 |
Arm | 6.2 ± 0.9 | 5.8 ± 0.8 | −2.5 | <0.001 | 6.3 ± 1.2 | 5.7 ± 1.1 | −2.6 | <0.001 |
Leg | 4.6 ± 2.4 | 4.4 ± 2.2 | −2.5 | 0.018 | 4.2 ± 1.5 | 4.0 ± 1.4 | −2.5 | 0.052 |
Trunk | 9.7 ± 5.7 | 8.8 ± 5.2 | −5.4 | <0.001 | 9.3 ± 3.9 | 8.1 ± 3.6 | −9.8 | <0.001 |
Waist | 1.6 ± 1.1 | 1.4 ± 0.9 | −6.7 | <0.001 | 1.5 ± 0.7 | 1.2 ± 0.6 | −11.3 | <0.001 |
Hip | 2.3 ± 1.2 | 2.2 ± 1.2 | −2.1 | 0.084 | 2.2 ± 0.8 | 2.1 ± 0.8 | −4.4 | 0.019 |
BMC | 2.6 ± 0.3 | 2.5 ± 0.3 | −1.3 | <0.001 | 2.5 ± 0.4 | 2.4 ± 0.4 | −0.7 | <0.001 |
Arm | 0.39 ± 0.05 | 0.39 ± 0.07 | −1.6 | 0.233 | 0.37 ± 0.07 | 0.37 ± 0.07 | −0.3 | 0.291 |
Leg | 0.94 ± 0.12 | 0.94 ± 0.13 | −0.1 | 0.689 | 0.88 ± 0.14 | 0.88 ± 0.13 | +0.2 | 0.081 |
Trunk | 0.75 ± 0.14 | 0.72 ± 0.14 | −3.4 | <0.001 | 0.68 ± 0.17 | 0.65 ± 0.17 | −4.1 | <0.001 |
Waist | 0.05 ± 0.01 | 0.05 ± 0.02 | −0.9 | 0.339 | 0.04 ± 0.01 | 0.04 ± 0.02 | +1.0 | 0.463 |
Hip | 0.24 ± 0.04 | 0.24 ± 0.03 | −0.2 | 0.416 | 0.22 ± 0.04 | 0.22 ± 0.03 | −0.1 | 0.963 |
Variables | ΔLBM | ΔΤFM | ΔBMC | ||||||
---|---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | Univariate | Multivariate | ||||
p-Value * | Coefficient (95% CI) | p-Value * | p-Value * | Coefficient (95% CI) | p-Value * | p-Value * | Coefficient (95% CI) | p-Value * | |
Clinicopathologic factor | |||||||||
Age | 0.001 * | 0.090 (0.028~0.152) | 0.005 * | 0.237 | 0.596 | ||||
Sex | 0.411 | 0.594 | 0.382 | ||||||
TNM stage (III vs. IVA vs. IVB) | 0.594 | 0.804 | 0.436 | ||||||
T status (T1-2 vs. T3-4) | 0.630 | 0.647 | 0.968 | ||||||
N status (N0-1 vs. N2-3) | 0.486 | 0.899 | 0.492 | ||||||
Histologic grade (1 vs. 2 vs. 3) | 0.906 | 0.850 | 0.552 | ||||||
Smoking (no vs. yes) | 0.703 | 0.666 | 0.455 | ||||||
Alcohol (no vs. yes) | 0.419 | 0.516 | 0.062 | ||||||
Betel nut (no vs. yes) | 0.803 | 0.374 | 0.483 | ||||||
ECOG performance status (0:1:2) | 0.480 | 0.433 | 0.310 | ||||||
HN-CCI (0 vs. 1 vs. 2 vs. ≥3) | 0.556 | 0.707 | 0.552 | ||||||
Tracheostomy (no vs. yes) | 0.395 | 0.509 | 0.609 | ||||||
Mean daily calorie intake during CCRT | 0.001 * | 0.102 (0.043~0.162) | 0.001 * | <0.001 * | 0.133 (0.073~0.193) | <0.001 * | 0.141 | ||
Treatment-associated factors | |||||||||
CCRT Regimen | |||||||||
RT dose | 0.958 | 0.658 | 0.192 | ||||||
RT fractions | 0.587 | 0.368 | 0.237 | ||||||
RT duration (days) | 0.474 | 0.670 | 0.855 | ||||||
Cisplatin dose | 0.717 | 0.731 | 0.815 | ||||||
Grade ¾ toxicity | |||||||||
Dermatitis (ref: yes) | 0.255 | 0.889 | 0.097 | ||||||
Pharyngitis (ref: yes) | 0.713 | 0.786 | 0.055 | ||||||
Infection (ref: yes) | 0.283 | 0.958 | 0.313 | ||||||
Mucositis (ref: yes) | 0.611 | 0.378 | 0.601 | ||||||
Emesis (ref: yes) | 0.351 | 0.160 | 0.569 | ||||||
Anemia (ref: yes) | 0.988 | 0.037 * | 2.550 (0.553~0.538) | 0.014 * | 0.456 | ||||
Neutropenia (ref: yes) | 0.535 | 0.004 * | 1.675 (0.450~2.899) | 0.009 * | 0.931 | ||||
Thrombocytopenia (ref: yes) | 0.271 | 0.048 * | 0.944 | ||||||
NIMs before CCRT | |||||||||
PG-SGA (well: moderate: severe) | 0.728 | 0.473 | 0.706 | ||||||
BMI | 0.038 * | <0.001 * | 0.061 | ||||||
BW | 0.023 * | <0.001 * | 0.030 * | ||||||
Hb | 0.027 * | 0.469 | 0.848 | ||||||
WBC | 0.990 | 0.252 | 0.145 | ||||||
Platelet | 0.071 | 0.353 | 0.199 | ||||||
TLC | 0.188 | 0.701 | 0.005 * | −0.021 (−0.080~−0.01) | 0.031 * | ||||
Albumin | 0.350 | 0.330 | 0.983 | ||||||
CRP | 0.195 | 0.870 | 0.254 |
Variables | ΔLBM | ΔΤFM | ΔBMC | ||||||
---|---|---|---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | Univariate | Multivariate | ||||
p-Value * | Coefficient (95% CI) | p-Value * | p-Value * | Coefficient (95% CI) | p-Value * | p-Value * | Coefficient (95% CI) | p-Value * | |
Clinicopathologic factors | |||||||||
Age | 0.489 | 0.195 | 0.168 | ||||||
Sex | 0.154 | 0.772 | 0.627 | ||||||
TNM stage (III vs. IVA vs. IVB) | 0.565 | 0.443 | 0.538 | ||||||
T status (T1-2 vs. T3-4) | 0.389 | 0.017 * | 0.563 | ||||||
N status (N0-1 vs. N2-3) | 0.523 | 0.836 | 0.693 | ||||||
Histologic grade (1 vs. 2 vs. 3) | 0.658 | 0.265 | 0.590 | ||||||
Smoking (no vs. yes) | 0.626 | 0.203 | 0.758 | ||||||
Alcohol (no vs. yes) | 0.234 | 0.071 | 0.919 | ||||||
Betel nut (no vs. yes) | 0.661 | 0.249 | 0.435 | ||||||
ECOG performance status (0:1:2) | 0.336 | 0.627 | 0.496 | ||||||
HN-CCI (0 vs. 1 vs. 2 vs. ≥3) | 0.802 | 0.574 | 0.098 | ||||||
Tracheostomy (no vs. yes) | 0.187 | 0.080 | 0.271 | ||||||
Mean daily calorie intake during CCRT | 0.005 | 0.167 (0.016~0.257) | 0.001 | <0.001 * | 0.148 (0.044~0.250) | 0.006 * | 0.914 | ||
Treatment-associated factors | |||||||||
CCRT Regimen | |||||||||
RT dose | 0.874 | 0.792 | 0.862 | ||||||
RT fractions | 0.567 | 0.533 | 0.806 | ||||||
RT duration (days) | 0.474 | 0.670 | 0.855 | ||||||
Cisplatin dose | 0.534 | 0.173 | 0.658 | ||||||
Grade ¾ toxicity | |||||||||
Dermatitis (ref: yes) | 0.262 | 0.111 | 0.985 | ||||||
Pharyngitis (ref: yes) | 0.706 | 0.950 | 0.247 | ||||||
Infection (ref: yes) | 0.959 | 0.752 | 0.038 * | ||||||
Mucositis (ref: yes) | 0.017 * | 2.538 (1.038~4.038) | 0.001 | 0.796 | 0.628 | ||||
Emesis (ref: yes) | 0.706 | 0.354 | 0.495 | ||||||
Anemia (ref: yes) | 0.759 | 0.040 * | 0.158 | ||||||
Neutropenia (ref: yes) | 0.958 | 0.251 | 0.178 | ||||||
Thrombocytopenia (ref: yes) | 0.565 | 0.186 | 0.976 | ||||||
NIMs before CCRT | |||||||||
PG-SGA (well: moderate: severe) | 0.133 | 0.473 | 0.706 | ||||||
BMI | <0.001 * | −0.367 (−0.556~−0.177) | 0.001 | 0.030 * | 0.914 | ||||
BW | <0.001 * | 0.017 * | 0544 | ||||||
Hb | 0.740 | 0.304 | 0.958 | ||||||
WBC | 0.150 | 0.689 | 0.229 | ||||||
Platelet | 0.098 | 0.469 | 0.171 | ||||||
TLC | 0.290 | 0.897 | 0.040 * | −0.025 (−0.040~−0.009) | 0.029 * | ||||
Albumin | 0.022 * | 0.464 | 0.380 | ||||||
CRP | 0.101 | 0.624 | 0.907 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Ling, H.H.; Chang, P.-H.; Pan, Y.-P.; Wang, C.-H.; Chou, W.-C.; Chen, F.-P.; Yeh, K.-Y. Concurrent Chemoradiotherapy Induces Body Composition Changes in Locally Advanced Head and Neck Squamous Cell Carcinoma: Comparison between Oral Cavity and Non-Oral Cavity Cancer. Nutrients 2021, 13, 2969. https://doi.org/10.3390/nu13092969
Lin Y-C, Ling HH, Chang P-H, Pan Y-P, Wang C-H, Chou W-C, Chen F-P, Yeh K-Y. Concurrent Chemoradiotherapy Induces Body Composition Changes in Locally Advanced Head and Neck Squamous Cell Carcinoma: Comparison between Oral Cavity and Non-Oral Cavity Cancer. Nutrients. 2021; 13(9):2969. https://doi.org/10.3390/nu13092969
Chicago/Turabian StyleLin, Yu-Ching, Hang Huong Ling, Pei-Hung Chang, Yi-Ping Pan, Cheng-Hsu Wang, Wen-Chi Chou, Fang-Ping Chen, and Kun-Yun Yeh. 2021. "Concurrent Chemoradiotherapy Induces Body Composition Changes in Locally Advanced Head and Neck Squamous Cell Carcinoma: Comparison between Oral Cavity and Non-Oral Cavity Cancer" Nutrients 13, no. 9: 2969. https://doi.org/10.3390/nu13092969
APA StyleLin, Y. -C., Ling, H. H., Chang, P. -H., Pan, Y. -P., Wang, C. -H., Chou, W. -C., Chen, F. -P., & Yeh, K. -Y. (2021). Concurrent Chemoradiotherapy Induces Body Composition Changes in Locally Advanced Head and Neck Squamous Cell Carcinoma: Comparison between Oral Cavity and Non-Oral Cavity Cancer. Nutrients, 13(9), 2969. https://doi.org/10.3390/nu13092969