Long-Term Trends (1994–2011) and Predictors of Total Alcohol and Alcoholic Beverages Consumption: The EPIC Greece Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. The EPIC-Greece Cohort
2.2. Follow-Up
2.3. The Alcohol Follow-Up
2.4. Computation of Frequency and Quantity of Wine Consumption
2.5. Computation of Total Alcohol Intake
2.6. Demographic Variables
2.7. Study Sample
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Marginal Effects Ratios | Wine | Beer | ||||||||
Age at Interview | Age at Interview | |||||||||
40 | 50 | 60 | 70 | 80 | 40 | 50 | 60 | 70 | 80 | |
Female vs. Male | 0.289 | 0.302 | 0.315 | 0.329 | 0.343 | 0.364 | 0.438 | 0.527 | 0.634 | 0.764 |
Middle vs. Low education | 0.987 | 1.035 | 1.086 | 1.139 | 1.195 | 1.002 | 1.02 | 1.037 | 1.056 | 1.074 |
High vs. Low education | 0.951 | 1.08 | 1.228 | 1.395 | 1.585 | 1.001 | 1.056 | 1.114 | 1.176 | 1.241 |
Overweight vs. normal weight | 0.917 | 0.924 | 0.93 | 0.936 | 0.942 | 0.903 | 0.907 | 0.911 | 0.915 | 0.918 |
Obese vs. normal weight | 0.818 | 0.795 | 0.773 | 0.752 | 0.731 | 0.834 | 0.847 | 0.86 | 0.872 | 0.886 |
Smoking vs. non smoking | 1.351 | 1.28 | 1.213 | 1.149 | 1.089 | 1.246 | 1.201 | 1.157 | 1.115 | 1.075 |
Retired vs. non retired | 0.962 | 0.944 | 0.926 | 0.909 | 0.892 | 0.979 | 0.995 | 1.011 | 1.027 | 1.044 |
Married vs. not married | 1.093 | 1.098 | 1.103 | 1.108 | 1.114 | 1.129 | 1.078 | 1.029 | 0.982 | 0.938 |
Spirits/Other Beverages | Total Alcohol Consumption | |||||||||
Age at Interview | Age at Interview | |||||||||
40 | 50 | 60 | 70 | 80 | 40 | 50 | 60 | 70 | 80 | |
Female vs. Male | 0.265 | 0.306 | 0.353 | 0.407 | 0.47 | 0.131 | 0.138 | 0.146 | 0.154 | 0.162 |
Middle vs. Low education | 1.154 | 1.098 | 1.045 | 0.994 | 0.946 | 1.016 | 1.044 | 1.074 | 1.104 | 1.135 |
High vs. Low education | 1.148 | 1.032 | 0.927 | 0.833 | 0.749 | 0.984 | 1.054 | 1.129 | 1.21 | 1.296 |
Overweight vs. normal weight | 0.969 | 0.981 | 0.994 | 1.007 | 1.02 | 0.884 | 0.895 | 0.907 | 0.919 | 0.93 |
Obese vs. normal weight | 0.909 | 0.931 | 0.953 | 0.976 | 1 | 0.759 | 0.753 | 0.746 | 0.74 | 0.733 |
Smoking vs. non smoking | 1.706 | 1.562 | 1.429 | 1.308 | 1.197 | 1.75 | 1.611 | 1.483 | 1.366 | 1.257 |
Retired vs. non retired | 1.381 | 1.288 | 1.201 | 1.12 | 1.045 | 1.175 | 1.11 | 1.047 | 0.989 | 0.933 |
Married vs. not married | 1.027 | 1.041 | 1.055 | 1.069 | 1.083 | 1.103 | 1.115 | 1.126 | 1.137 | 1.149 |
References
- Ricci, C.; Wood, A.; Muller, D.; Gunter, M.J.; Agudo, A.; Boeing, H.; Van Der Schouw, Y.T.; Warnakula, S.; Saieva, C.; Spijkerman, A.; et al. Alcohol intake in relation to non-fatal and fatal coronary heart disease and stroke: EPIC-CVD case-cohort study. BMJ 2018, 361, k934. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumgay, H.; Shield, K.; Charvat, H.; Ferrari, P.; Sornpaisarn, B.; Obot, I.; Islami, F.; Lemmens, V.E.; Rehm, J.; Soerjomataram, I. Global burden of cancer in 2020 attributable to alcohol consumption: A population-based study. Lancet Oncol. 2021, 22, 1071–1080. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer; World Health Organization. Alcohol Consumption and Ethyl Carbamate. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2010, Volume 96. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Alcohol-Consumption-And-Ethyl-Carbamate-2010 (accessed on 22 July 2021).
- Status Report on Alcohol Consumption, Harm and Policy Responses in 30 European Countries. 2019. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/alcohol-use/publications/2019/status-report-on-alcohol-consumption,-harm-and-policy-responses-in-30-european-countries-2019 (accessed on 11 January 2021).
- Moore, A.A.; Gould, R.; Reuben, D.B.; Greendale, G.A.; Carter, M.K.; Zhou, K.; Karlamangla, A. Longitudinal Patterns and Predictors of Alcohol Consumption in the United States. Am. J. Public Health 2005, 95, 458–464. [Google Scholar] [CrossRef]
- Molander, R.C.; Yonker, J.A.; Krahn, D.D. Age-Related Changes in Drinking Patterns from Mid- to Older Age: Results from the Wisconsin Longitudinal Study. Alcohol. Clin. Exp. Res. 2010, 34, 1182–1192. [Google Scholar] [CrossRef]
- McEvoy, L.K.; Kritz-Silverstein, D.; Barrett-Connor, E.; Bergstrom, J.; Laughlin, G.A. Changes in Alcohol Intake and Their Relationship with Health Status over a 24-Year Follow-Up Period in Community-Dwelling Older Adults. J. Am. Geriatr. Soc. 2013, 61, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, D.; Niemelä, S.; Auvinen, J.; Timonen, M.; Keinänen-Kiukaanniemi, S.; Ala-Mursula, L.; Laitinen, J.; Miettunen, J. Changes in alcohol use in relation to sociodemographic factors in early midlife. Scand. J. Public Health 2015, 44, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Jefferis, B.J.M.H.; Manor, O.; Power, C. Social gradients in binge drinking and abstaining: Trends in a cohort of British adults. J. Epidemiol. Community Health 2007, 61, 150–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perreira, K.M.; Sloan, F.A. Life events and alcohol consumption among mature adults: A longitudinal analysis. J. Stud. Alcohol 2001, 62, 501–508. [Google Scholar] [CrossRef]
- Rehm, J.; Irving, H.; Ye, Y.; Kerr, W.C.; Bond, J.; Greenfield, T.K. Are Lifetime Abstainers the Best Control Group in Alcohol Epidemiology? On the Stability and Validity of Reported Lifetime Abstention. Am. J. Epidemiol. 2008, 168, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Pestoni, G.; Krieger, J.-P.; Sych, J.M.; Faeh, D.; Rohrmann, S. Cultural Differences in Diet and Determinants of Diet Quality in Switzerland: Results from the National Nutrition Survey menuCH. Nutrients 2019, 11, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyers, J.L.; Brown, Q.; Grant, B.F.; Hasin, D. Religiosity, race/ethnicity, and alcohol use behaviors in the United States. Psychol. Med. 2016, 47, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph Rowntree Foundation. Ethnicity and Alcohol: A Review of the UK Literature. Available online: https://www.jrf.org.uk/sites/default/files/jrf/migrated/files/ethnicity-alcohol-literature-review-summary.pdf (accessed on 22 July 2021).
- Bray, B.C.; Dziak, J.J.; Lanza, S.T. Age trends in alcohol use behavior patterns among U.S. adults ages 18–65. Drug Alcohol Depend. 2019, 205, 107689. [Google Scholar] [CrossRef] [PubMed]
- Luben, R.; Hayat, S.; Mulligan, A.; Lentjes, M.; Wareham, N.; Pharoah, P.; Khaw, K.-T. Alcohol consumption and future hospital usage: The EPIC-Norfolk prospective population study. PLoS ONE 2018, 13, e0200747. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, B.; Selbæk, G.; Krokstad, S.; Helvik, A.-S. Factors associated with consumption of alcohol in older adults—A comparison between two cultures, China and Norway: The CLHLS and the HUNT-study. BMC Geriatr. 2017, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.; Canfield, M. Predictors of hazardous drinking among home drinkers. J. Subst. Use 2017, 22, 637–642. [Google Scholar] [CrossRef]
- Beard, E.; Brown, J.; Kaner, E.; West, R.; Michie, S. Predictors of and reasons for attempts to reduce alcohol intake: A population survey of adults in England. PLoS ONE 2017, 12, e0173458. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.K.; Fung, T.T.; Lu, N.; Keller, S.F.; Curhan, G.C.; Choi, H.K. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: Prospective cohort study. BMJ 2017, 357, j1794. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal study of alcohol consumption and HDL concentrations: A community-based study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riboli, E. The European Prospective Investigation into Cancer and Nutrition (EPIC): Plans and Progress. J. Nutr. 2001, 131, 170S–175S. [Google Scholar] [CrossRef] [Green Version]
- Bingham, S.A.; Day, N.E.; Luben, R.; Ferrari, P.; Slimani, N.; Norat, T.; Clavel-Chapelon, F.; Kesse, E.; Nieters, A.; Boeing, H.; et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 2003, 361, 1496–1501. [Google Scholar] [CrossRef]
- Norat, T.; Bingham, S.; Ferrari, P.; Slimani, N.; Jenab, M.; Mazuir, M.; Overvad, K.; Olsen, A.; Tjønneland, A.; Clavel, F.; et al. Meat, fish, and colorectal cancer risk: The European Prospective Investigation into cancer and nutrition. J. Natl. Cancer Inst. 2005, 97, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Katsouyanni, K.; Rimm, E.B.; Gnardellis, C.; Trichopoulos, D.; Polychronopoulos, E.; Trichopoulou, A. Reproducibility and relative validity of an extensive semi-quantitative food frequency questionnaire using dietary records and biochemical markers among Greek schoolteachers. Int. J. Epidemiol. 1997, 26, 118S–127S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klipstein-Grobusch, K.; Slimani, N.; Krogh, V.; Keil, U.; Boeing, H.; Overvad, K.; Tjonneland, A.; Clavel-Chapelon, F.; Thiébaut, A.; Linseisen, J.; et al. Trends in self-reported past alcoholic beverage consumption and ethanol intake from 1950 to 1995 observed in eight European countries participating in the European Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002, 5, 1297–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stata. Stata Statistical Software: Release 11; College Station, StataCorp: College Station, TX, USA, 2009. [Google Scholar]
- Platt, A.; Sloan, F.A.; Costanzo, P. Alcohol-Consumption Trajectories and Associated Characteristics Among Adults Older Than Age 50. J. Stud. Alcohol Drugs 2010, 71, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Levenson, M.R.; Aldwin, C.M.; Spiro, A. Age, cohort and period effects on alcohol consumption and problem drinking: Findings from the Normative Aging Study. J. Stud. Alcohol 1998, 59, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Britton, A.; Ben-Shlomo, Y.; Benzeval, M.; Kuh, D.; Bell, S. Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies. BMC Med. 2015, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.J.; Muthén, B.O.; Harford, T.C. The influence of changes in marital status on developmental trajectories of alcohol use in young adults. J. Stud. Alcohol 1998, 59, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; De la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 639–647. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Benetou, V.; Trichopoulou, A.; La Vecchia, C.; Bamia, C. Mediterranean diet and its components in relation to all-cause mortality: Meta-analysis. Br. J. Nutr. 2018, 120, 1081–1097. [Google Scholar] [CrossRef]
- Morales, G.; Martínez-González, M.A.; Barbería-Latasa, M.; Bes-Rastrollo, M.; Gea, A. Mediterranean diet, alcohol-drinking pattern and their combined effect on all-cause mortality: The Seguimiento Universidad de Navarra (SUN) cohort. Eur. J. Nutr. 2021, 60, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, A.; Wang, D.D.; Liu, X.; Dhana, K.; Franco, O.H.; Kaptoge, S.; Di Angelantonio, E.; Stampfer, M.; Willett, W.C.; et al. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. Circulation 2018, 138, 345–355. [Google Scholar] [CrossRef]
- Carballo-Casla, A.; Ortolá, R.; García-Esquinas, E.; Oliveira, A.; Sotos-Prieto, M.; Lopes, C.; Lopez-Garcia, E.; Rodríguez-Artalejo, F. The Southern European Atlantic Diet and all-cause mortality in older adults. BMC Med. 2021, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Spain (2021) Low Risk Alcohol Consumption Thresholds. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/Prevencion/alcohol/docs/Alcoholconsumption_ExecutiveSummary.pdf (accessed on 22 July 2021).
- Naska, A.; Orfanos, P.; Chloptsios, Y.; Trichopoulou, A. Dietary habits in Greece: The European Prospective Investigation into Cancer and nutrition (the EPIC project). Arch. Hell. Med. 2005, 22, 259–269. Available online: http://www.mednet.gr/archives/2005-3/259abs.html (accessed on 13 January 2021).
- Bell, A.; Jones, K. Current practice in the modelling of age, period and cohort effects with panel data: A commentary on Tawfik et al. (2012), Clarke et al. (2009), and McCulloch (2012). Qual. Quant. 2014, 48, 2089–2095. [Google Scholar] [CrossRef] [Green Version]
- WHO/Europe|Home. Available online: https://www.euro.who.int/en (accessed on 22 July 2021).
- Statista. Greece—Median Age of the Population 1950–2050. Available online: https://www.statista.com/statistics/276412/median-age-of-the-population-in-greece/ (accessed on 22 July 2021).
- Aristei, D.; Perali, F.; Pieroni, L. Cohort, age and time effects in alcohol consumption by Italian households: A double-hurdle approach. Empir. Econ. 2008, 35, 29–61. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Holmes, J.; Hill-McManus, D.; Brennan, A.; Meier, P.S. Trend analysis and modelling of gender-specific age, period and birth cohort effects on alcohol abstention and consumption level for drinkers in Great Britain using the General Lifestyle Survey 1984–2009. Addiction 2014, 109, 206–215. [Google Scholar] [CrossRef] [Green Version]
Overall | Abstainers No Consumption | Occasional—Less Than 1 Glass/Week | Systematic—More Than 1 Glass/Week | ||||||
---|---|---|---|---|---|---|---|---|---|
Wine | Beer | Spirits | Wine | Beer | Spirits | ||||
Age Mean (±SD) | 53 (±12.7) | 56.7 (±12.7) | 51.6 (±12.4) | 51.5 (±12.1) | 50.6 (±12) | 52 (±12.3) | 48.6 (±11.7) | 49.8 (±12.23) | |
Gender N (%) | Males | 11,954 (41.8) | 1397 (18.6) | 2211 (33.7) | 3187 (41.8) | 1639 (44.4) | 7261 (59.9) | 4422 (66.9) | 6432 (73.5) |
Females | 16,618 (58.2) | 6101 (81.4) | 4344 (66.3) | 4434 (58.2) | 2051 (55.6) | 4853 (40.1) | 2185 (33.1) | 2324 (26.5) | |
Education N (%) | Low | 5884 (21) | 2372 (31.6) | 1168 (17.8) | 1201 (15.8) | 491 (13.3) | 1974 (16.3) | 731 (11.1) | 1018 (11.6) |
Medium | 17,330 (61.8) | 4411 (58.8) | 3970 (60.6) | 4826 (63.3) | 2366 (64.2) | 7810 (64.5) | 4252 (64.4) | 5654 (64.6) | |
High | 4816 (17.2) | 713 (9.5) | 1417 (21.6) | 1592 (20.9) | 832 (22.6) | 2327 (19.2) | 1624 (24.6) | 2082 (23.8) | |
Marital status N (%) | Single | 4406 (15.7) | 1482 (19.8) | 1082 (16.5) | 1143 (15) | 526 (14.3) | 1556 (12.9) | 882 (13.4) | 1184 (13.5) |
Married | 23,612 (84.3) | 6008 (80.2) | 5470 (83.5) | 6475 (85) | 3162 (85.7) | 10552(87.1) | 5723 (86.6) | 7567 (86.5) | |
Retired N (%) | No | 22,397 (78.4) | 5355 (71.4) | 5328 (81.3) | 6274 (82.3) | 3038 (82.4) | 9664 (79.8) | 5703 (86.3) | 7104 (81.1) |
Yes | 6175 (21.6) | 2143 (28.6) | 1227 (18.7) | 1347 (17.7) | 652 (17.7) | 2450 (20.2) | 904 (13.7) | 1652(18.9) | |
BMI group N (%) | Normal | 6263 (21.9) | 1420 (18.9) | 1597 (24.4) | 1780 (23.4) | 922 (25) | 2745 (22.7) | 1715 (26) | 2062 (23.5) |
Overweight | 12,139 (42.5) | 2834 (37.8) | 2765 (42.2) | 3323 (43.6) | 1613 (43.7) | 5723 (47.2) | 3144 (47.6) | 4308 (49.2) | |
Obese | 10,170 (35.6) | 3244 (43.3) | 2193 (33.5) | 2518 (33) | 1155 (31.3) | 3646 (30.1) | 1748 (26.5) | 2386 (27.2) | |
Smoking at baseline N (%) | No | 15,369 (53.9) | 5515 (73.6) | 3765 (57.5) | 4015 (52.8) | 1830 (49.7) | 5119 (42.3) | 2295 (34.8) | 2481 (28.4) |
Yes | 13,168 (46.1) | 1978 (26.4) | 2778 (42.5) | 3589 (47.2) | 1851 (50.3) | 6981 (57.7) | 4306 (65.2) | 6266 (71.6) | |
History of heart attack at baseline N (%) | No | 27,492 (98.1) | 7336 (97.9) | 6466 (98.6) | 7496 (98.4) | 3618 (98.1) | 11854(97.9) | 6532 (98.9) | 8564 (97.8) |
Yes | 538 (1.9) | 160 (2.1) | 89 (1.4) | 123 (1.6) | 71 (1.9) | 257 (2.1) | 75 (1.1) | 190 (2.2) | |
History of diabetes at baseline N (%) | No | 26,041 (92.9) | 6634 (88.5) | 6170 (94.1) | 7224 (94.8) | 3500 (94.9) | 11491(94.9) | 6424 (97.2) | 8379 (95.7) |
Yes | 1989 (7.1) | 862 (11.5) | 385 (5.9) | 395 (5.2) | 189 (5.1) | 620 (5.1) | 183 (2.8) | 375 (4.3) | |
History of peptic ulcer at baseline N (%) | No | 26,749 (95.4) | 7064 (94.2) | 6314 (96.3) | 7340 (96.3) | 3535 (95.8) | 11581(95.6) | 6359 (96.2) | 8390 (95.8) |
Yes | 1281 (4.6) | 432 (5.8) | 241 (3.7) | 279 (3.7) | 154 (4.2) | 530 (4.4) | 248 (3.8) | 364 (4.29) | |
History of high blood pressure at baseline N (%) | No | 21,309 (76) | 4800 (64) | 5155 (78.6) | 6100 (80.1) | 3016 (81.8) | 9953 (82.2) | 5664 (85.7) | 7337 (83.8) |
Yes | 6721 (24) | 2696 (36) | 1400 (21.4) | 1519 (19.9) | 673 (18.2) | 2158 (17.8) | 943 (14.3) | 1417 (16.2) | |
History of high blood cholesterol at baseline N (%) | No | 21,178 (75.6) | 5409 (72.2) | 5007 (76.4) | 5900 (77.4) | 2871 (77.8) | 9296 (76.8) | 5310 (80.4) | 6866 (78.4) |
Yes | 6851 (24.4) | 2087 (27.8) | 1548 (23.6) | 1719 (22.6) | 818 (22.2) | 2814 (23.2) | 1297 (19.6) | 1888 (21.6) |
Wine a | CI b | Beer a | CI b | Spirits a | CI b | Total Alcohol a | CI b | |
---|---|---|---|---|---|---|---|---|
Age at Interview c (5-year leaps) | 0.799 * | (0.792–0.806) | 0.733 * | (0.728–0.738) | 0.721 * | (0.716–0.726) | 0.675 * | (0.668–1.003) |
Age at Interview squared | 1.001 * | (1.001–1.002) | 1.002 * | (1.002–1.002) | 1.005 * | (1.005–1.006) | 1.003 * | (1.003–0.641) |
Cohort 1935–1945 | 0.699 * | (0.647–0.754) | 0.789 * | (0.748–0.833) | 0.726 * | (0.684–0.77) | 0.589 * | (0.542–0.509) |
Cohort 1945–1955 | 0.657 * | (0.606–0.712) | 0.508 * | (0.481–0.538) | 0.564 * | (0.53–0.601) | 0.465 * | (0.426–0.376) |
Cohort after 1955 | 0.624 * | (0.559–0.695) | 0.289 * | (0.268–0.312) | 0.42 * | (0.386–0.457) | 0.334 * | (0.296–0.153) |
Female | 0.315 * | (0.303–0.328) | 0.527 * | (0.514–0.54) | 0.353 * | (0.343–0.364) | 0.146 * | (0.139–1.146) |
Medium education | 1.086 * | (1.024–1.152) | 1.037 | (0.997–1.079) | 1.045 | (0.998–1.094) | 1.074 * | (1.006–1.228) |
High education | 1.228 * | (1.138–1.324) | 1.114 * | (1.061–1.17) | 0.927 * | (0.875–0.982) | 1.129 * | (1.039–0.954) |
Overweight | 0.93 * | (0.889–0.973) | 0.911 * | (0.886–0.937) | 0.994 | (0.961–1.028) | 0.907 * | (0.862–0.787) |
Obese | 0.773 * | (0.737–0.811) | 0.86 * | (0.834–0.885) | 0.953 * | (0.92–0.988) | 0.746 * | (0.708–1.122) |
Retired | 0.926 * | (0.87–0.986) | 1.011 | (0.97–1.055) | 1.201 * | (1.145–1.261) | 1.047 | (0.978–1.551) |
Smoker | 1.213 * | (1.165–1.262) | 1.157 * | (1.129–1.186) | 1.429 * | (1.387–1.472) | 1.483 * | (1.418–1.187) |
Married | 1.103 * | (1.052–1.157) | 1.029 | (0.998–1.061) | 1.055 * | (1.018–1.094) | 1.126 * | (1.067–0.976) |
Heart | 0.885 | (0.775–1.01) | 0.897 * | (0.837–0.962) | 0.917 | (0.835–1.007) | 0.842 * | (0.726–0.677) |
Diabetes | 0.689 * | (0.643–0.737) | 0.825 * | (0.796–0.855) | 0.84 * | (0.801–0.882) | 0.627 * | (0.581–0.796) |
HBP | 0.755 * | (0.724–0.788) | 0.944 * | (0.923–0.966) | 0.965 * | (0.936–0.995) | 0.76 * | (0.725–1.059) |
HBC | 1.022 | (0.983–1.062) | 0.981 | (0.96–1.003) | 0.987 | (0.96–1.016) | 1.014 | (0.972–0.856) |
Peptic | 0.833 * | (0.77–0.901) | 0.949 * | (0.907–0.992) | 0.884 * | (0.834–0.937) | 0.784 * | (0.718–1.044) |
Age x Cohort 1935–1945 | 1.024 * | (1.016–1.031) | 0.999 | (0.994–1.005) | 1.025 * | (1.019–1.031) | 1.036 * | (1.028–1.067) |
Age x Cohort 1945–1955 | 1.038 * | (1.027–1.05) | 1 | (0.991–1.008) | 1.04 * | (1.031–1.049) | 1.054 * | (1.042–1.08) |
Age x Cohort after 1955 | 1.047 * | (1.031–1.063) | 1.001 | (0.989–1.013) | 1.054 * | (1.041–1.066) | 1.062 * | (1.045–1.008) |
AgexFemale | 1.004 * | (1.002–1.007) | 1.019 * | (1.017–1.021) | 1.014 * | (1.012–1.017) | 1.005 * | (1.002–1.008) |
Agex Medium education | 1.005 * | (1–1.009) | 1.002 | (0.999–1.005) | 0.995* | (0.992–0.998) | 1.003 | (0.998–1.013) |
Agex High education | 1.013 * | (1.007–1.018) | 1.005 * | (1.002–1.009) | 0.989* | (0.985–0.993) | 1.007 * | (1.001–1.004) |
AgexOverweight | 1.001 | (0.998–1.004) | 1 | (0.998–1.002) | 1.001 | (0.999–1.003) | 1.001 | (0.998–1.003) |
AgexObese | 0.997 | (0.994–1) | 1.001 | (0.999–1.004) | 1.002 * | (1–1.005) | 0.999 | (0.996–0.999) |
AgexRetired | 0.998 | (0.994–1.003) | 1.002 | (0.999–1.005) | 0.993 * | (0.99–0.996) | 0.994 * | (0.989–0.995) |
AgexSmoker | 0.995 * | (0.992–0.997) | 0.996 * | (0.995–0.998) | 0.991 * | (0.989–0.993) | 0.992 | (0.989–1.004) |
AgexMarital | 1 | (0.998–1.003) | 0.995 * | (0.993–0.997) | 1.001 | (0.999–1.004) | 1.001 | (0.998–9.495) |
Constant | 1.997 | (1.804–2.21) | 0.52 | (0.486–0.556) | 0.59 | (0.546–0.637) | 8.485 | (7.582–9.516) |
Random int. | 1.025 | 0.3171 | 0.567 | 1.283 | ||||
Random slope | 0.0001 | 0.0002 | 0.00003 | 0.00025 | ||||
R. interecept- slope cov | 0.0031 | −0.0093 | −0.0043 | 0.0046 | ||||
Log likelikhood | −150,398.47 | −124,277.06 | −129,615.7 | −157,041.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skourlis, N.; Massara, P.; Patsis, I.; Peppa, E.; Katsouyanni, K.; Trichopoulou, A. Long-Term Trends (1994–2011) and Predictors of Total Alcohol and Alcoholic Beverages Consumption: The EPIC Greece Cohort. Nutrients 2021, 13, 3077. https://doi.org/10.3390/nu13093077
Skourlis N, Massara P, Patsis I, Peppa E, Katsouyanni K, Trichopoulou A. Long-Term Trends (1994–2011) and Predictors of Total Alcohol and Alcoholic Beverages Consumption: The EPIC Greece Cohort. Nutrients. 2021; 13(9):3077. https://doi.org/10.3390/nu13093077
Chicago/Turabian StyleSkourlis, Nikolaos, Paraskevi Massara, Ioannis Patsis, Eleni Peppa, Klea Katsouyanni, and Antonia Trichopoulou. 2021. "Long-Term Trends (1994–2011) and Predictors of Total Alcohol and Alcoholic Beverages Consumption: The EPIC Greece Cohort" Nutrients 13, no. 9: 3077. https://doi.org/10.3390/nu13093077
APA StyleSkourlis, N., Massara, P., Patsis, I., Peppa, E., Katsouyanni, K., & Trichopoulou, A. (2021). Long-Term Trends (1994–2011) and Predictors of Total Alcohol and Alcoholic Beverages Consumption: The EPIC Greece Cohort. Nutrients, 13(9), 3077. https://doi.org/10.3390/nu13093077