Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population and Data Collection Procedure
2.3. Measurements
2.3.1. COVID-19-like Symptoms
2.3.2. Healthy Eating Behaviors
2.3.3. Physical Activity
2.3.4. Covariates
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics Stratified by Suspected COVID-19 Symptoms
3.2. Associations of Food Frequency, Healthy Eating Score, and Physical Activity with COVID-19-like Symptoms
3.3. Interactions between Physical Activity and Healthy Eating Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 7 June 2021).
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodes-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef]
- World Health Organisation. Coronavirus Disease (COVID-19): Vaccines. Available online: https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines? (accessed on 15 March 2021).
- Anderson, R.M.; Vegvari, C.; Truscott, J.; Collyer, B.S. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet 2020, 396, 1614–1616. [Google Scholar] [CrossRef]
- McKie, R. Would Herd Immunity Stop the Spread of Coronavirus? Available online: https://www.theguardian.com/world/2020/oct/11/would-herd-immunity-stop-the-spread-of-coronavirus (accessed on 15 May 2021).
- Mahase, E. COVID-19: What new variants are emerging and how are they being investigated? BMJ 2021, 372, n158. [Google Scholar] [CrossRef] [PubMed]
- Dyer, O. COVID-19: Variants are spreading in countries with low vaccination rates. BMJ 2021, 373, n1359. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Phelan, A.L.; Katz, R.; Gostin, L.O. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. JAMA 2020, 323, 709–710. [Google Scholar] [CrossRef] [Green Version]
- Miller, I.F.; Becker, A.D.; Grenfell, B.T.; Metcalf, C.J.E. Disease and healthcare burden of COVID-19 in the United States. Nat. Med. 2020, 26, 1212–1217. [Google Scholar] [CrossRef]
- World Health Organisation. Coronavirus Disease (COVID-19): Similarities and Differences with Influenza. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-similarities-and-differences-with-influenza (accessed on 15 May 2020).
- Nguyen, H.C.; Nguyen, M.H.; Do, B.N.; Tran, C.Q.; Nguyen, T.T.P.; Pham, K.M.; Pham, L.V.; Tran, K.V.; Duong, T.T.; Tran, T.V.; et al. People with Suspected COVID-19 Symptoms Were More Likely Depressed and Had Lower Health-Related Quality of Life: The Potential Benefit of Health Literacy. J. Clin. Med. 2020, 9, 965. [Google Scholar] [CrossRef] [Green Version]
- Chew, N.W.; Lee, G.K.; Tan, B.Y.; Jing, M.; Goh, Y.; Ngiam, N.J.; Yeo, L.L.; Ahmad, A.; Khan, F.A.; Shanmugam, G.N. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav. Immun. 2020, 88, 559–565. [Google Scholar] [CrossRef]
- World Health Organisation. Coronavirus Disease (COVID-19): Advice for the Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public (accessed on 15 December 2020).
- Jin, H.; Wang, H.; Li, X.; Zheng, W.; Ye, S.; Zhang, S.; Zhou, J.; Pennington, M. Economic burden of COVID-19, China, January–March, 2020: A cost-of-illness study. Bull. World Health Organ. 2021, 99, 112–124. [Google Scholar] [CrossRef]
- Bartsch, S.M.; Ferguson, M.C.; McKinnell, J.A.; O’Shea, K.J.; Wedlock, P.T.; Siegmund, S.S.; Lee, B.Y. The Potential Health Care Costs and Resource Use Associated with COVID-19 in the United States. Health Aff. 2020, 39, 927–935. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. COVID-19: Vulnerable and High Risk Groups. Available online: https://www.who.int/westernpacific/emergencies/covid-19/information/high-risk-groups (accessed on 8 May 2020).
- Riera, R.; Bagattini, Â.M.; Pacheco, R.L.; Pachito, D.V.; Roitberg, F.; Ilbawi, A. Delays and Disruptions in Cancer Health Care Due to COVID-19 Pandemic: Systematic Review. JCO Glob. Oncol. 2021, 7, 311–323. [Google Scholar] [CrossRef]
- Barach, P.; Fisher, S.D.; Adams, M.J.; Burstein, G.R.; Brophy, P.D.; Kuo, D.Z.; Lipshultz, S.E. Disruption of healthcare: Will the COVID pandemic worsen non-COVID outcomes and disease outbreaks? Prog. Pediatr. Cardiol. 2020, 59, 101254. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Pham, T.T.M.; Pham, L.V.; Phan, D.T.; Tran, T.V.; Nguyen, H.C.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Nguyen, P.B.; et al. Associations of Underlying Health Conditions with Anxiety and Depression Among Outpatients: Modification Effects of Suspected COVID-19 Symptoms, Health-Related and Preventive Behaviors. Int. J. Public Health 2021, 66, 634904. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.L.; Feskanich, D.; Stampfer, M.J.; Giovannucci, E.L.; Rimm, E.B.; Hu, F.B.; Spiegelman, D.; Hunter, D.J.; Colditz, G.A.; Willett, W.C. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am. J. Clin. Nutr. 2002, 76, 1261–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diet, Nutrition and the Prevention of Chronic Diseases; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2003; Volume 916, pp. i–viii, 1–149.
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100.e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Matthews, C.E.; Ockene, I.S.; Freedson, P.S.; Rosal, M.C.; Merriam, P.A.; Hebert, J.R. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med. Sci. Sports Exerc. 2002, 34, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Fondell, E.; Lagerros, Y.T.; Sundberg, C.J.; Lekander, M.; Bälter, O.; Rothman, K.J.; Bälter, K. Physical activity, stress, and self-reported upper respiratory tract infection. Med. Sci. Sports Exerc. 2011, 43, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Laddu, D.R.; Lavie, C.J.; Phillips, S.A.; Arena, R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Prog. Cardiovasc. Dis. 2021, 64, 102–104. [Google Scholar] [CrossRef]
- Davison, G.; Kehaya, C.; Wyn Jones, A. Nutritional and Physical Activity Interventions to Improve Immunity. Am. J. Lifestyle Med. 2016, 10, 152–169. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Górnicka, M.; Drywień, M.E.; Zielinska, M.A.; Hamułka, J. Dietary and lifestyle changes during COVID-19 and the subsequent lockdowns among Polish adults: A Cross-sectional online survey PLifeCOVID-19 study. Nutrients 2020, 12, 2324. [Google Scholar] [CrossRef] [PubMed]
- BMJ Editorial Team. Overview of Novel Coronavirus (2019-nCoV). Available online: https://bestpractice.bmj.com/topics/en-gb/3000165 (accessed on 10 March 2020).
- Pham, K.M.; Pham, L.V.; Phan, D.T.; Tran, T.V.; Nguyen, H.C.; Nguyen, M.H.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Nguyen, P.B.; et al. Healthy Dietary Intake Behavior Potentially Modifies the Negative Effect of COVID-19 Lockdown on Depression: A Hospital and Health Center Survey. Front. Nutr. 2020, 7, 581043. [Google Scholar] [CrossRef]
- American Heart Association Editorial Team. Suggested Servings from Each Food Group. Available online: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/suggested-servings-from-each-food-group (accessed on 19 February 2020).
- The Food and Drug Administration (FDA). Advice about Eating Fish. Available online: https://www.fda.gov/food/consumers/advice-about-eating-fish (accessed on 15 June 2021).
- DeCoster, J.; Gallucci, M.; Iselin, A.-M.R. Best practices for using median splits, artificial categorization, and their continuous alternatives. J. Exp. Psychopathol. 2011, 2, 197–209. [Google Scholar] [CrossRef]
- Ekelund, U.; Sepp, H.; Brage, S.; Becker, W.; Jakes, R.; Hennings, M.; Wareham, N.J. Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults. Public Health Nutr. 2006, 9, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.; Bui, L.; Nguyen, A.; Nguyen, B.; Tran, P.; Vu, P.; Dang, L. The prevalence of depression and associated risk factors among medical students: An untold story in Vietnam. PLoS ONE 2019, 14, e0221432. [Google Scholar] [CrossRef]
- Tran, D.V.; Lee, A.H.; Au, T.B.; Nguyen, C.T.; Hoang, D.V. Reliability and validity of the International Physical Activity Questionnaire-Short Form for older adults in Vietnam. Health Promot. J. Aust. 2013, 24, 126–131. [Google Scholar] [CrossRef]
- Tran, V.D.; Do, V.V.; Pham, N.M.; Nguyen, C.T.; Xuong, N.T.; Jancey, J.; Lee, A.H. Validity of the International Physical Activity Questionnaire-Short Form for Application in Asian Countries: A Study in Vietnam. Eval. Health Prof. 2020, 43, 105–109. [Google Scholar] [CrossRef] [PubMed]
- IPAQ Group. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. Available online: www.ipaq.ki.se (accessed on 15 May 2021).
- Rahman, M.E.; Islam, M.S.; Bishwas, M.S.; Moonajilin, M.S.; Gozal, D. Physical inactivity and sedentary behaviors in the Bangladeshi population during the COVID-19 pandemic: An online cross-sectional survey. Heliyon 2020, 6, e05392. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Duong, T.V.; Nguyen, T.T.P.; Pham, K.M.; Nguyen, K.T.; Giap, M.H.; Tran, T.D.X.; Nguyen, C.X.; Yang, S.H.; Su, C.T. Validation of the Short-Form Health Literacy Questionnaire (HLS-SF12) and Its Determinants among People Living in Rural Areas in Vietnam. Int. J. Environ. Res. Public Health 2019, 16, 3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Do, B.N.; Pham, K.M.; Kim, G.B.; Dam, H.T.B.; Nguyen, T.T.; Nguyen, T.T.P.; Nguyen, Y.H.; Sorensen, K.; Pleasant, A.; et al. Fear of COVID-19 Scale-Associations of Its Scores with Health Literacy and Health-Related Behaviors among Medical Students. Int. J. Environ. Res. Public Health 2020, 17, 4164. [Google Scholar] [CrossRef] [PubMed]
- Van Hoa, H.; Giang, H.T.; Vu, P.T.; Van Tuyen, D.; Khue, P.M. Factors Associated with Health Literacy among the Elderly People in Vietnam. BioMed Res. Int. 2020, 2020, 3490635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, T.V.; Aringazina, A.; Kayupova, G.; Nurjanah; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Oo, W.M.; Su, T.T.; et al. Development and Validation of a New Short-Form Health Literacy Instrument (HLS-SF12) for the General Public in Six Asian Countries. Health Lit. Res. Pract. 2019, 3, e91–e102. [Google Scholar] [CrossRef] [Green Version]
- Van Duong, T.; Chiu, C.H.; Lin, C.Y.; Chen, Y.C.; Wong, T.C.; Chang, P.W.S.; Yang, S.H. E-healthy diet literacy scale and its relationship with behaviors and health outcomes in Taiwan. Health Promot. Int. 2021, 36, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Le, N.T.; Nguyen, M.H.; Pham, L.V.; Do, B.N.; Nguyen, H.C.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Nguyen, P.B.; et al. Health Literacy and Preventive Behaviors Modify the Association between Pre-Existing Health Conditions and Suspected COVID-19 Symptoms: A Multi-Institutional Survey. Int. J. Environ. Res. Public Health 2020, 17, 8598. [Google Scholar] [CrossRef]
- Vietnam Ministry of Health. Coronavirus Disease (COVID-19) Outbreak in Vietnam. Available online: https://ncov.moh.gov.vn/ (accessed on 7 June 2020).
- Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Morais, A.H.A.; Aquino, J.S.; da Silva-Maia, J.K.; Vale, S.H.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for severe acute respiratory syndrome coronavirus 2. Br. J. Nutr. 2021, 125, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Weinstein, S.J.; Yu, K.; Männistö, S.; Albanes, D. Relationship Between Serum Alpha-Tocopherol and Overall and Cause-Specific Mortality. Circ. Res. 2019, 125, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Polito, R.; Monda, V.; Cipolloni, L.; Di Nunno, N.; Di Mizio, G.; Murabito, P.; Carotenuto, M.; Messina, A.; Pisanelli, D.; et al. Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work. Int. J. Mol. Sci. 2020, 21, 3104. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, J.; Harris, H.R.; Linden, A.; Wolk, A. Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: A prospective cohort study of women. Int. J. Epidemiol. 2018, 47, 1897–1909. [Google Scholar] [CrossRef]
- Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and vegetable consumption and risk of COPD: A prospective cohort study of men. Thorax 2017, 72, 500–509. [Google Scholar] [CrossRef]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef]
- Torpy, J.M.; Lynm, C.; Glass, R.M. JAMA patient page. Eating fish: Health benefits and risks. JAMA 2006, 296, 1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, K.S. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 2003, 38, 336–344. [Google Scholar] [CrossRef]
- De Luis, D.A.; Armentia, A.; Aller, R.; Asensio, A.; Sedano, E.; Izaola, O.; Cuellar, L. Dietary intake in patients with asthma: A case control study. Nutrition 2005, 21, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Tabak, C.; Wijga, A.H.; de Meer, G.; Janssen, N.A.; Brunekreef, B.; Smit, H.A. Diet and asthma in Dutch school children (ISAAC-2). Thorax 2006, 61, 1048–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, S.C.; Brigham, E.P.; Woo, H.; Hanson, C.K.; McCormack, M.C.; Koch, A.; Putcha, N.; Hansel, N.N. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm. Med. 2019, 19, 97. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef]
- Steck, S.; Shivappa, N.; Tabung, F.; Harmon, B.; Wirth, M.; Hurley, T.; Hebert, J. The dietary inflammatory index: A new tool for assessing diet quality based on inflammatory potential. Digest 2014, 49, 1–10. [Google Scholar]
- Arvaniti, F.; Priftis, K.N.; Papadimitriou, A.; Papadopoulos, M.; Roma, E.; Kapsokefalou, M.; Anthracopoulos, M.B.; Panagiotakos, D.B. Adherence to the Mediterranean type of diet is associated with lower prevalence of asthma symptoms, among 10–12 years old children: The PANACEA study. Pediatr. Allergy Immunol. 2011, 22, 283–289. [Google Scholar] [CrossRef]
- Ardestani, M.E.; Onvani, S.; Esmailzadeh, A.; Feizi, A.; Azadbakht, L. Adherence to Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern in Relation to Chronic Obstructive Pulmonary Disease (COPD): A Case-Control Study. J. Am. Coll. Nutr. 2017, 36, 549–555. [Google Scholar] [CrossRef]
- Scoditti, E.; Massaro, M.; Garbarino, S.; Toraldo, D.M. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients 2019, 11, 1357. [Google Scholar] [CrossRef] [Green Version]
- Tabak, C.; Feskens, E.J.; Heederik, D.; Kromhout, D.; Menotti, A.; Blackburn, H.W. Fruit and fish consumption: A possible explanation for population differences in COPD mortality (The Seven Countries Study). Eur. J. Clin. Nutr. 1998, 52, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Walda, I.C.; Tabak, C.; Smit, H.A.; Räsänen, L.; Fidanza, F.; Menotti, A.; Nissinen, A.; Feskens, E.J.; Kromhout, D. Diet and 20-year chronic obstructive pulmonary disease mortality in middle-aged men from three European countries. Eur. J. Clin. Nutr. 2002, 56, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Marrugat, J.; Vila, J.; Covas, M.I.; Elosua, R. Adherence to the traditional mediterranean diet is inversely associated with body mass index and obesity in a spanish population. J. Nutr. 2004, 134, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Caprara, G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021, 13, 429. [Google Scholar] [CrossRef]
- Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2019, 58, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, H.; He, M.; Yue, M.; Gong, P.; Wu, F.; Li, X.; Pang, Y.; Yang, X.; Ma, J.; et al. Smoking, leisure-time exercise and frequency of self-reported common cold among the general population in northeastern China: A cross-sectional study. BMC Public Health 2018, 18, 294. [Google Scholar] [CrossRef] [Green Version]
- Kostka, T.; Berthouze, S.E.; Lacour, J.; Bonnefoy, M. The symptomatology of upper respiratory tract infections and exercise in elderly people. Med. Sci. Sports Exerc. 2000, 32, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting Physical Activity and Exercise: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef]
- Pape, K.; Ryttergaard, L.; Rotevatn, T.A.; Nielsen, B.J.; Torp-Pedersen, C.; Overgaard, C.; Bøggild, H. Leisure-Time Physical Activity and the Risk of Suspected Bacterial Infections. Med. Sci. Sports Exerc. 2016, 48, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- Nasi, M.; Patrizi, G.; Pizzi, C.; Landolfo, M.; Boriani, G.; Dei Cas, A.; Cicero, A.F.G.; Fogacci, F.; Rapezzi, C.; Sisca, G.; et al. The role of physical activity in individuals with cardiovascular risk factors: An opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. J. Cardiovasc. Med. (Hagerstown) 2019, 20, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Sciomer, S.; Moscucci, F.; Maiello, M.; Cugusi, L.; Gallina, S.; Dei Cas, A.; Lombardi, C.; Pengo, M.; Parati, G.; et al. Cardiovascular prevention in women: A narrative review from the Italian Society of Cardiology working groups on ‘Cardiovascular Prevention, Hypertension and peripheral circulation’ and on ‘Women Disease’. J. Cardiovasc. Med. (Hagerstown) 2019, 20, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.M.; Pagovich, O.E.; Kriegel, M.A. Diet, microbiota and autoimmune diseases. Lupus 2014, 23, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Haspel, J.A.; Anafi, R.; Brown, M.K.; Cermakian, N.; Depner, C.; Desplats, P.; Gelman, A.E.; Haack, M.; Jelic, S.; Kim, B.S.; et al. Perfect timing: Circadian rhythms, sleep, and immunity—An NIH workshop summary. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [Green Version]
- Shams-White, M.M.; Chui, K.; Deuster, P.A.; McKeown, N.M.; Must, A. Investigating Items to Improve the Validity of the Five-Item Healthy Eating Score Compared with the 2015 Healthy Eating Index in a Military Population. Nutrients 2019, 11, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total (n = 3947) | Without Slike-CV19S (n = 2560) | With Slike-CV19S (n = 1387) | |
---|---|---|---|---|
n (%) | n (%) | n (%) | p * | |
Age (years), mean ± SD | 44.4 ± 17.0 | |||
Age groups | <0.001 | |||
18–59 | 3019 (76.5) | 2080 (68.9) | 939 (31.1) | |
60–85 | 928 (23.5) | 480 (51.7) | 448 (48.3) | |
Gender | 0.762 | |||
Female | 2197 (55.7) | 1430 (65.1) | 767 (34.9) | |
Male | 1747 (44.3) | 1129 (64.6) | 618 (35.4) | |
Marital status | <0.001 | |||
Single | 865 (22.0) | 653 (75.5) | 212 (24.5) | |
Married | 2850 (72.4) | 1795 (63.0) | 1055 (37.0) | |
Separated/Divorced/Widowed | 220 (5.6) | 105 (47.7) | 115 (52.3) | |
Education attainment | <0.001 | |||
Junior high school and below | 1216 (30.9) | 717 (59.0) | 499 (41.0) | |
Senior high school | 1083 (27.5) | 754 (69.7) | 328 (30.3) | |
College/university/postgraduate degree | 1639 (41.6) | 1081 (66.0) | 558 (34.0) | |
Occupational status | 0.010 | |||
No job | 1770 (45.1) | 1185 (66.9) | 585 (33.1) | |
Having a job | 2155 (54.9) | 1358 (63.0) | 797 (37.0) | |
Ability to pay for healthcare | <0.001 | |||
Very or fairly difficult | 1764 (44.7) | 964 (54.6) | 800 (45.4) | |
Very or fairly easy | 2182 (55.3) | 1595 (73.1) | 587 (26.9) | |
Social status | <0.001 | |||
Low | 482 (12.2) | 265 (55.0) | 217 (45.0) | |
Middle/High | 3464 (87.8) | 2294 (66.2) | 1170 (33.8) | |
BMI | <0.001 | |||
Underweight | 386 (9.8) | 225 (58.3) | 161 (41.7) | |
Normal weight | 3128 (79.4) | 2012 (64.3) | 1116 (35.7) | |
Overweight or obese | 428 (10.9) | 320 (74.8) | 108 (25.2) | |
Underlying diseases | 0.936 | |||
No | 3309(84.4) | 2139 (64.6) | 1170 (35.4) | |
Yes | 611 (15.6) | 396 (64.8) | 215 (35.2) | |
Smoking | 0.580 | |||
No | 3465 (88.0) | 2252 (65.0) | 1213 (35.0) | |
Yes | 471 (12.0) | 300 (63.7) | 171 (36.3) | |
Drinking alcohol | 0.140 | |||
No | 2653 (67.8) | 1702 (64.2) | 951 (35.8) | |
Yes | 1262 (32.2) | 840 (66.6) | 422 (33.4) | |
Physical activity | <0.001 | |||
Inactive | 1111 (28.1) | 628 (56.5) | 483 (43.5) | |
Active | 2836 (71.9) | 1932 (68.1) | 904 (31.9) | |
Food intake frequency | ||||
Vegetables | <0.001 | |||
<3 times/day | 3697 (93.7) | 2372 (64.2) | 1325 (35.8) | |
≥3 times/day | 249 (6.3) | 188 (75.5) | 61 (24.5) | |
Fruits | <0.001 | |||
<2 times/day | 1761 (44.6) | 1111 (63.1) | 650 (36.9) | |
≥2 times/day | 2185 (55.4) | 1449 (66.3) | 736 (33.7) | |
Whole grains | 0.098 | |||
<3 times/day | 3338 (84.6) | 2184 (65.4) | 1154 (34.6) | |
≥3 times/day | 607 (15.4) | 376 (61.9) | 231 (38.1) | |
Dairy | 0.906 | |||
<3 times/day | 3659 (92.8) | 2375 (64.9) | 1284 (35.1) | |
≥3 times/day | 285 (7.2) | 184 (64.6) | 101 (35.4) | |
Fish | <0.001 | |||
<1 time/week | 581 (14.7) | 259 (44.6) | 322 (55.4) | |
≥1 time/week | 3363 (85.3) | 2301 (68.4) | 1062 (31.6) | |
Healthy Eating Score (HES), mean ± SD | 12.0 ± 4.2 | <0.001 | ||
Low (HES < 10) | 1082 (27.4) | 649 (60.0) | 433 (40.0) | |
Medium (10 ≤ HES < 15) | 1806 (45.8) | 1201 (66.5) | 605 (33.5) | |
High (HES ≥ 15) | 1054 (26.7) | 709 (67.3) | 345 (32.7) | |
Health literacy (HL), mean ± SD | 29.9 ± 7.7 | 30.9 ± 7.7 | 28.0 ± 7.4 | <0.001 |
Variables * | COVID-19-like Symptoms | |||
---|---|---|---|---|
Unadjusted Model | Adjusted Model ** | |||
OR (95% CI) | p | OR (95% CI) | p | |
Food intake frequency | ||||
Vegetables | ||||
<3 times/day | 1.00 | 1.00 | ||
≥3 times/day | 0.58 (0.43, 0.78) | <0.001 | 0.72 (0.52, 0.98) | 0.036 |
Fruits | ||||
<2 times/day | 1.00 | 1.00 | ||
≥2 times/day | 0.87 (0.76, 0.99) | 0.035 | 0.84 (0.73, 0.97) | 0.016 |
Whole grains | ||||
<3 times/day | 1.00 | 1.00 | ||
≥3 times/day | 1.16 (0.97, 1.39) | 0.098 | 0.97 (0.81, 1.18) | 0.793 |
Dairy | ||||
<3 times/day | 1.00 | 1.00 | ||
≥3 times/day | 1.01 (0.79, 1.30) | 0.906 | 1.03 (0.79, 1.34) | 0.819 |
Fish | ||||
<1 time/week | 1.00 | 1.00 | ||
≥1 time/week | 0.37 (0.31, 0.44) | <0.001 | 0.43 (0.36, 0.52) | <0.001 |
Healthy Eating Score (HES) | ||||
Low (HES < 10) | 1.00 | 1.00 | ||
Medium (10 ≤ HES < 15) | 0.75 (0.64, 0.88) | <0.001 | 0.84 (0.71, 0.98) | 0.033 |
High (HES ≥ 15) | 0.73 (0.61, 0.87) | <0.001 | 0.77 (0.64, 0.93) | 0.006 |
Physical activity | ||||
Inactive | 1.00 | 1.00 | ||
Active | 0.61 (0.52, 0.70) | <0.001 | 0.69 (0.59, 0.80) | <0.001 |
Healthy Eating Score (HES) | Physical Activity | Multiplicative Interaction | ||||
---|---|---|---|---|---|---|
Inactive | Active | |||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Low (HES < 10) | 1.00 * | 0.88 (0.67, 1.16) | 0.380 | |||
Medium (10 ≤ HES < 15) | 0.99 (0.74, 1.33) | 0.979 | 0.69 (0.54, 0.89) | 0.005 | 0.79 (0.55, 1.12) | 0.182 ** |
High (HES ≥ 15) | 1.13 (0.81, 1.58) | 0.458 | 0.58 (0.44, 0.77) | <0.001 | 0.58 (0.39, 0.86) | 0.008 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.H.; Pham, T.T.M.; Vu, D.N.; Do, B.N.; Nguyen, H.C.; Duong, T.H.; Pham, K.M.; Pham, L.V.; Nguyen, T.T.P.; Tran, C.Q.; et al. Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey. Nutrients 2021, 13, 3258. https://doi.org/10.3390/nu13093258
Nguyen MH, Pham TTM, Vu DN, Do BN, Nguyen HC, Duong TH, Pham KM, Pham LV, Nguyen TTP, Tran CQ, et al. Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey. Nutrients. 2021; 13(9):3258. https://doi.org/10.3390/nu13093258
Chicago/Turabian StyleNguyen, Minh H., Thu T. M. Pham, Dinh N. Vu, Binh N. Do, Hoang C. Nguyen, Thai H. Duong, Khue M. Pham, Linh V. Pham, Thao T. P. Nguyen, Cuong Q. Tran, and et al. 2021. "Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey" Nutrients 13, no. 9: 3258. https://doi.org/10.3390/nu13093258
APA StyleNguyen, M. H., Pham, T. T. M., Vu, D. N., Do, B. N., Nguyen, H. C., Duong, T. H., Pham, K. M., Pham, L. V., Nguyen, T. T. P., Tran, C. Q., Nguyen, Q. H., Hoang, T. M., Tran, K. V., Duong, T. T., Yang, S. -H., Bai, C. -H., & Duong, T. V. (2021). Single and Combinative Impacts of Healthy Eating Behavior and Physical Activity on COVID-19-like Symptoms among Outpatients: A Multi-Hospital and Health Center Survey. Nutrients, 13(9), 3258. https://doi.org/10.3390/nu13093258