Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Consortium Assembly
2.2. Steps to Develop a Template for Study Metadata Collection
3. Results
3.1. Assessment of Dietary Intake and Covariates
3.2. Biological Samples and Microbiome Measurements
3.3. Informed Consent, Ethics and Data Sharing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, E.Z.; Li, H. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics 2016, 32, 2611–2617. [Google Scholar] [CrossRef] [Green Version]
- Cullen, C.M.; Aneja, K.K.; Beyhan, S.; Cho, C.E.; Woloszynek, S.; Convertino, M.; McCoy, S.J.; Zhang, Y.; Anderson, M.Z.; Alvarez-Ponce, D.; et al. Emerging Priorities for Microbiome Research. Front. Microbiol. 2020, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.C.; Yadav, J.S.; Barrow, S.D.; Robertson, B.K. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. Microbiol. Open 2017, 6, e00476. [Google Scholar] [CrossRef] [Green Version]
- Escobar, J.S.; Klotz, B.; Valdes, B.E.; Agudelo, G.M. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014, 14, 311. [Google Scholar] [CrossRef] [Green Version]
- Heiman, M.L.; Greenway, F.L. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 2016, 5, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Rojo, D.; Méndez-García, C.; Raczkowska, B.A.; Bargiela, R.; Moya, A.; Ferrer, M.; Barbas, C. Exploring the human microbiome from multiple perspectives: Factors altering its composition and function. FEMS Microbiol. Rev. 2017, 41, 453–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A framework for human microbiome research. Nature 2012, 486, 215–221. [CrossRef] [PubMed] [Green Version]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Loftfield, E.; Herzig, K.H.; Caporaso, J.G.; Derkach, A.; Wan, Y.; Byrd, D.A.; Vogtmann, E.; Männikkö, M.; Karhunen, V.; Knight, R.; et al. Association of Body Mass Index with Fecal Microbial Diversity and Metabolites in the Northern Finland Birth Cohort. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2289–2299. [Google Scholar] [CrossRef]
- De la Cuesta-Zuluaga, J.; Corrales-Agudelo, V.; Velásquez-Mejía, E.P.; Carmona, J.A.; Abad, J.M.; Escobar, J.S. Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Sci. Rep. 2018, 8, 11356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finucane, M.M.; Sharpton, T.J.; Laurent, T.J.; Pollard, K.S. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE 2014, 9, e84689. [Google Scholar] [CrossRef] [Green Version]
- Peters, B.A.; Shapiro, J.A.; Church, T.R.; Miller, G.; Trinh-Shevrin, C.; Yuen, E.; Friedlander, C.; Hayes, R.B.; Ahn, J. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 2018, 8, 9749. [Google Scholar] [CrossRef] [Green Version]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021. [Google Scholar] [CrossRef]
- Oliver, A.; Chase, A.B.; Weihe, C.; Orchanian, S.B.; Riedel, S.F.; Hendrickson, C.L.; Lay, M.; Sewall, J.M.; Martiny, J.B.H.; Whiteson, K. High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. mSystems 2021, 6, e00115-21. [Google Scholar] [CrossRef]
- Hadrévi, J.; Søgaard, K.; Christensen, J.R. Dietary Fiber Intake among Normal-Weight and Overweight Female Health Care Workers: An Exploratory Nested Case-Control Study within FINALE-Health. J. Nutr. Metab. 2017, 2017, 1096015. [Google Scholar] [CrossRef] [Green Version]
- Duvigneaud, N.; Wijndaele, K.; Matton, L.; Philippaerts, R.; Lefevre, J.; Thomis, M.; Delecluse, C.; Duquet, W. Dietary factors associated with obesity indicators and level of sports participation in Flemish adults: A cross-sectional study. Nutr. J. 2007, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.N.; Hodges, V.A.; Gillham, M.B. Normal-weight adults consume more fiber and fruit than their age- and height-matched overweight/obese counterparts. J. Am. Diet. Assoc. 2006, 106, 833–840. [Google Scholar] [CrossRef]
- Duvallet, C.; Gibbons, S.M.; Gurry, T.; Irizarry, R.A.; Alm, E.J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 2017, 8, 1784. [Google Scholar] [CrossRef] [Green Version]
- Vandeputte, D.; Tito, R.Y.; Vanleeuwen, R.; Falony, G.; Raes, J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol. Rev. 2017, 41, S154–S167. [Google Scholar] [CrossRef] [PubMed]
- Pinart, M.; Nimptsch, K.; Bouwman, J.; Dragsted, L.O.; Yang, C.; De Cock, N.; Lachat, C.; Perozzi, G.; Canali, R.; Lombardo, R.; et al. Joint Data Analysis in Nutritional Epidemiology: Identification of Observational Studies and Minimal Requirements. J. Nutr. 2018, 148, 285–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinart, M.; Jeran, S.; Boeing, H.; Stelmach-Mardas, M.; Standl, M.; Schulz, H.; Harris, C.; von Berg, A.; Herberth, G.; Koletzko, S.; et al. Dietary Macronutrient Composition in Relation to Circulating HDL and Non-HDL Cholesterol: A Federated Individual-Level Analysis of Cross-Sectional Data from Adolescents and Adults in 8 European Studies. J. Nutr. 2021, 151, 2317–2329. [Google Scholar] [CrossRef] [PubMed]
- Gaye, A.; Marcon, Y.; Isaeva, J.; LaFlamme, P.; Turner, A.; Jones, E.M.; Minion, J.; Boyd, A.W.; Newby, C.J.; Nuotio, M.L.; et al. DataSHIELD: Taking the analysis to the data, not the data to the analysis. Int. J. Epidemiol. 2014, 43, 1929–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcon, Y.; Bishop, T.; Avraam, D.; Escriba-Montagut, X.; Ryser-Welch, P.; Wheater, S.; Burton, P.; González, J.R. Orchestrating privacy-protected big data analyses of data from different resources with R and DataSHIELD. PLoS Comput. Biol. 2021, 17, e1008880. [Google Scholar] [CrossRef]
- Oluwagbemigun, K.; O’Donovan, A.N.; Berding, K.; Lyons, K.; Alexy, U.; Schmid, M.; Clarke, G.; Stanton, C.; Cryan, J.; Nöthlings, U. Long-term dietary intake from infancy to late adolescence is associated with gut microbiota composition in young adulthood. Am. J. Clin. Nutr. 2021, 113, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Jannasch, F.; Nickel, D.; Schulze, M.B. The reliability and relative validity of predefined dietary patterns were higher than that of exploratory dietary patterns in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam population. Br. J. Nutr. 2020, 125, 1270–1280. [Google Scholar] [CrossRef]
- Heinrich, J.; Brüske, I.; Cramer, C.; Hoffmann, U.; Schnappinger, M.; Schaaf, B.; von Berg, A.; Berdel, D.; Krämer, U.; Lehmann, I.; et al. GINIplus and LISAplus—Design and selected results of two German birth cohorts about natural course of atopic diseases and their determinants. Allergol. Sel. 2017, 1, 85–95. [Google Scholar] [CrossRef]
- Schipf, S.; Schöne, G.; Schmidt, B.; Günther, K.; Stübs, G.; Greiser, K.H.; Bamberg, F.; Meinke-Franze, C.; Becher, H.; Berger, K.; et al. The baseline assessment of the German National Cohort (NAKO Gesundheitsstudie): Participation in the examination modules, quality assurance, and the use of secondary data. Bundesgesundh. Gesundh. Gesundh. 2020, 63, 254–266. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Guzzardi, M.A.; Ait Ali, L.; D’Aurizio, R.; Rizzo, F.; Saggese, P.; Sanguinetti, E.; Weisz, A.; Pellegrini, M.; Iozzo, P. Fetal cardiac growth is associated with in utero gut colonization. Nutr. Metab. Cardiovasc. Dis. NMCD 2019, 29, 170–176. [Google Scholar] [CrossRef]
- Biagi, E.; Aceti, A.; Quercia, S.; Beghetti, I.; Rampelli, S.; Turroni, S.; Soverini, M.; Zambrini, A.V.; Faldella, G.; Candela, M.; et al. Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants. Front. Microbiol. 2018, 9, 2512. [Google Scholar] [CrossRef] [Green Version]
- Tavella, T.; Rampelli, S.; Guidarelli, G.; Bazzocchi, A.; Gasperini, C.; Pujos-Guillot, E.; Comte, B.; Barone, M.; Biagi, E.; Candela, M.; et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes 2021, 13, 1–19. [Google Scholar] [CrossRef]
- Börnhorst, C.; Russo, P.; Veidebaum, T.; Tornaritis, M.; Molnár, D.; Lissner, L.; Mårild, S.; De Henauw, S.; Moreno, L.A.; Floegel, A.; et al. The role of lifestyle and non-modifiable risk factors in the development of metabolic disturbances from childhood to adolescence. Int. J. Obes. 2020, 44, 2236–2245. [Google Scholar] [CrossRef]
- De Filippo, C.; Di Paola, M.; Ramazzotti, M.; Albanese, D.; Pieraccini, G.; Banci, E.; Miglietta, F.; Cavalieri, D.; Lionetti, P. Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Front. Microbiol. 2017, 8, 1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Korte-de Boer, D.; Mommers, M.; Creemers, H.M.; Dompeling, E.; Feron, F.J.; Gielkens-Sijstermans, C.M.; Jaminon, M.; Mujakovic, S.; van Schayck, O.C.; Thijs, C.; et al. LucKi Birth Cohort Study: Rationale and design. BMC Public Health 2015, 15, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saturio, S.; Nogacka, A.M.; Suárez, M.; Fernández, N.; Mantecón, L.; Mancabelli, L.; Milani, C.; Ventura, M.; de Los Reyes-Gavilán, C.G.; Solís, G.; et al. Early-Life Development of the Bifidobacterial Community in the Infant Gut. Int. J. Mol. Sci. 2021, 22, 3382. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; et al. Gut Microbiota and Extreme Longevity. Curr. Biol. CB 2016, 26, 1480–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar, N.; Arboleya, S.; Fernández-Navarro, T.; de Los Reyes-Gavilán, C.G.; Gonzalez, S.; Gueimonde, M. Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients 2019, 11, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galmiche, M.; Lucas, N.; Déchelotte, P.; Deroissart, C.; Solliec, M.L.; Rondeaux, J.; Azhar, S.; Grigioni, S.; Colange, G.; Delay, J.; et al. Plasma Peptide Concentrations and Peptide-Reactive Immunoglobulins in Patients with Eating Disorders at Inclusion in the French EDILS Cohort (Eating Disorders Inventory and Longitudinal Survey). Nutrients 2020, 12, 522. [Google Scholar] [CrossRef] [Green Version]
- Di Iorio, B.R.; Rocchetti, M.T.; De Angelis, M.; Cosola, C.; Marzocco, S.; Di Micco, L.; di Bari, I.; Accetturo, M.; Vacca, M.; Gobbetti, M.; et al. Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). J. Clin. Med. 2019, 8, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Heuvel, T.R.; Jonkers, D.M.; Jeuring, S.F.; Romberg-Camps, M.J.; Oostenbrug, L.E.; Zeegers, M.P.; Masclee, A.A.; Pierik, M.J. Cohort Profile: The Inflammatory Bowel Disease South Limburg Cohort (IBDSL). Int. J. Epidemiol. 2017, 46, e7. [Google Scholar] [CrossRef] [Green Version]
- Mujagic, Z.; Ludidi, S.; Keszthelyi, D.; Hesselink, M.A.; Kruimel, J.W.; Lenaerts, K.; Hanssen, N.M.; Conchillo, J.M.; Jonkers, D.M.; Masclee, A.A. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment. Pharmacol. Ther. 2014, 40, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Fangmann, D.; Theismann, E.M.; Türk, K.; Schulte, D.M.; Relling, I.; Hartmann, K.; Keppler, J.K.; Knipp, J.R.; Rehman, A.; Heinsen, F.A.; et al. Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care 2018, 41, 398–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira-Silva, S.; Falony, G.; Belda, E.; Nielsen, T.; Aron-Wisnewsky, J.; Chakaroun, R.; Forslund, S.K.; Assmann, K.; Valles-Colomer, M.; Nguyen, T.T.D.; et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020, 581, 310–315. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Bartolomaeus, T.U.P.; Birkner, T.; Bartolomaeus, H.; Löber, U.; Avery, E.G.; Mähler, A.; Weber, D.; Kochlik, B.; Balogh, A.; Wilck, N.; et al. Quantifying technical confounders in microbiome studies. Cardiovasc. Res. 2021, 117, 863–875. [Google Scholar] [CrossRef]
- Waldor, M.K.; Tyson, G.; Borenstein, E.; Ochman, H.; Moeller, A.; Finlay, B.B.; Kong, H.H.; Gordon, J.I.; Nelson, K.E.; Dabbagh, K.; et al. Where next for microbiome research? PLoS Biol. 2015, 13, e1002050. [Google Scholar] [CrossRef]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30–32. [Google Scholar] [CrossRef]
- Zierer, J.; Jackson, M.A.; Kastenmüller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.; Bell, J.T.; Steves, C.J.; et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 2018, 50, 790–795. [Google Scholar] [CrossRef] [PubMed]
Study [Ref.] | Country | Study Design | Number of Participants [n (M/F)] | Recruitment Years | Population [Age at Recruitment] |
---|---|---|---|---|---|
DONALD 1 study [27] | Germany | Cohort | 10,172 (4960/5212) | 1985-current (open) | Population-based Convenient sampling (3–6 month) |
EPIC-Potsdam [28] | Germany | Cohort | 27,548 (10,904/16,644) | 1994–1998 | Population-based (35–65 year) |
LISA 2 [29] | Germany | Cohort | 3094 (1584/1510) | 1997–1999 | Population-based (0 year) |
NAKO 3 [30] | Germany | Cohort | 205,184 (101,658/103,52) (Germany) | 2014–2019 (baseline) | Population-based (20–69 year) |
Diet4MicroGut [31] | Italy | Cohort | 153 (64/89) | 2012–2013 | Population-based (18–60 year) |
DORIAN-PISAC 4 [32] | Italy | Cohort | 90 parent-children trios ([31] 48/42 children) | 2011–2014 | Population-based (0 year) |
Infant microbiome studies (full term, moderately preterm and preterm infants with VLBW 5) [33] | Italy | Cohort | 87 (N.A.) | 2013–2015 | Population-based (1–20 days) |
Italian Elderly Cohort [34] | Italy | Cohort | 201 (101/100) | 2012–2015 | Population-based (65–79 year) |
Octopus (PLIC 8) | Italy | Cohort | 93 (N.A.) | 2021-current | PLIC 8: Population-based (N.A.) |
IDEFICS/I.Family cohort [35] | Multinational (Cyprus, Estonia, Germany, Hungary, Sweden) | Cohort | IDEFICS baseline: n = 16,229; 2-y FU: n = 13,596; 6-y FU (I.Family): n = 9617 (≈50%/≈50%) | 2007–2014 (ongoing: web-based follow-up) | Population-based (2–9.9 (in 2007/2008, IDEFICS children); 2–18 (for siblings of IDEFICS; children recruited in 2013/2014 in the I.Family study)) |
TransMic [36] | Multinational (Italy and Burkina Faso) | Cohort | 300 (N.A.) | 2018–2020 | Population-based (1–50 year) |
LucKI Gut Study [37] | Netherlands | Cohort | 107 (63/44) | 2017-current | Population-based (0 year) |
EarlyMicroHealth [38] | Spain | Cohort | 151 (84/67) | 2015/2020 | Population-based (0–24 month) |
ErNst | Germany | Cross-sectional | 106 (53/53) | 2018 | Population-based (20–79 year) |
Elderly microbiome studies (centenarians & semi-supercentenarians) [39] | Italy | Cross-sectional | 54 (15/39) | 2007–2015 | Population-based (65–109 year) |
DIMISA [40] | Spain | Cross-sectional | 184 (52/132) | 2012–2015 | Population-based Recruitment in wild-living population and elderly homes (19–95 year) |
EDILS 6 [41] | France | Cohort | 280 (47/233) | 2015–2021 | Disease-based (eating disorders) Recruitment through clinics and through advertisement (for controls) (18+ year) |
Medika Study [42] | Italy | Cohort | 60 (49/11) | 2015–2019 | Disease-based (CKD 7) Patients from the nephrology, dialysis, and transplantation section of the hospital (56–80 year) |
IBD 9 South Limburg Cohort [43] | Netherlands | Cohort | 4000 (1700 in biobank) (50–55% UC 10, 40–45% CD 11, & 2–3% IBD 9-U) | 1991-current | Disease-based (UC 10, CD 11, IBD 9) recruitment through outpatient department & advertisements (for controls) (18+ year) |
Maastricht IBS 12 Study [44] | Netherlands | Cohort | 627 (214/413) | 2008-current | Disease-based (IBS 12) recruitment through primary, secondary, tertiary care & advertisements (for controls) (18+ year) |
Effect of fibers on gut microbiota and SCFA 13 in Parkinson patients and healthy references | Belgium | Cross-sectional | 63 (N.A.) | 2018–2019 | Disease-based (Parkinson) Convenience sampling (healthy controls) (55+ year) |
FoCus 14 [45] | Germany | Cross-sectional | 1811 (1133/678) | 2014–2015 (Baseline) | Disease- based (Obesity) & Population-based (for controls) Recruitment through population office (1309) and obesity clinic (502) (18–83 year) |
MetaCardis [46] | Multinational (Germany, France and Denmark) | Cross-sectional | 2189 (1101/1088) | 2013–2015 | Disease-based (CMD 15) Recruitment through clinics and through advertisement (for controls) (18–75 year) |
Study | Country | Dietary Intake | 24-h Recall | FFQ 1 | Food Records | Other |
---|---|---|---|---|---|---|
DONALD study | Germany | √ | — | — | √ | — |
EPIC-Potsdam | Germany | √ | √ M 2 | √ SQ 3 | — | — |
LISA | Germany | √ | — | √ SQ 3 | — | — |
NAKO | Germany | √ | √ M 2 | √ SQ 3 | — | — |
Diet4MicroGut | Italy | √ | — | — | √ | — |
DORIAN-PISAC | Italy | √ | √ M 2 | √ SQ 3 | — | — |
Infant microbiome studies | Italy | √ | — | — | — | Interview or visits 4 |
Italian Elderly Cohort | Italy | √ | — | — | √ | — |
Octopus | Italy | √ | — | — | — | Questionnaires |
IDEFICS/I.Family cohort | Multinational | √ | √ M 2 | √ QU 5 | — | — |
TransMic | Multinational | √ | — | √ SQ 3 | — | |
LucKI Gut Study | Netherlands | √ | — | √ SQ 3 | — | — |
EarlyMicroHealth | Spain | √ | — | √ SQ 3 | — | — |
ErNst | Germany | √ | — | √ SQ 3 | — | — |
Elderly microbiome studies | Italy | √ | — | — | √6 | — |
DIMISA | Spain | √ | — | √ SQ 3 | — | — |
EDILS | France | √ | — | — | — | Interview |
Medika Study | Italy | √ | — | — | — | √ |
IBD South Limburg Cohort | Netherlands | √6 | — | √ SQ 3,6 | — | — |
Maastricht IBS Study | Netherlands | √ | — | √ SQ 3 | — | — |
Effect of fibers on gut microbiota and SCFA in Parkinson patients and healthy references | Belgium | — | — | — | — | — |
FoCus | Germany | √ | — | √ SQ 3 | — | — |
MetaCardis | Multinational | √ | √ M 2,6 | √ SQ 3 | — | — |
Study | Country | Gut Microbiome | Other Microbiome | ||
---|---|---|---|---|---|
Stool Sample Collected | Gut Microbiome Measured | Other Samples Collected | Other Microbiome Measured | ||
DONALD study | Germany | √ | √ | — | — |
EPIC-Potsdam | Germany | √ | √ | — | — |
LISA | Germany | √ | √ | — | — |
NAKO | Germany | √ | — | Saliva | — |
Diet4MicroGut | Italy | √ | √ | Saliva | √ |
DORIAN-PISAC | Italy | √ | √ | — | — |
Infant microbiome studies | Italy | √ | √ | Oral swabs | √ |
Italian Elderly Cohort | Italy | √ | √ | — | — |
Octopus | Italy | √ | √ | — | — |
IDEFICS/I.Family cohort | Multinational | √ | √ | — | — |
TransMic | Multinational | √ | √ | — | — |
LucKI Gut Study | Netherlands | √ | √ | — | — |
EarlyMicroHealth | Spain | √ | √ | — | — |
ErNst | Germany | √ | √ | — | — |
Elderly microbiome studies | Italy | √ | √ | — | — |
DIMISA | Spain | √ | √ | — | — |
EDILS | France | √ | √ | — | — |
Medika Study | Italy | √ | √ | — | — |
IBD South Limburg Cohort | Netherlands | √ | √ | — | — |
Maastricht IBS Study | Netherlands | √ | √ | — | — |
Effect of fibers on gut microbiota and SCFA in Parkinson patients and healthy references | Belgium | √ | √ | — | — |
FoCus | Germany | √ | √ | — | — |
MetaCardis | Multinational | √ | √ | — | — |
Study Name | Country | Gut Microbiome | |||
---|---|---|---|---|---|
Number of Participants with Samples | Method 1 | Sequencing Platform | Info on Type of Meal Last Eaten Prior Sample Extraction | ||
DONALD study | Germany | 128 | 16S (V3–V4) | Illumina MiSeq | No |
EPIC-Potsdam | Germany | 3299 | 16S (V3–V4) | Illumina MiSeq | No |
LISA | Germany | 166 2 | 16S (V3–V4) | Illumina MiSeq | No |
NAKO | Germany | 76,000 | — | — | No |
Diet4MicroGut | Italy | 153 | 16S (V1–V3) | 454 Junior (16S seq), Illumina NextSeq (shotgun) | No |
DORIAN-PISAC | Italy | 30–80 3 | 16S (V3–V4) | Illumina MiSeq | No |
Infant microbiome studies | Italy | 87 | 16S (V3–V4) | Illumina MiSeq | No |
Italian Elderly Cohort | Italy | 201 | 16S (V3–V4) | Illumina MiSeq | No |
Octopus | Italy | 93 | 16S (V3–V4) | Illumina MiSeq | No |
IDEFICS/I.Family cohort | Multinational | 140 | 16S (V3–V4) | Illumina MiSeq | Yes |
TransMic | Multinational | — | Shotgun ITS1-4 4 | Illumina NovaSeq Illumina MiSeq | No |
LucKI Gut Study | Netherlands | 898 | 16S (V3–V4) | Illumina MiSeq | No |
EarlyMicroHealth | Spain | 900 | 16S (V3), shotgun, qPCR | Illumina MiSeq (16S and shotgun) | No |
ErNst | Germany | 212 | 16S (V4) | Illumina MiSeq | No |
Elderly microbiome studies | Italy | 54; 51 | 16S (V3–V4), shotgun | Illumina MiSeq; Illumina NextSeq (shotgun) | No |
DIMISA | Spain | 184 | qPCR | — | No |
EDILS | France | 280 5 | 16S (V5–V6) | Illumina MISeq | No |
Medika Study | Italy | 27 | 16S (V1–V3) | Illumina MiSeq | No |
IBD South Limburg Cohort | Netherlands | 114 | 16S (V4), shotgun | Illumina MiSeq (16S seq), Illumina HiSeq (shotgun) | — |
Maastricht IBS Study | Netherlands | 181 | 16S (V4), shotgun | Illumina MiSeq (16S seq), Illumina HiSeq (shotgun) | — |
Effect of fibers on gut microbiota and SCFA in Parkinson patients and healthy references | Belgium | — | 16S and culture | — | No |
FoCus | Germany | 1545 | 16S (V1–V2 & V3–V4) | Illumina MiSeq | No |
MetaCardis | Multinational | 2189 | shotgun | Ion-proton | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinart, M.; Nimptsch, K.; Forslund, S.K.; Schlicht, K.; Gueimonde, M.; Brigidi, P.; Turroni, S.; Ahrens, W.; Hebestreit, A.; Wolters, M.; et al. Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients 2021, 13, 3292. https://doi.org/10.3390/nu13093292
Pinart M, Nimptsch K, Forslund SK, Schlicht K, Gueimonde M, Brigidi P, Turroni S, Ahrens W, Hebestreit A, Wolters M, et al. Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients. 2021; 13(9):3292. https://doi.org/10.3390/nu13093292
Chicago/Turabian StylePinart, Mariona, Katharina Nimptsch, Sofia K. Forslund, Kristina Schlicht, Miguel Gueimonde, Patrizia Brigidi, Silvia Turroni, Wolfgang Ahrens, Antje Hebestreit, Maike Wolters, and et al. 2021. "Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis" Nutrients 13, no. 9: 3292. https://doi.org/10.3390/nu13093292
APA StylePinart, M., Nimptsch, K., Forslund, S. K., Schlicht, K., Gueimonde, M., Brigidi, P., Turroni, S., Ahrens, W., Hebestreit, A., Wolters, M., Dötsch, A., Nöthlings, U., Oluwagbemigun, K., Cuadrat, R. R. C., Schulze, M. B., Standl, M., Schloter, M., De Angelis, M., Iozzo, P., ... Pischon, T. (2021). Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients, 13(9), 3292. https://doi.org/10.3390/nu13093292