Evaluation of Disparities in Adults’ Macronutrient Intake Status: Results from the China Health and Nutrition 2011 Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Dietary Data Collection
2.3. Assessment of Macronutrient Intake
2.4. Other Variables
2.5. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Total Energy, Carbohydrates, Fat, and Protein Intakes
3.3. Relative Energy Intake from Carbohydrates, Fat, and Protein (%)
3.4. Percentage of Adults Meeting the DRI for Carbohydrates, Fat, and Protein (%)
3.5. Consumption Correlations among Relative Macronutrient Intakes
3.6. Linear Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joint WHO/FAO Expert, Consultation. Diet, Nutrition and the Prevention of Chronic Diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- Esposito, K.; Maiorino, M.I.; Di Palo, C.; Giugliano, D.; Campanian Postprandial Hyperglycemia Study Group. Adherence to a Mediterranean Diet and Glycaemic Control in Type 2 Diabetes Mellitus. Diabet. Med. 2009, 26, 900–907. [Google Scholar] [CrossRef]
- Santesso, N.; Akl, E.A.; Bianchi, M.; Mente, A.; Mustafa, R.; Heels-Ansdell, D.; Schünemann, H.J. Effects of Higher- versus Lower-Protein Diets on Health Outcomes: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2012, 66, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Long-Term Effects of Low-Fat Diets Either Low or High in Protein on Cardiovascular and Metabolic Risk Factors: A Systematic Review and Meta-Analysis. Nutr. J. 2013, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.V.; Joensson, E.A. Low-Carbohydrate Diet in Type 2 Diabetes: Stable Improvement of Bodyweight and Glycemic Control during 44 Months Follow-Up. Nutr. Metab. 2008, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasnezhad, A.; Falahi, E.; Gonzalez, M.J.; Kavehi, P.; Fouladvand, F.; Choghakhori, R. Effect of Different Dietary Approaches in Comparison with High/Low-Carbohydrate Diets on Systolic and Diastolic Blood Pressure in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis. Prev. Nutr. Food Sci. 2020, 25, 233–245. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-Analysis of Prospective Cohort Studies Evaluating the Association of Saturated Fat with Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billingsley, H.E.; Carbone, S.; Lavie, C.J. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, K.N.J.; Beulens, J.W.J.; van der Schouw, Y.T.; Sluijs, I.; Spijkerman, A.M.W.; Sluik, D.; Boeing, H.; Kaaks, R.; Teucher, B.; Dethlefsen, C.; et al. Dietary Fiber, Carbohydrate Quality and Quantity, and Mortality Risk of Individuals with Diabetes Mellitus. PLoS ONE 2012, 7, e43127. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Okuda, N.; Okamura, T.; Kadota, A.; Miyagawa, N.; Hayakawa, T.; Kita, Y.; Fujiyoshi, A.; Nagai, M.; Takashima, N.; et al. Low-Carbohydrate Diets and Cardiovascular and Total Mortality in Japanese: A 29-Year Follow-up of NIPPON DATA80. Br. J. Nutr. 2014, 112, 916–924. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary Carbohydrate Intake and Mortality: A Prospective Cohort Study and Meta-Analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Ho, F.K.; Gray, S.R.; Welsh, P.; Petermann-Rocha, F.; Foster, H.; Waddell, H.; Anderson, J.; Lyall, D.; Sattar, N.; Gill, J.M.R.; et al. Associations of Fat and Carbohydrate Intake with Cardiovascular Disease and Mortality: Prospective Cohort Study of UK Biobank Participants. BMJ 2020, 368, m688. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Cho, M.S. Geography of Food Consumption Patterns between South and North China. Foods 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Li, L.T.; Yin, L.J.; Masayoshi, S. Function of traditional foods and food culture in China. JARQ 2004, 38, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, X.; Bloomgarden, Z.T.; Ning, G. The Jiangnan Diet, a Healthy Diet Pattern for Chinese. J. Diabetes 2020, 12, 365–371. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, Y.; Yang, X.; Hemler, E.C.; Fang, Y.; Zhao, L.; Zhang, J.; Yang, Z.; Wang, Z.; He, L.; et al. The Dietary Transition and Its Association with Cardiometabolic Mortality among Chinese Adults, 1982–2012: A Cross-Sectional Population-Based Study. Lancet Diabetes Endocrinol. 2019, 7, 540–548. [Google Scholar] [CrossRef]
- Chang, X.; DeFries, R.S.; Liu, L.; Davis, K. Understanding Dietary and Staple Food Transitions in China from Multiple Scales. PLoS ONE 2018, 13, e0195775. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Lu, B.; Zhai, F. Understanding the Nutrition Transition: Measuring Rapid Dietary Changes in Transitional Countries. Public Health Nutr. 2002, 5, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Batis, C.; Sotres-Alvarez, D.; Gordon-Larsen, P.; Mendez, M.A.; Adair, L.; Popkin, B. Longitudinal Analysis of Dietary Patterns in Chinese Adults from 1991 to 2009. Br. J. Nutr. 2014, 111, 1441–1451. [Google Scholar] [CrossRef] [Green Version]
- China Health and Nutrition Survey (CHNS). [Internet]. 2007. Available online: http://www.cpc.unc.edu/projects/china/about/proj_desc/survey (accessed on 30 July 2021).
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese Diet and the Role of Urbanicity, 1991–2011: Chinese Diet’s, 1991–2011. Obes. Rev. 2014, 15, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y. China Food Composition Table. In Peking: China Institute of Nutriton and Food Safety; China CDC: Beijing, China, 2002. [Google Scholar]
- Chinese Nutrition Society. Dietary Guidelines Chinese Residents; Xizang People Publisher: Lasa, China, 2013; p. 6. (In Chinese) [Google Scholar]
- On behalf of the China Kadoorie Biobank (CKB) Collaborative Group; Im, P.K.; Millwood, I.Y.; Guo, Y.; Du, H.; Chen, Y.; Bian, Z.; Tan, Y.; Guo, Z.; Wu, S.; et al. Patterns and Trends of Alcohol Consumption in Rural and Urban Areas of China: Findings from the China Kadoorie Biobank. BMC Public Health 2019, 19, 217. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Forouhi, N.G.; Surtees, P.; Wareham, N.J.; Monsivais, P. Gender and the Double Burden of Economic and Social Disadvantages on Healthy Eating: Cross-Sectional Study of Older Adults in the EPIC-Norfolk Cohort. BMC Public Health 2015, 15, 692. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.B.; Simons, J. Good Attitudes Are Not Good Enough: An Ethnographical Approach to Investigate Attitude-Behavior Inconsistencies in Sustainable Choice. Foods 2021, 10, 1317. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Popkin, B.M.; Kim, S.W. The unique aspect of the nutrition transition in South Korea: The retention of healthful elements in their traditional diet. Public Health Nutr. 2002, 5, 197–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, X.; Fang, Y.; Zhang, J.; Yang, Z.; Wang, Z.; Liu, A.; He, L.; Sun, J.; Lian, Y.; et al. Trends and Disparities of Energy Intake and Macronutrient Composition in China: A Series of National Surveys, 1982–2012. Nutrients 2020, 12, 2168. [Google Scholar] [CrossRef]
- Nilsen, L.; Hopstock, L.A.; Skeie, G.; Grimsgaard, S.; Lundblad, M.W. The Educational Gradient in Intake of Energy and Macronutrients in the General Adult and Elderly Population: The Tromsø Study 2015–2016. Nutrients 2021, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- Feng, L. New Trends in China’s Regional Economic Development. In Regional Economic Development in China; Saw, S.-H., Wong, J., Eds.; ISEAS Publishing: Singapore, 2009; pp. 9–27. [Google Scholar]
- Mukhopadhyay, K.; Thomassin, P.J. Economic Impact of Adopting a Healthy Diet in Canada. J. Public Health 2012, 20, 639–652. [Google Scholar] [CrossRef]
- Zhao, L.; Stamler, J.; Yan, L.L.; Zhou, B.; Wu, Y.; Liu, K.; Daviglus, M.L.; Dennis, B.H.; Elliott, P.; Ueshima, H.; et al. Blood Pressure Differences Between Northern and Southern Chinese: Role of Dietary Factors: The International Study on Macronutrients and Blood Pressure. Hypertension 2004, 43, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid Health Transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Hobson, K. Thinking habits into action: The role of knowledge and process in questioning household consumption practices. Local Environ. 2003, 8, 95–112. [Google Scholar] [CrossRef]
- Shan, Z.; Guo, Y.; Hu, F.B.; Liu, L.; Qi, Q. Association of Low-Carbohydrate and Low-Fat Diets with Mortality among US Adults. JAMA Intern. Med. 2020, 180, 513. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Hwang, J.-Y.; Kim, H.; Park, S.; Kwon, O. Diet Quality, Physical Activity, and Their Association with Metabolic Syndrome in Korean Adults. Nutrition 2019, 59, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Doak, C.; Adair, L.; Bentley, M.; Fengying, Z.; Popkin, B. The Underweight/Overweight Household: An Exploration of Household Sociodemographic and Dietary Factors in China. Public Health Nutr. 2002, 5, 215–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
N | % | Energy (kcal) | Carbohydrate (g) | Fat (g) | Protein (g) | Energy from Carbohydrate (%) | Energy from Fat (%) | Energy from Protein (%) | |
---|---|---|---|---|---|---|---|---|---|
Age groups (years) | |||||||||
20–39 | 1686 | 21.5 | 1996.7 (549.8) | 268.5 (93.3) | 71.1 (29.4) | 65.1 (22.4) | 53.7 (10.8) | 32.2 (10.6) | 13.2 (3.0) |
40–59 | 3720 | 47.3 | 1991.8 (572) | 272.9 (95.9) | 69.1 (30.1) | 67.2 (22.2) | 54.7 (11.2) | 31.3 (10.9) | 13.6 (3.1) |
≥60 | 2454 | 31.2 | 1825.4 (560.9) | 246.8 (93.3) | 65.3 (29.9) | 58.3 (21.2) | 54.04 (11.7) | 32.3 (11.5) | 13.0 (3.0) |
Gender | |||||||||
Male | 3603 | 45.8 | 2101.0 (575.2) | 283.5 (97.8) | 73.0 (30.2) | 68.5 (22.8) | 53.92 (11.2) | 31.4 (10.7) | 13.2 (3.0) |
Female | 4257 | 54.2 | 1807.7 (528.1) | 245.1 (89.2) | 65.4 (29.3) | 59.1 (20.8) | 54.11 (11.3) | 32.5 (11.3) | 13.2 (3.1) |
Region | |||||||||
North | 3821 | 48.6 | 1881.2 (566.7) | 260.7 (92.3) | 64.0 (30.2) | 60.6 (21.4) | 55.6 (11.2) | 30.6 (1.21) | 13.0 (2.9) |
South | 4039 | 51.4 | 1999.8 (565.7) | 264.6 (97.7) | 73.4 (29.1) | 66.1 (22.7) | 52.5 (11.1) | 33.4 (10.7) | 13.4 (3.1) |
Area | |||||||||
Urban | 2673 | 34.0 | 1775.6 (548.1) | 222.0 (82.3) | 69.3 (31.0) | 62.6 (23.8) | 50.2 (11.2) | 34.9 (11.1) | 14.2 (3.3) |
Rural | 5187 | 66.0 | 2028.1 (560.8) | 283.8 (94.5) | 68.7 (29.5) | 63.8 (21.4) | 56.0 (10.8) | 30.5 (10.7) | 12.7 (2.8) |
Education level | |||||||||
Low | 5761 | 73.3 | 1942.0 (575.1) | 267.4 (97.2) | 67.3 (29.9) | 62.1 (21.7) | 55.0 (11.4) | 31.4 (11.2) | 12.9 (2.9) |
Middle | 1455 | 18.5 | 1958.0 (554.9) | 255.0 (88.6) | 72.4 (30.3) | 66.8 (23.1) | 52.2 (10.6) | 33.3 (10.5) | 13.8 (3.2) |
High | 644 | 8.2 | 1908.4 (547.5) | 238.1 (85.8) | 74.3 (29.2) | 67.6 (22.9) | 49.8 (10.1) | 35.2 (10.2) | 14.3 (3.2) |
Current smoker | |||||||||
Yes | 1994 | 25.4 | 2095.7 (585.7) | 281.1 (98.0) | 72.9 (72.9) | 67.9 (22.7) | 53.7 (11.5) | 31.4 (10.8) | 13.1 (3.0) |
No | 5866 | 74.6 | 1890 (554.0) | 256.4 (93.3) | 67.5 (29.6) | 61.9 (21.8) | 54.1 (11.2) | 32.2 (11.1) | 13.2 (3.1) |
Drinking frequency | |||||||||
Low | 335 | 4.3 | 1871.5 (539.3) | 254.3 (94.5) | 66.0 (29.1) | 64.6 (23.1) | 54.2 (11.8) | 31.8 (11.4) | 14.0 (3.5) |
Middle | 6769 | 86.1 | 1920.3 (558.4) | 261.9 (94.9) | 68.4 (29.9) | 62.7 (23.1) | 54.4 (11.1) | 32.1 (11.0) | 13.2 (3.0) |
High | 756 | 9.6 | 2169.0 (625.1) | 273.5 (97.2) | 74.1 (30.6) | 69.0 (23.5) | 50.7 (11.8) | 31.1 (11.0) | 12.9 (3.2) |
Social class | |||||||||
Low | 3464 | 44.1 | 2032.9 (580.3) | 284.0 (97.8) | 68.3 (29.9) | 65.0 (23.5) | 55.8 (10.9) | 30.4 (10.7) | 12.9 (2.8) |
High | 4396 | 55.9 | 1870.7 (549.9) | 245.9 (89.6) | 69.3 (30.1) | 62.2 (22.9) | 52.6 (11.3) | 33.3 (11.1) | 13.4 (3.2) |
Awareness of CDG | |||||||||
Yes | 1858 | 23.6 | 2040.9 (583.8) | 275.6 (95.5) | 72.3 (30.5) | 66.8 (23.0) | 54.0 (10.7) | 31.9 (10.4) | 13.2 (3.1) |
No | 6002 | 76.4 | 1911.6 (561.2) | 258.7 (94.7) | 67.8 (29.8) | 62.4 (21.9) | 54.0 (11.4) | 32.1 (11.2) | 13.2 (3.0) |
Healthy diet priority | |||||||||
Low | 514 | 6.5 | 1899.4 (576.4) | 262.9 (94.2) | 64.8 (31.8) | 60.8 (21.4) | 55.7 (12.4) | 30.5 (12.1) | 12.9 (3.1) |
Middle | 4535 | 57.7 | 1918.2 (571.2) | 259.5 (95.7) | 68.3 (30.3) | 62.1 (22.3) | 54.0 (11.5) | 32.2 (11.3) | 13.08 (3.0) |
High | 2811 | 35.8 | 1988.6 (561.9) | 267.9 (94.2) | 70.5 (29.0) | 66.0 (22.1) | 53.7 (10.6) | 32.1 (10.4) | 13.4 (3.0) |
n | % | 𝜒2 | p | |
---|---|---|---|---|
N = 1609 | ||||
Age group | ||||
20–39 | 0 | 0.00 | 939.13 | <0.001 |
40–59 | 266 | 24.90 | ||
≥60 | 803 | 75.10 | ||
Gender | ||||
Male | 481 | 45.00 | 10.71 | <0.005 |
Female | 1128 | 55.00 | ||
Region | ||||
North | 541 | 50.60 | 0.16 | 0.69 |
South | 1068 | 49.40 | ||
Area | ||||
Urban | 220 | 20.60 | 370.10 | <0.001 |
Rural | 1389 | 79.40 | ||
Education | ||||
Low | 825 | 77.20 | 942.86 | <0.001 |
Middle | 179 | 16.70 | ||
High | 605 | 6.10 | ||
Current smoker | ||||
Yes | 796 | 24.00 | 290.22 | <0.001 |
No | 813 | 76.00 | ||
Drinking frequency | ||||
Low | 85 | 8.00 | 1461.70 | <0.001 |
Middle | 945 | 88.40 | ||
High | 579 | 3.60 | ||
Social class | ||||
Low | 1092 | 51.60 | 1.15 | 0.28 |
High | 517 | 48.40 | ||
CDG knowledge | ||||
Yes | 290 | 27.10 | 223.69 | <0.001 |
No | 1319 | 72.90 | ||
Healthy diet priority | ||||
Low | 69 | 6.50 | 409.42 | <0.001 |
Middle | 605 | 56.60 | ||
High | 935 | 36.90 |
Univariate Simple Linear Model | Adjusted Multiple Linear Model | |||||
---|---|---|---|---|---|---|
Coefficient | CI 95 | p | Coefficient | CI 95 | p | |
% energy from carbohydrate | ||||||
Age groups (years) | ||||||
≥60 (ref) | ||||||
40–59 | −0.34 | −0.91, 0.23 | 0.24 | |||
20–39 | 0.65 | 0.05, 1.34 | 0.07 | |||
Gender | ||||||
Male (ref) | ||||||
Female | 0.18 | −0.32, 0.68 | 0.47 | |||
Region | ||||||
North (ref) | ||||||
South | −3.07 | −3.56, −2.57 | <0.001 | −3.17 | −3.67, −2.67 | <0.001 |
Area | ||||||
Urban (ref) | ||||||
Rural | 5.73 | 5.22, 6.24 | <0.001 | 5.74 | 5.23, 6.25 | <0.001 |
Education level | ||||||
Low (ref) | ||||||
Middle | −2.78 | −3.42, −2.14 | <0.001 | −2.90 | −3.55, −2.26 | <0.001 |
High | −5.20 | −6.11, −4.29 | <0.001 | −5.49 | −6.41, −4.57 | <0.001 |
Current smoker | ||||||
No (ref) | ||||||
Yes | −0.45 | −1.02, 0.12 | 0.12 | |||
Drinking frequency | ||||||
High (ref) | ||||||
Middle | 3.66 | 2.81, 4.50 | <0.001 | 3.69 | 2.81, 4.57 | <0.001 |
Low | 3.43 | 1.99, 4.87 | <0.001 | 3.40 | 1.94, 4.87 | <0.001 |
Social class | ||||||
High (ref) | ||||||
Low | 3.20 | 2.70, 3.70 | <0.001 | 3.55 | 3.03, 4.06 | <0.001 |
CDG knowledge | ||||||
No (ref) | ||||||
Yes | 0.02 | −0.57, 0.61 | 0.95 | |||
Healthy diet priority | ||||||
Low (ref) | ||||||
Middle | −1.69 | −2.71, −0.66 | <0.001 | −1.70 | −2.73, −0.68 | <0.005 |
High | −1.98 | −3.04, −0.92 | <0.001 | −2.02 | −3.09, −0.96 | <0.005 |
% energy from fat | ||||||
Age groups (years) | ||||||
≥40 (ref) | ||||||
20–39 | −0.95 | −1.54, −0.36 | <0.005 | −0.94 | −1.54, −0.35 | <0.005 |
Gender | ||||||
Male (ref) | ||||||
Female | 1.12 | 0.63, 1.60 | <0.001 | 1.11 | 0.62, 1.60 | <0.001 |
Region | ||||||
North (ref) | ||||||
South | 2.84 | 2.36, 3.33 | <0.001 | 2.86 | 2.38, 3.35 | <0.001 |
Area | ||||||
Urban (ref) | ||||||
Rural | −4.40 | −4.91, −3.90 | <0.001 | −4.41 | −4.91, −3.91 | <0.001 |
Education level | ||||||
Low (ref) | ||||||
Middle | 1.89 | 1.26, 2.52 | <0.001 | 2.00 | 1.37, 2.64 | <0.001 |
High | 3.80 | 2.91, 4.70 | <0.001 | 4.04 | 3.13, 4.95 | <0.001 |
Current smoker | ||||||
No (ref) | ||||||
Yes | −0.80 | −1.36, −0.24 | <0.01 | −0.80 | −1.36, −0.24 | <0.005 |
Drinking frequency | ||||||
High(ref) | ||||||
Low | 1.04 | 0.21, 1.86 | <0.05 | 1.04 | 0.22, 1.87 | <0.05 |
Social class | ||||||
High (ref) | ||||||
Low | −2.99 | −3.50, −2.50 | <0.001 | −3.00 | −3.49, −2.52 | <0.001 |
CDG knowledge | ||||||
No (ref) | ||||||
Yes | −0.17 | −0.74, 0.41 | 0.57 | |||
Healthy diet priority | ||||||
Low (ref) | ||||||
Middle | 1.66 | 0.66, 2.67 | <0.01 | 1.69 | 0.69, 2.70 | <0.001 |
High | 1.55 | 0.51, 2.58 | <0.01 | 1.60 | 0.55, 2.64 | <0.005 |
% energy from protein | ||||||
Age groups (years) | ||||||
≥60 (ref) | ||||||
40–59 | 0.31 | 0.16, 0.47 | <0.001 | 0.32 | 0.17, 0.48 | <0.001 |
20–39 | 0.72 | 0.52, 0.91 | <0.001 | 0.72 | 0.53, 0.91 | <0.001 |
Gender | ||||||
Male (ref) | ||||||
Female | 0.04 | −0.10, 0.17 | 0.61 | |||
Region | ||||||
North (ref) | ||||||
South | 0.36 | 0.23, 0.49 | <0.001 | 0.37 | 0.23, 0.51 | <0.001 |
Area | ||||||
Urban (ref) | ||||||
Rural | −1.50 | −1.64, −1.36 | <0.001 | −1.50 | −1.63, −1.35 | <0.001 |
Education level | ||||||
Low (ref) | ||||||
Middle | 0.90 | 0.73, 1.07 | <0.001 | 0.94 | 0.75, 1.10 | <0.001 |
High | 1.39 | 1.15, 1.64 | <0.001 | 1.46 | 1.20, 1.70 | <0.001 |
Current smoker | ||||||
No (ref) | ||||||
Yes | −0.13 | −0.29, 0.02 | 0.094 | |||
Drinking frequency | ||||||
Low (ref) | ||||||
High | 0.76 | 0.43, 1.10 | <0.001 | 0.77 | 0.43, 1.10 | <0.001 |
Social class | ||||||
High (ref) | ||||||
Low | −0.45 | −0.58, −0.31 | <0.001 | −0.44 | −0.58, −0.31 | <0.001 |
CDG knowledge | ||||||
No (ref) | ||||||
Yes | 0.06 | −0.10, 0.22 | 0.44 | |||
Healthy diet priority | ||||||
Low (ref) | ||||||
High | 0.35 | 0.21, 0.49 | <0.001 | 0.35 | 0.21, 0.49 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Araki, T. Evaluation of Disparities in Adults’ Macronutrient Intake Status: Results from the China Health and Nutrition 2011 Survey. Nutrients 2021, 13, 3044. https://doi.org/10.3390/nu13093044
Zhao Y, Araki T. Evaluation of Disparities in Adults’ Macronutrient Intake Status: Results from the China Health and Nutrition 2011 Survey. Nutrients. 2021; 13(9):3044. https://doi.org/10.3390/nu13093044
Chicago/Turabian StyleZhao, Yajie, and Tetsuya Araki. 2021. "Evaluation of Disparities in Adults’ Macronutrient Intake Status: Results from the China Health and Nutrition 2011 Survey" Nutrients 13, no. 9: 3044. https://doi.org/10.3390/nu13093044
APA StyleZhao, Y., & Araki, T. (2021). Evaluation of Disparities in Adults’ Macronutrient Intake Status: Results from the China Health and Nutrition 2011 Survey. Nutrients, 13(9), 3044. https://doi.org/10.3390/nu13093044