Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Sources
2.2. Primary and Secondary Outcomes
2.3. Statistical Analyses
3. Results
3.1. Patient Baseline Characteristics
3.2. All-Cause and Cardiovascular Mortality
3.3. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, T.I.; Streja, E.; Soohoo, M.; Kim, T.W.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Association of serum triglyceride to HDL cholesterol ratio with all-cause and cardiovascular mortality in incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2017, 12, 591–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, A.N.; Baird, B.C.; Leypoldt, J.K.; Cheung, A.K.; Goldfarb-Rumyantzev, A.S. The association of lipid levels with mortality in patients on chronic peritoneal dialysis. Nephrol. Dial. Transplant. 2006, 21, 2881–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Sun, Z.; Zhang, X.; Li, Z.; Guo, X.; Xie, Y.; Sun, Y.; Zheng, L. Non-traditional lipid profiles associated with ischemic stroke not hemorrhagic stroke in hypertensive patients: Results from an 8.4 years follow-up study. Lipids Health Dis. 2019, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Li, Z.; Sun, G.; Guo, L.; Zheng, L.; Yu, S.; Yang, H.; Pan, G.; Zhang, Y.; Sun, Y. Comparison of four nontraditional lipid profiles in relation to ischemic stroke among hypertensive Chinese population. Int. J. Cardiol. 2015, 201, 123–125. [Google Scholar] [CrossRef]
- Arsenault, B.J.; Rana, J.S.; Stroes, E.S.; Després, J.-P.; Shah, P.K.; Kastelein, J.J.; Wareham, N.J.; Boekholdt, S.M.; Khaw, K.-T. Beyond low-density lipoprotein cholesterol: Respective contributions of non–high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J. Am. Coll. Cardiol. 2009, 55, 35–41. [Google Scholar]
- Wang, H.; Li, Z.; Guo, X.; Chen, Y.; Chang, Y.; Chen, S.; Sun, Y. The impact of nontraditional lipid profiles on left ventricular geometric abnormalities in general Chinese population. BMC Cardiovasc. Disord. 2018, 18, 88. [Google Scholar] [CrossRef]
- Moradi, H.; Streja, E.; Kashyap, M.L.; Vaziri, N.D.; Fonarow, G.C.; Kalantar-Zadeh, K. Elevated high-density lipoprotein cholesterol and cardiovascular mortality in maintenance hemodialysis patients. Nephrol. Dial. Transplant. 2014, 29, 1554–1562. [Google Scholar] [CrossRef]
- Chang, T.I.; Streja, E.; Ko, G.J.; Naderi, N.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Inverse Association Between Serum Non–High-Density Lipoprotein Cholesterol Levels and Mortality in Patients Undergoing Incident Hemodialysis. J. Am. Heart Assoc. 2018, 7, e009096. [Google Scholar] [CrossRef] [Green Version]
- Park, C.H.; Kang, E.W.; Park, J.T.; Han, S.H.; Yoo, T.-H.; Kang, S.-W.; Chang, T.I. Association of serum lipid levels over time with survival in incident peritoneal dialysis patients. J. Clin. Lipidol. 2017, 11, 945–954.e3. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Tsai, W.-C.; Chiu, Y.-L.; Hsu, S.-P.; Pai, M.-F.; Yang, J.-Y.; Peng, Y.-S. Triglyceride to high-density lipoprotein cholesterol ratio predicts cardiovascular outcomes in prevalent dialysis patients. Medicine 2015, 94, e619. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Criqui, M.H.; Golomb, B.A. Epidemiologic aspects of lipid abnormalities. Am. J. Med. 1998, 105, 48S–57S. [Google Scholar] [CrossRef]
- Wang, T.-D.; Chen, W.-J.; Chien, K.-L.; Su, S.S.-Y.; Hsu, H.-C.; Chen, M.-F.; Liau, C.-S.; Lee, Y.-T. Efficacy of cholesterol levels and ratios in predicting future coronary heart disease in a Chinese population. Am. J. Cardiol. 2001, 88, 737–743. [Google Scholar] [CrossRef]
- Kinosian, B.; Glick, H.; Garland, G. Cholesterol and coronary heart disease: Predicting risks by levels and ratios. Ann. Intern. Med. 1994, 121, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, D.A.; Pei, G.; Lisa, P.; Stephen, K.; Muriel, C.; Alexander, T.; Adam, S.B.; Nadeem, S.; David, W.; Danish, S. Lipid-related markers and cardiovascular disease prediction. JAMA 2012, 307, 506. [Google Scholar]
- Ebong, I.A.; Goff, D.C., Jr.; Rodriguez, C.J.; Chen, H.; Sibley, C.T.; Bertoni, A.G. Association of lipids with incident heart failure among adults with and without diabetes mellitus: Multiethnic Study of Atherosclerosis. Circ. Heart Fail. 2013, 6, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Kastelein, J.J.; Van Der Steeg, W.A.; Holme, I.; Gaffney, M.; Cater, N.B.; Barter, P.; Deedwania, P.; Olsson, A.G.; Boekholdt, S.M.; Demicco, D.A. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation 2008, 117, 3002–3009. [Google Scholar] [CrossRef] [Green Version]
- Mathews, S.C.; Mallidi, J.; Kulkarni, K.; Toth, P.P.; Jones, S.R. Achieving secondary prevention low-density lipoprotein particle concentration goals using lipoprotein cholesterol-based data. PLoS ONE 2012, 7, e33692. [Google Scholar] [CrossRef] [Green Version]
- Ingelsson, E.; Schaefer, E.J.; Contois, J.H.; McNamara, J.R.; Sullivan, L.; Keyes, M.J.; Pencina, M.J.; Schoonmaker, C.; Wilson, P.W.; D’Agostino, R.B. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA 2007, 298, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Rifai, N.; Cook, N.R.; Bradwin, G.; Buring, J.E. Non–HDL cholesterol, apolipoproteins AI and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA 2005, 294, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Elshazly, M.B.; Nicholls, S.J.; Nissen, S.E.; John, J.S.; Martin, S.S.; Jones, S.R.; Quispe, R.; Stegman, B.; Kapadia, S.R.; Tuzcu, E.M. Implications of total to high-density lipoprotein cholesterol ratio discordance with alternative lipid parameters for coronary atheroma progression and cardiovascular events. Am. J. Cardiol. 2016, 118, 647–655. [Google Scholar] [CrossRef]
- Elshazly, M.B.; Quispe, R.; Michos, E.D.; Sniderman, A.D.; Toth, P.P.; Banach, M.; Kulkarni, K.R.; Coresh, J.; Blumenthal, R.S.; Jones, S.R. Patient-Level Discordance in Population Percentiles of the Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio in Comparison with Low-Density Lipoprotein Cholesterol and Non–High-Density Lipoprotein Cholesterol: The Very Large Database of Lipids Study (VLDL-2B). Circulation 2015, 132, 667–676. [Google Scholar] [PubMed] [Green Version]
- Sniderman, A.D.; Lamarche, B.; Contois, J.H.; de Graaf, J. Discordance analysis and the Gordian Knot of LDL and non-HDL cholesterol versus apoB. Curr. Opin. Lipidol. 2014, 25, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Mora, S.; Shalaurova, I.; Greenland, P.; Mackey, R.H.; Goff, D.C., Jr. Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 2011, 5, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Barter, P.J.; Ballantyne, C.M.; Carmena, R.; Cabezas, M.C.; Chapman, M.J.; Couture, P.; De Graaf, J.; Durrington, P.; Faergeman, O.; Frohlich, J. Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: Report of the thirty-person/ten-country panel. J. Intern. Med. 2006, 259, 247–258. [Google Scholar] [CrossRef]
- Cromwell, W.C.; Otvos, J.D.; Keyes, M.J.; Pencina, M.J.; Sullivan, L.; Vasan, R.S.; Wilson, P.W.; D’Agostino, R.B. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—Implications for LDL management. J. Clin. Lipidol. 2007, 1, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Dincer, N.; Dagel, T.; Afsar, B.; Covic, A.; Ortiz, A.; Kanbay, M. The effect of chronic kidney disease on lipid metabolism. Int. Urol. Nephrol. 2019, 51, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A. Dialysis modalities and HDL composition and function. J. Am. Soc. Nephrol. 2015, 26, 2267–2276. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Chinnadurai, R.; Ibrahim, S.T.; Green, D.; Kalra, P.A. Predictive factors of rapid linear renal progression and mortality in patients with chronic kidney disease. BMC Nephrol. 2020, 21, 345. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Yancey, P.G.; Ikizler, T.A.; Jerome, W.G.; Kaseda, R.; Cox, B.; Bian, A.; Shintani, A.; Fogo, A.B.; Linton, M.F.; et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J. Am. Coll. Cardiol. 2012, 60, 2372–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, H.; Ueda, M.; Kojima, S.; Mashiba, S.; Michihata, T.; Takahashi, K.; Shishido, K.; Akizawa, T. Oxidized high-density lipoprotein as a risk factor for cardiovascular events in prevalent hemodialysis patients. Atherosclerosis 2012, 220, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Little, J.; Phillips, L.; Russell, L.; Griffiths, A.; Russell, G.I.; Davies, S.J. Longitudinal lipid profiles on CAPD: Their relationship to weight gain, comorbidity, and dialysis factors. J. Am. Soc. Nephrol. 1998, 9, 1931–1939. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Marchionni, C.; Caldarelli, L.; Curatola, G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 2001, 38, 163–169. [Google Scholar] [CrossRef]
- Boemi, M.; Leviev, I.; Sirolla, C.; Pieri, C.; Marra, M.; James, R.W. Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 2001, 155, 229–235. [Google Scholar] [CrossRef]
- Sens, F.; Schott-Pethelaz, A.M.; Labeeuw, M.; Colin, C.; Villar, E. Survival advantage of hemodialysis relative to peritoneal dialysis in patients with end-stage renal disease and congestive heart failure. Kidney Int. 2011, 80, 970–977. [Google Scholar] [CrossRef] [Green Version]
- McDonald, S.P.; Marshall, M.R.; Johnson, D.W.; Polkinghorne, K.R. Relationship between dialysis modality and mortality. J. Am. Soc. Nephrol. 2009, 20, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zeng, X.; Hong, H.G.; Li, Y.; Fu, P. The association between body mass index and mortality among Asian peritoneal dialysis patients: A meta-analysis. PLoS ONE 2017, 12, e0172369. [Google Scholar]
- Kiran, V.R.; Zhu, T.Y.; Yip, T.; Lui, S.L.; Lo, W.K. Body mass index and mortality risk in Asian peritoneal dialysis patients in Hong Kong-impact of diabetes and cardiovascular disease status. Perit. Dial. Int. 2014, 34, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, R.; Chiu, Y.W.; Kalantar-Zadeh, K.; Bargman, J.; Vonesh, E. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch. Intern. Med. 2011, 171, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Yeates, K.; Zhu, N.; Vonesh, E.; Trpeski, L.; Blake, P.; Fenton, S. Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol. Dial. Transplant. 2012, 27, 3568–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.S.; Park, J.Y.; Kang, S.; Kim, K.H.; Ryu, D.R.; Kim, H.; Joo, K.W.; Lim, C.S.; Kim, Y.S.; Kim, D.K. Dialysis Modality and Mortality in the Elderly: A Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2015, 10, 983–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, G.C.; Huang, S.Q.; Peng, Y.; Wan, L.; Wu, Y.Q.; Hu, T.Y.; Hu, J.J.; Hao, F.B. HDL-C is associated with mortality from all causes, cardiovascular disease and cancer in a J-shaped dose-response fashion: A pooled analysis of 37 prospective cohort studies. Eur. J. Prev. Cardiol. 2020, 27, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A. High HDL-Cholesterol Paradox: SCARB1-LAG3-HDL Axis. Curr. Atheroscler. Rep. 2021, 23, 5. [Google Scholar] [CrossRef]
- Wanner, C.; Krane, V.; März, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Fellström, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.W.; Chevaile, A.; Cobbe, S.M.; Grönhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef] [Green Version]
Variables | TC/HDL-C | |||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | p-Value | |
Age at initiation of dialysis (years) | 51.61 ± 14.45 | 52.46 ± 12.19 | 49.95 ± 11.90 | 51.05 ± 12.85 | 52.58 ± 11.99 | 0.451 |
Sex (Male, %) | 69 (54.8) | 74 (59.2) | 74 (58.23) | 75 (59.1) | 82 (65.6) | 0.526 |
Body mass index (kg/m2) | 21.94 ± 3.24 | 22.39 ± 2.92 | 23.13 ± 3.22 | 23.66 ± 3.40 | 24.36 ± 3.34 | <0.001 |
Primary renal disease, n (%) | ||||||
Diabetes | 50 (39.7) | 50 (40.0) | 45 (35.4) | 52 (40.9) | 70 (56.0) | 0.034 |
Hypertension | 27 (21.4) | 27 (21.6) | 21 (16.5) | 25 (19.7) | 16 (12.8) | |
Glomerulonephritis | 26 (20.6) | 30 (24.0) | 24 (18.9) | 24 (18.9) | 19 (15.2) | |
Others | 23 (18.3) | 18 (14.4) | 37 (29.1) | 26 (20.5) | 20 (16.0) | |
Comorbidity at initiation of dialysis, n (%) | ||||||
Congestive heart failure | 9 (7.1) | 12 (9.7) | 13 (10.2) | 14 (11.0) | 11 (8.8) | 0.858 |
Coronary artery disease | 15 (11.9) | 14 (11.2) | 7 (5.6) | 12 (9.5) | 12 (9.6) | 0.473 |
Peripheral vascular disease | 7 (5.6) | 7 (5.6) | 7 (5.7) | 5 (3.9) | 4 (3.2) | 0.838 |
Arrhythmia | 4 (3.2) | 0 (0.0) | 2 (1.6) | 3 (2.4) | 1 (0.8) | 0.285 |
Cerebrovascular disease | 5 (15.6) | 5 (15.6) | 8 (6.3) | 7 (5.6) | 7 (5.6) | 0.887 |
Chronic lung disease | 6 (4.8) | 2 (1.6) | 3 (2.4) | 6 (4.7) | 3 (2.4) | 0.476 |
Peptic ulcer disease | 1 (0.79) | 7 (5.6) | 10 (7.87) | 3 (2.36) | 3 (2.4) | 0.023 |
Moderate to severe chronic liver disease | 9 (7.1) | 6 (4.8) | 2 (1.6) | 1 (0.8) | 3 (2.4) | 0.032 |
Connective tissue disease | 9 (7.1) | 10 (8.0) | 16 (12.6) | 14 (11.0) | 14 (11.2) | 0.558 |
Malignancy | 5 (4.0) | 5 (4.0) | 3 (2.4) | 5 (4.0) | 2 (1.6) | 0.723 |
Modified Charlson comorbidity index | 4.55 ± 2.26 | 5.55 ± 2.26 | 4.28 ± 2.05 | 4.41 ± 2.13 | 4.69 ± 1.98 | 0.607 |
Laboratory data at initiation of dialysis | ||||||
Hemoglobin (g/dL) | 9.34 ± 1.87 | 9.67 ± 1.49 | 9.76 ± 1.96 | 9.61 ± 1.45 | 9.72 ± 1.51 | 0.282 |
Blood urea nitrogen (mg/dL) | 77.27 ± 34.99 | 82.58 ± 40.13 | 74.76 ± 34.29 | 69.99 ± 31.19 | 69.64 ± 30.24 | 0.015 |
Creatinine (mg/dL) | 8.42 ± 3.55 | 9.06 ± 3.96 | 8.44 ± 3.29 | 8.67 ± 3.53 | 9.30 ± 4.19 | 0.236 |
Albumin (g/dL) | 3.38 ± 0.58 | 3.58 ± 0.55 | 3.52 ± 0.59 | 3.55 ± 0.49 | 3.70 ± 0.63 | 0.016 |
Calcium (mg/dL) | 7.99 ± 0.98 | 8.02 ± 0.99 | 7.96 ± 1.00 | 8.10 ± 1.08 | 8.17 ± 0.94 | 0.458 |
Phosphorus (mg/dL) | 5.49 ± 1.93 | 5.37 ± 1.56 | 5.14 ± 1.89 | 5.35 ± 1.70 | 5.48 ± 1.75 | 0.517 |
Urine volume (mL/day) | 920.91 ± 575.85 | 989.49 ± 692.30 | 1000.31 ± 653.44 | 937.47 ± 623.06 | 885.30 ± 647.41 | 0.586 |
Quintile 1 | Quintile 2 | Quintile 4 | Quintile 5 | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.12 (0.77–2.08) | 0.347 | 1.40 (0.87–2.27) | 0.180 | 1.36 (0.84–2.21) | 0.208 | 1.74 (1.09–2.76) | 0.020 |
Model 2 | 1.17 (0.71–1.95) | 0.535 | 1.22 (0.75–2.00) | 0.420 | 1.30 (0.80–2.11) | 0.286 | 1.65 (1.04–2.64) | 0.035 |
Model 3 | 1.27 (0.76–2.13) | 0.366 | 1.29 (0.79–2.12) | 0.315 | 1.46 (0.88–2.40) | 0.141 | 1.70 (1.04–2.76) | 0.034 |
Model 4 | 1.27 (0.75–2.13) | 0.374 | 1.29 (0.78–2.12) | 0.319 | 1.45 (0.88–2.34) | 0.148 | 1.69 (1.04–2.76) | 0.036 |
Univariate | Multivariate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
β | Std | t | p-Value | R2 | β | Std | t | p-Value | R2 | |
(intercept) | 1.840 | 0937 | 1.96 | 0.0500 | 0.036 | |||||
BMI | 0.129 | 0.030 | 4.38 | <.0001 | 0.030 | 0.125 | 0.031 | 4.09 | <0.0001 | |
DM | 0.287 | 0.200 | 1.44 | 0.1510 | 0.003 | 0.120 | 0.215 | 0.56 | 0.5762 | |
PUD | −0.242 | 0.522 | −0.46 | 0.6432 | 0.000 | −0.143 | 0.518 | −0.28 | 0.7832 | |
CLD | 0.021 | 0.571 | 0.04 | 0.9702 | 0.000 | 0.060 | 0.567 | 0.11 | 0.9158 | |
BUN | −0.006 | 0.003 | −2.06 | 0.0397 | 0.007 | −0.005 | 0.003 | −1.75 | 0.0807 | |
Albumin | 0.012 | 0.175 | 0.07 | 0.9477 | 0.000 | 0.041 | 0.187 | 0.22 | 0.8265 |
Quintile 1 (N = 126) | Quintile 2 (N = 125) | Quintile 4 (N = 127) | Quintile 5 (N = 125) | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.12 (0.71–1.77) | 0.616 | 0.99 (0.62–1.57) | 0.953 | 0.97 (0.61–1.53) | 0.888 | 1.74 (1.09–2.76) | 0.786 |
Model 2 | 0.94 (0.59–1.49) | 0.793 | 0.92 (0.58–1.46) | 0.722 | 0.91 (0.57–1.44) | 0.683 | 0.87 (0.55–1.40) | 0.570 |
Model 3 | 0.76 (0.47–1.24) | 0.271 | 0.90 (0.56–1.45) | 0.664 | 0.79 (0.49–1.26) | 0.315 | 0.73 (0.45–1.17) | 0.188 |
Model 4 | 0.77 (0.47–1.24) | 0.278 | 0.90 (0.56–1.45) | 0.678 | 0.79 (0.50–1.27) | 0.331 | 0.73 (0.45–1.18) | 0.198 |
Quintile 1 (N = 126) | Quintile 2 (N = 125) | Quintile 4 (N = 127) | Quintile 5 (N= 125) | |||||
---|---|---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Model 1 | 1.39 (0.90–2.15) | 0.136 | 0.79 (0.49–1.27) | 0.328 | 1.24 (0.80–1.93) | 0.345 | 0.70 (0.42–1.17) | 0.170 |
Model 2 | 1.32 (0.85–2.06) | 0.214 | 0.87 (0.53–1.42) | 0.586 | 1.28 (0.82–2.01) | 0.273 | 0.80 (0.47–1.34) | 0.392 |
Model 3 | 1.23 (0.78–1.94) | 0.371 | 0.81 (0.49–1.33) | 0.405 | 1.17 (0.74–1.85) | 0.497 | 0.70 (0.41–1.18) | 0.175 |
Model 4 | 1.21 (0.77–1.93) | 0.398 | 0.80 (0.49–1.33) | 0.393 | 1.17 (0.74–1.84) | 0.506 | 0.69 (0.41–1.17) | 0.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, H.-W.; Jeon, Y.; Kim, J.-H.; Lee, G.-Y.; Jeon, S.-J.; Kim, K.-Y.; Lim, J.-H.; Jung, H.-Y.; Choi, J.-Y.; Park, S.-H.; et al. Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients 2022, 14, 144. https://doi.org/10.3390/nu14010144
Noh H-W, Jeon Y, Kim J-H, Lee G-Y, Jeon S-J, Kim K-Y, Lim J-H, Jung H-Y, Choi J-Y, Park S-H, et al. Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients. 2022; 14(1):144. https://doi.org/10.3390/nu14010144
Chicago/Turabian StyleNoh, Hee-Won, Yena Jeon, Ji-Hye Kim, Ga-Young Lee, Soo-Jee Jeon, Kyu-Yeun Kim, Jeong-Hoon Lim, Hee-Yeon Jung, Ji-Young Choi, Sun-Hee Park, and et al. 2022. "Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients" Nutrients 14, no. 1: 144. https://doi.org/10.3390/nu14010144
APA StyleNoh, H. -W., Jeon, Y., Kim, J. -H., Lee, G. -Y., Jeon, S. -J., Kim, K. -Y., Lim, J. -H., Jung, H. -Y., Choi, J. -Y., Park, S. -H., Kim, C. -D., Kim, Y. -L., & Cho, J. -H. (2022). Higher Serum Total Cholesterol to High-Density Lipoprotein Cholesterol Ratio Is Associated with Increased Mortality among Incident Peritoneal Dialysis Patients. Nutrients, 14(1), 144. https://doi.org/10.3390/nu14010144