Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy
Abstract
:1. Introduction
2. ω-3 PUFAs: Sources, Metabolism, and Recommended Intake
3. ω-3 PUFAs in Human Milk
4. PUFAs Dietary Intake in Healthy and Allergic Children
5. Role of ω-3 PUFAs in the Regulation of Immune System Development and Function
6. PUFAs Supplementation for Food Allergy Prevention: Preclinical Findings
7. PUFAs Supplementation during Pregnancy and Breastfeeding for Allergy Prevention: Clinical Studies
8. PUFAs Supplementation in Infancy and Childhood for Allergy Prevention
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoppenbrouwers, T.; Cvejić Hogervorst, J.H.; Garssen, J.; Wichers, H.J.; Willemsen, L.E.M. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the Prevention of Food Allergy. Front. Immunol. 2019, 10, 1118. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Can Early Omega-3 Fatty Acid Exposure Reduce Risk of Childhood Allergic Disease? Nutrients 2017, 9, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendell, S.G.; Baffi, C.; Holguin, F. Fatty Acids, Inflammation, and Asthma. J. Allergy Clin. Immunol. 2014, 133, 1255–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemsen, L.E.M. Dietary N-3 Long Chain Polyunsaturated Fatty Acids in Allergy Prevention and Asthma Treatment. Eur. J. Pharmacol. 2016, 785, 174–186. [Google Scholar] [CrossRef]
- Nagel, G.; Weinmayr, G.; Kleiner, A.; Garcia-Marcos, L.; Strachan, D.P. ISAAC Phase Two Study Group Effect of Diet on Asthma and Allergic Sensitisation in the International Study on Allergies and Asthma in Childhood (ISAAC) Phase Two. Thorax 2010, 65, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Ellwood, P.; Asher, M.I.; García-Marcos, L.; Williams, H.; Keil, U.; Robertson, C.; Nagel, G. ISAAC Phase III Study Group Do Fast Foods Cause Asthma, Rhinoconjunctivitis and Eczema? Global Findings from the International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three. Thorax 2013, 68, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Barros, R.; Moreira, A.; Padrão, P.; Teixeira, V.H.; Carvalho, P.; Delgado, L.; Lopes, C.; Severo, M.; Moreira, P. Dietary Patterns and Asthma Prevalence, Incidence and Control. Clin. Exp. Allergy 2015, 45, 1673–1680. [Google Scholar] [CrossRef]
- Spergel, J.M.; Paller, A.S. Atopic Dermatitis and the Atopic March. J. Allergy Clin. Immunol. 2003, 112, S118–S127. [Google Scholar] [CrossRef]
- Spergel, J.M. Epidemiology of Atopic Dermatitis and Atopic March in Children. Immunol. Allergy Clin. North. Am. 2010, 30, 269–280. [Google Scholar] [CrossRef]
- Lack, G. Epidemiologic Risks for Food Allergy. J. Allergy Clin. Immunol. 2008, 121, 1331–1336. [Google Scholar] [CrossRef]
- Balić, A.; Vlašić, D.; Žužul, K.; Marinović, B.; Bukvić Mokos, Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2020, 21, 741. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. FoodData Central. Available online: https://fdc.nal.usda.gov/index.html (accessed on 11 November 2021).
- Gnagnarella, P.; Salvini, S.; Parpinel, M. Food Composition Database for Epidemiological Studies in Italy, Version 1.2015. Available online: http://www.bda-ieo.it/ (accessed on 11 November 2021).
- Agostoni, C.; Nobile, M.; Ciappolino, V.; Delvecchio, G.; Tesei, A.; Turolo, S.; Crippa, A.; Mazzocchi, A.; Altamura, C.A.; Brambilla, P. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD. Int. J. Mol. Sci. 2017, 18, 2608. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Sioen, I.; van Lieshout, L.; Eilander, A.; Fleith, M.; Lohner, S.; Szommer, A.; Petisca, C.; Eussen, S.; Forsyth, S.; Calder, P.C.; et al. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations-Focus on Specific Population Groups. Ann. Nutr. Metab. 2017, 70, 39–50. [Google Scholar] [CrossRef]
- Bahreynian, M.; Feizi, A.; Kelishadi, R. Is Fatty Acid Composition of Breast Milk Different in Various Populations? A Systematic Review and Meta-Analysis. Int. J. Food. Sci. Nutr. 2020, 71, 909–920. [Google Scholar] [CrossRef]
- Koletzko, B.; Thiel, I.; Abiodun, P.O. The Fatty Acid Composition of Human Milk in Europe and Africa. J. Pediatr. 1992, 120, S62–S70. [Google Scholar] [CrossRef]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and Arachidonic Acid Concentrations in Human Breast Milk Worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Halken, S.; Muraro, A.; de Silva, D.; Khaleva, E.; Angier, E.; Arasi, S.; Arshad, H.; Bahnson, H.T.; Beyer, K.; Boyle, R.; et al. EAACI Guideline: Preventing the Development of Food Allergy in Infants and Young Children (2020 Update). Pediatr. Allergy. Immunol. 2021, 32, 843–858. [Google Scholar] [CrossRef]
- WHO. Maternal, Infant and Young Child Nutrition. 2016. EB138/8. Available online: https://apps.who.int/gb/e/e_eb138.html (accessed on 11 November 2021).
- Roduit, C.; Frei, R.; Depner, M.; Schaub, B.; Loss, G.; Genuneit, J.; Pfefferle, P.; Hyvärinen, A.; Karvonen, A.M.; Riedler, J.; et al. Increased Food Diversity in the First Year of Life Is Inversely Associated with Allergic Diseases. J. Allergy Clin. Immunol. 2014, 133, 1056–1064. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Ierodiakonou, D.; Jarrold, K.; Cunha, S.; Chivinge, J.; Robinson, Z.; Geoghegan, N.; Ruparelia, A.; Devani, P.; Trivella, M.; et al. Diet during Pregnancy and Infancy and Risk of Allergic or Autoimmune Disease: A Systematic Review and Meta-Analysis. PLoS Med. 2018, 15, e1002507. [Google Scholar] [CrossRef]
- Venter, C.; Brown, K.R.; Maslin, K.; Palmer, D.J. Maternal Dietary Intake in Pregnancy and Lactation and Allergic Disease Outcomes in Offspring. Pediatr. Allergy Immunol. 2017, 28, 135–143. [Google Scholar] [CrossRef]
- Greer, F.R.; Sicherer, S.H.; Burks, A.W.; Committee on Nutrition; Section on Allergy and Immunology. The Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Hydrolyzed Formulas, and Timing of Introduction of Allergenic Complementary Foods. Pediatrics 2019, 143, e20190281. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, E.; Pendezza, E.; Zuccotti, G.V. Personalized Nutrition in Food Allergy: Tips for Clinical Practice. Front Pediatr. 2020, 8, 113. [Google Scholar] [CrossRef]
- Aldámiz-Echevarría, L.; Bilbao, A.; Andrade, F.; Elorz, J.; Prieto, J.A.; Rodríguez-Soriano, J. Fatty Acid Deficiency Profile in Children with Food Allergy Managed with Elimination Diets. Acta. Paediatr. 2008, 97, 1572–1576. [Google Scholar] [CrossRef]
- Mourad, A.A.; Bahna, S.L. Fish-Allergic Patients May Be Able to Eat Fish. Expert Rev. Clin. Immunol. 2015, 11, 419–430. [Google Scholar] [CrossRef]
- Giovannini, M.; D’Auria, E.; Caffarelli, C.; Verduci, E.; Barberi, S.; Indinnimeo, L.; Iacono, I.D.; Martelli, A.; Riva, E.; Bernardini, R. Nutritional Management and Follow up of Infants and Children with Food Allergy: Italian Society of Pediatric Nutrition/Italian Society of Pediatric Allergy and Immunology Task Force Position Statement. Ital. J. Pediatr. 2014, 40, 1. [Google Scholar] [CrossRef] [Green Version]
- Skypala, I.J.; McKenzie, R. Nutritional Issues in Food Allergy. Clin. Rev. Allergy Immunol. 2019, 57, 166–178. [Google Scholar] [CrossRef]
- Ogrodowczyk, A.M.; Zakrzewska, M.; Romaszko, E.; Wróblewska, B. Gestational Dysfunction-Driven Diets and Probiotic Supplementation Correlate with the Profile of Allergen-Specific Antibodies in the Serum of Allergy Sufferers. Nutrients 2020, 12, 2381. [Google Scholar] [CrossRef]
- Gardner, K.G.; Gebretsadik, T.; Hartman, T.J.; Rosa, M.J.; Tylavsky, F.A.; Adgent, M.A.; Moore, P.E.; Kocak, M.; Bush, N.R.; Davis, R.L.; et al. Prenatal Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Childhood Atopic Dermatitis. J. Allergy. Clin. Immunol. Pract. 2020, 8, 937–944. [Google Scholar] [CrossRef]
- Berni Canani, R.; Paparo, L.; Nocerino, R.; Di Scala, C.; Della Gatta, G.; Maddalena, Y.; Buono, A.; Bruno, C.; Voto, L.; Ercolini, D. Gut Microbiome as Target for Innovative Strategies Against Food Allergy. Front Immunol. 2019, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Van den Elsen, L.; Garssen, J.; Willemsen, L. Long Chain N-3 Polyunsaturated Fatty Acids in the Prevention of Allergic and Cardiovascular Disease. Curr. Pharm. Des. 2012, 18, 2375–2392. [Google Scholar] [CrossRef] [PubMed]
- Bilal, S.; Haworth, O.; Wu, L.; Weylandt, K.H.; Levy, B.D.; Kang, J.X. Fat-1 Transgenic Mice with Elevated Omega-3 Fatty Acids Are Protected from Allergic Airway Responses. Biochim. Biophys. Acta 2011, 1812, 1164–1169. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.; Fortin, S.; Cantin, A.M.; Rousseau, E. Docosahexaenoic Acid Derivative Prevents Inflammation and Hyperreactivity in Lung: Implication of PKC-Potentiated Inhibitory Protein for Heterotrimeric Myosin Light Chain Phosphatase of 17 KD in Asthma. Am. J. Respir. Cell. Mol. Biol. 2011, 45, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.; Fortin, S.; Cantin, A.M.; Rousseau, É. MAG-EPA Resolves Lung Inflammation in an Allergic Model of Asthma. Clin. Exp. Allergy 2013, 43, 1071–1082. [Google Scholar] [CrossRef]
- Yokoyama, A.; Hamazaki, T.; Ohshita, A.; Kohno, N.; Sakai, K.; Zhao, G.D.; Katayama, H.; Hiwada, K. Effect of Aerosolized Docosahexaenoic Acid in a Mouse Model of Atopic Asthma. Int. Arch. Allergy Immunol. 2000, 123, 327–332. [Google Scholar] [CrossRef]
- Hogenkamp, A.; van Vlies, N.; Fear, A.L.; van Esch, B.C.; Hofman, G.A.; Garssen, J.; Calder, P.C. Dietary Fatty Acids Affect the Immune System in Male Mice Sensitized to Ovalbumin or Vaccinated with Influenza. J. Nutr. 2011, 141, 698–702. [Google Scholar] [CrossRef]
- van den Elsen, L.W.J.; Bol-Schoenmakers, M.; van Esch, B.C.A.M.; Hofman, G.A.; van de Heijning, B.J.M.; Pieters, R.H.; Smit, J.J.; Garssen, J.; Willemsen, L.E.M. DHA-Rich Tuna Oil Effectively Suppresses Allergic Symptoms in Mice Allergic to Whey or Peanut. J. Nutr. 2014, 144, 1970–1976. [Google Scholar] [CrossRef]
- Van den Elsen, L.W.J.; Meulenbroek, L.A.P.M.; van Esch, B.C.A.M.; Hofman, G.A.; Boon, L.; Garssen, J.; Willemsen, L.E.M. CD25+ Regulatory T Cells Transfer N-3 Long Chain Polyunsaturated Fatty Acids-Induced Tolerance in Mice Allergic to Cow’s Milk Protein. Allergy 2013, 68, 1562–1570. [Google Scholar] [CrossRef]
- Mizota, T.; Fujita-Kambara, C.; Matsuya, N.; Hamasaki, S.; Fukudome, T.; Goto, H.; Nakane, S.; Kondo, T.; Matsuo, H. Effect of Dietary Fatty Acid Composition on Th1/Th2 Polarization in Lymphocytes. JPEN J. Parenter. Enteral. Nutr. 2009, 33, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Weise, C.; Hilt, K.; Milovanovic, M.; Ernst, D.; Rühl, R.; Worm, M. Inhibition of IgE Production by Docosahexaenoic Acid Is Mediated by Direct Interference with STAT6 and NFκB Pathway in Human B Cells. J. Nutr. Biochem. 2011, 22, 269–275. [Google Scholar] [CrossRef]
- Draper, E.; Reynolds, C.M.; Canavan, M.; Mills, K.H.; Loscher, C.E.; Roche, H.M. Omega-3 Fatty Acids Attenuate Dendritic Cell Function via NF-ΚB Independent of PPARγ. J. Nutr. Biochem. 2011, 22, 784–790. [Google Scholar] [CrossRef]
- Zeyda, M.; Säemann, M.D.; Stuhlmeier, K.M.; Mascher, D.G.; Nowotny, P.N.; Zlabinger, G.J.; Waldhäusl, W.; Stulnig, T.M. Polyunsaturated Fatty Acids Block Dendritic Cell Activation and Function Independently of NF-KappaB Activation. J. Biol. Chem. 2005, 280, 14293–14301. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Yen, J.-H.; Vassiliou, E.; Adhikary, S.; Toscano, M.G.; Ganea, D. Docosahexaenoic Acid Prevents Dendritic Cell Maturation and in Vitro and in Vivo Expression of the IL-12 Cytokine Family. Lipids. Health Dis. 2010, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and Immune Function. Nutrients 2013, 5, 2502–2521. [Google Scholar] [CrossRef]
- Endo, J.; Arita, M. Cardioprotective Mechanism of Omega-3 Polyunsaturated Fatty Acids. J. Cardiol. 2016, 67, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Weatherill, A.R.; Lee, J.Y.; Zhao, L.; Lemay, D.G.; Youn, H.S.; Hwang, D.H. Saturated and Polyunsaturated Fatty Acids Reciprocally Modulate Dendritic Cell Functions Mediated through TLR4. J. Immunol. 2005, 174, 5390–5397. [Google Scholar] [CrossRef]
- Hoppenbrouwers, T.; Fogliano, V.; Garssen, J.; Pellegrini, N.; Willemsen, L.E.M.; Wichers, H.J. Specific Polyunsaturated Fatty Acids Can Modulate in Vitro Human MoDC2s and Subsequent Th2 Cytokine Release. Front. Immunol. 2020, 11, 748. [Google Scholar] [CrossRef]
- Adolph, S.; Fuhrmann, H.; Schumann, J. Unsaturated Fatty Acids Promote the Phagocytosis of P. Aeruginosa and R. Equi by RAW264.7 Macrophages. Curr. Microbiol. 2012, 65, 649–655. [Google Scholar] [CrossRef]
- Ambrozova, G.; Pekarova, M.; Lojek, A. Effect of Polyunsaturated Fatty Acids on the Reactive Oxygen and Nitrogen Species Production by Raw 264.7 Macrophages. Eur. J. Nutr. 2010, 49, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.A.; Wold, A.E.; Sandberg, A.-S.; Östman, S.M. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro. PLoS ONE 2015, 10, e0143741. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, H.; Miles, E.A.; West, A.L.; Calder, P.C. Membrane Fatty Acids, Oxidative Burst and Phagocytosis after Enrichment of P388D1 Monocyte/Macrophages with Essential 18-Carbon Fatty Acids. Ann. Nutr. Metab. 2007, 51, 155–162. [Google Scholar] [CrossRef]
- Schaeffer, L.; Gohlke, H.; Müller, M.; Heid, I.M.; Palmer, L.J.; Kompauer, I.; Demmelmair, H.; Illig, T.; Koletzko, B.; Heinrich, J. Common Genetic Variants of the FADS1 FADS2 Gene Cluster and Their Reconstructed Haplotypes Are Associated with the Fatty Acid Composition in Phospholipids. Hum. Mol. Genet. 2006, 15, 1745–1756. [Google Scholar] [CrossRef]
- Moltó-Puigmartí, C.; Plat, J.; Mensink, R.P.; Müller, A.; Jansen, E.; Zeegers, M.P.; Thijs, C. FADS1 FADS2 Gene Variants Modify the Association between Fish Intake and the Docosahexaenoic Acid Proportions in Human Milk. Am. J. Clin. Nutr. 2010, 91, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Rzehak, P.; Heinrich, J.; Klopp, N.; Schaeffer, L.; Hoff, S.; Wolfram, G.; Illig, T.; Linseisen, J. Evidence for an Association between Genetic Variants of the Fatty Acid Desaturase 1 Fatty Acid Desaturase 2 ( FADS1 FADS2) Gene Cluster and the Fatty Acid Composition of Erythrocyte Membranes. Br. J. Nutr. 2009, 101, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Innis, S.M. Genetic Variants of the FADS1 FADS2 Gene Cluster Are Associated with Altered (n-6) and (n-3) Essential Fatty Acids in Plasma and Erythrocyte Phospholipids in Women during Pregnancy and in Breast Milk during Lactation. J. Nutr. 2008, 138, 2222–2228. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Shen, J.; Abecasis, G.R.; Kisialiou, A.; Ordovas, J.M.; Guralnik, J.M.; Singleton, A.; Bandinelli, S.; Cherubini, A.; Arnett, D.; et al. Genome-Wide Association Study of Plasma Polyunsaturated Fatty Acids in the InCHIANTI Study. PLoS Genet. 2009, 5, e1000338. [Google Scholar] [CrossRef] [Green Version]
- Rzehak, P.; Thijs, C.; Standl, M.; Mommers, M.; Glaser, C.; Jansen, E.; Klopp, N.; Koppelman, G.H.; Singmann, P.; Postma, D.S.; et al. Variants of the FADS1 FADS2 Gene Cluster, Blood Levels of Polyunsaturated Fatty Acids and Eczema in Children within the First 2 Years of Life. PLoS ONE 2010, 5, e13261. [Google Scholar] [CrossRef] [Green Version]
- Steer, C.D.; Hibbeln, J.R.; Golding, J.; Davey Smith, G. Polyunsaturated Fatty Acid Levels in Blood during Pregnancy, at Birth and at 7 Years: Their Associations with Two Common FADS2 Polymorphisms. Hum. Mol. Genet. 2012, 21, 1504–1512. [Google Scholar] [CrossRef] [Green Version]
- Tintle, N.L.; Pottala, J.V.; Lacey, S.; Ramachandran, V.; Westra, J.; Rogers, A.; Clark, J.; Olthoff, B.; Larson, M.; Harris, W.; et al. A Genome-Wide Association Study of Saturated, Mono- and Polyunsaturated Red Blood Cell Fatty Acids in the Framingham Heart Offspring Study. Prostaglandins Leukot. Essent. Fatty Acids 2015, 94, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Demirkan, A.; van Duijn, C.M.; Ugocsai, P.; Isaacs, A.; Pramstaller, P.P.; Liebisch, G.; Wilson, J.F.; Johansson, Å.; Rudan, I.; Aulchenko, Y.S.; et al. Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations. PLoS Genet. 2012, 8, e1002490. [Google Scholar] [CrossRef] [Green Version]
- Barman, M.; Nilsson, S.; Torinsson Naluai, Å.; Sandin, A.; Wold, A.E.; Sandberg, A.-S. Single Nucleotide Polymorphisms in the FADS Gene Cluster but Not the ELOVL2 Gene Are Associated with Serum Polyunsaturated Fatty Acid Composition and Development of Allergy (in a Swedish Birth Cohort). Nutrients 2015, 7, 10100–10115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, M.C.; McSorley, E.M.; Mulhern, M.S.; Strain, J.J.; van Wijngaarden, E.; Yeates, A.J. Influence of Fatty Acid Desaturase (FADS) Genotype on Maternal and Child Polyunsaturated Fatty Acids (PUFA) Status and Child Health Outcomes: A Systematic Review. Nutr. Rev. 2020, 78, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.H.; O’Connor, T.G.; Roth, C.; Susser, E.; Bjørke-Monsen, A.-L. The Influence of Maternal Prenatal and Early Childhood Nutrition and Maternal Prenatal Stress on Offspring Immune System Development and Neurodevelopmental Disorders. Front. Neurosci. 2013, 7, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Wang, Z.; Li, J. Progress on the Protective Effects of Maternal Fatty Acid Supplementation on Infant Asthma Risk: A Narrative Review. Ann. Palliat. Med. 2021, 10, 2323–2330. [Google Scholar] [CrossRef]
- Furuhjelm, C.; Warstedt, K.; Larsson, J.; Fredriksson, M.; Böttcher, M.F.; Fälth-Magnusson, K.; Duchén, K. Fish Oil Supplementation in Pregnancy and Lactation May Decrease the Risk of Infant Allergy. Acta. Paediatr. 2009, 98, 1461–1467. [Google Scholar] [CrossRef]
- Palmer, D.J.; Sullivan, T.; Gold, M.S.; Prescott, S.L.; Heddle, R.; Gibson, R.A.; Makrides, M. Effect of N-3 Long Chain Polyunsaturated Fatty Acid Supplementation in Pregnancy on Infants’ Allergies in First Year of Life: Randomised Controlled Trial. BMJ 2012, 344, e184. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D.J.; Sullivan, T.; Gold, M.S.; Prescott, S.L.; Heddle, R.; Gibson, R.A.; Makrides, M. Randomized Controlled Trial of Fish Oil Supplementation in Pregnancy on Childhood Allergies. Allergy 2013, 68, 1370–1376. [Google Scholar] [CrossRef]
- Gunaratne, A.W.; Makrides, M.; Collins, C.T. Maternal Prenatal and/or Postnatal n-3 Long Chain Polyunsaturated Fatty Acids (LCPUFA) Supplementation for Preventing Allergies in Early Childhood. Cochrane Database Syst. Rev. 2015, CD010085. [Google Scholar] [CrossRef]
- Best, K.P.; Gold, M.; Kennedy, D.; Martin, J.; Makrides, M. Omega-3 Long-Chain PUFA Intake during Pregnancy and Allergic Disease Outcomes in the Offspring: A Systematic Review and Meta-Analysis of Observational Studies and Randomized Controlled Trials. Am. J. Clin. Nutr. 2016, 103, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.-Q.; Liu, B.; Li, J.; Luo, C.-Q.; Zhang, Q.; Chen, J.-L.; Sinha, A.; Li, Z.-Y. Fish Intake during Pregnancy or Infancy and Allergic Outcomes in Children: A Systematic Review and Meta-Analysis. Pediatr. Allergy. Immunol. 2017, 28, 152–161. [Google Scholar] [CrossRef]
- Venter, C.; Agostoni, C.; Arshad, S.H.; Ben-Abdallah, M.; Du Toit, G.; Fleischer, D.M.; Greenhawt, M.; Glueck, D.H.; Groetch, M.; Lunjani, N.; et al. Dietary Factors during Pregnancy and Atopic Outcomes in Childhood: A Systematic Review from the European Academy of Allergy and Clinical Immunology. Pediatr. Allergy Immunol. 2020, 31, 889–912. [Google Scholar] [CrossRef]
- Dunstan, J.A.; Mori, T.A.; Barden, A.; Beilin, L.J.; Taylor, A.L.; Holt, P.G.; Prescott, S.L. Fish Oil Supplementation in Pregnancy Modifies Neonatal Allergen-Specific Immune Responses and Clinical Outcomes in Infants at High Risk of Atopy: A Randomized, Controlled Trial. J. Allergy Clin. Immunol. 2003, 112, 1178–1184. [Google Scholar] [CrossRef]
- Manley, B.J.; Makrides, M.; Collins, C.T.; McPhee, A.J.; Gibson, R.A.; Ryan, P.; Sullivan, T.R.; Davis, P.G.; DINO Steering Committee. High-Dose Docosahexaenoic Acid Supplementation of Preterm Infants: Respiratory and Allergy Outcomes. Pediatrics 2011, 128, e71–e77. [Google Scholar] [CrossRef]
- Furuhjelm, C.; Warstedt, K.; Fagerås, M.; Fälth-Magnusson, K.; Larsson, J.; Fredriksson, M.; Duchén, K. Allergic Disease in Infants up to 2 Years of Age in Relation to Plasma Omega-3 Fatty Acids and Maternal Fish Oil Supplementation in Pregnancy and Lactation. Pediatr. Allergy Immunol. 2011, 22, 505–514. [Google Scholar] [CrossRef] [Green Version]
- D’Vaz, N.; Meldrum, S.J.; Dunstan, J.A.; Martino, D.; McCarthy, S.; Metcalfe, J.; Tulic, M.K.; Mori, T.A.; Prescott, S.L. Postnatal Fish Oil Supplementation in High-Risk Infants to Prevent Allergy: Randomized Controlled Trial. Pediatrics 2012, 130, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Best, K.P.; Sullivan, T.R.; Palmer, D.J.; Gold, M.; Martin, J.; Kennedy, D.; Makrides, M. Prenatal Omega-3 LCPUFA and Symptoms of Allergic Disease and Sensitization throughout Early Childhood - a Longitudinal Analysis of Long-Term Follow-up of a Randomized Controlled Trial. World Allergy Organ J. 2018, 11, 10. [Google Scholar] [CrossRef]
- Ellul, S.; Marx, W.; Collier, F.; Saffery, R.; Tang, M.; Burgner, D.; Carlin, J.; Vuillermin, P.; Ponsonby, A.-L.; Barwon Infant Study Investigator Group. Plasma Metabolomic Profiles Associated with Infant Food Allergy with Further Consideration of Other Early Life Factors. Prostaglandins Leukot. Essent. Fatty Acids 2020, 159, 102099. [Google Scholar] [CrossRef]
- Hong, X.; Liang, L.; Sun, Q.; Keet, C.A.; Tsai, H.-J.; Ji, Y.; Wang, G.; Ji, H.; Clish, C.; Pearson, C.; et al. Maternal Triacylglycerol Signature and Risk of Food Allergy in Offspring. J. Allergy Clin. Immunol. 2019, 144, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Kremmyda, L.-S.; Vlachava, M.; Noakes, P.S.; Miles, E.A. Is There a Role for Fatty Acids in Early Life Programming of the Immune System? Proc. Nutr. Soc. 2010, 69, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Prescott, S.L.; Dunstan, J.A. Prenatal Fatty Acid Status and Immune Development: The Pathways and the Evidence. Lipids 2007, 42, 801–810. [Google Scholar] [CrossRef]
- Krauss-Etschmann, S.; Hartl, D.; Rzehak, P.; Heinrich, J.; Shadid, R.; Del Carmen Ramírez-Tortosa, M.; Campoy, C.; Pardillo, S.; Schendel, D.J.; Decsi, T.; et al. Decreased Cord Blood IL-4, IL-13, and CCR4 and Increased TGF-Beta Levels after Fish Oil Supplementation of Pregnant Women. J. Allergy Clin. Immunol. 2008, 121, 464–470.e6. [Google Scholar] [CrossRef]
- D’Auria, E.; Peroni, D.G.; Sartorio, M.U.A.; Verduci, E.; Zuccotti, G.V.; Venter, C. The Role of Diet Diversity and Diet Indices on Allergy Outcomes. Front. Pediatr. 2020, 8, 545. [Google Scholar] [CrossRef]
- Shek, L.P.; Chong, M.F.-F.; Lim, J.Y.; Soh, S.-E.; Chong, Y.-S. Role of Dietary Long-Chain Polyunsaturated Fatty Acids in Infant Allergies and Respiratory Diseases. Clin. Dev. Immunol. 2012, 2012, 730568. [Google Scholar] [CrossRef] [Green Version]
- Muley, P.; Shah, M.; Muley, A. Omega-3 Fatty Acids Supplementation in Children to Prevent Asthma: Is It Worthy?-A Systematic Review and Meta-Analysis. J. Allergy 2015, 2015, 312052. [Google Scholar] [CrossRef] [Green Version]
- Marks, G.B.; Mihrshahi, S.; Kemp, A.S.; Tovey, E.R.; Webb, K.; Almqvist, C.; Ampon, R.D.; Crisafulli, D.; Belousova, E.G.; Mellis, C.M.; et al. Prevention of Asthma during the First 5 Years of Life: A Randomized Controlled Trial. J. Allergy Clin. Immunol. 2006, 118, 53–61. [Google Scholar] [CrossRef]
- Birch, E.E.; Khoury, J.C.; Berseth, C.L.; Castañeda, Y.S.; Couch, J.M.; Bean, J.; Tamer, R.; Harris, C.L.; Mitmesser, S.H.; Scalabrin, D.M. The Impact of Early Nutrition on Incidence of Allergic Manifestations and Common Respiratory Illnesses in Children. J. Pediatr. 2010, 156, 902–906.e1. [Google Scholar] [CrossRef]
- Foiles, A.M.; Kerling, E.H.; Wick, J.A.; Scalabrin, D.M.F.; Colombo, J.; Carlson, S.E. Formula with Long-Chain Polyunsaturated Fatty Acids Reduces Incidence of Allergy in Early Childhood. Pediatr. Allergy Immunol. 2016, 27, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Clausen, M.; Jonasson, K.; Keil, T.; Beyer, K.; Sigurdardottir, S.T. Fish Oil in Infancy Protects against Food Allergy in Iceland-Results from a Birth Cohort Study. Allergy 2018, 73, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
EPA (g/100 g) | DHA (g/100 g) |
---|---|
Herring 1.09 g Salmon 0.89 g Tuna 0.80 g Grey mullet 0.76 g Mackerel 0.73 g | Tuna 2.15 g Grouper 1.45 g Mackerel 1.26 g Salmon 1.19 g Sardines 1.16 g Herring 1.01 g Swordfish 0.56 g |
AI | RI | ||
---|---|---|---|
Infants (6–12 months) | PUFAs | - | |
ω-6 PUFAs | - | ||
ω-3 PUFAs (total) | - | ||
EPA-DHA | DHA 100 mg/day from 7 months | ||
Children and adolescents (1–17 years) | PUFAs | - | |
ω-6 PUFAs | - | ||
ω-3 PUFAs (total) | Total: - ALA: 0.5% En (from 2 years) | ||
EPA-DHA | DHA 100 mg/day until 2 years EPA + DHA 250 mg/day from 2 years | ||
Pregnant and lactating women | PUFAs | - | |
ω-6 PUFAs | - | ||
ω-3 PUFAs (total) | Total: - ALA: 0.5% En | ||
EPA + DHA 250 mg/day + DHA 100–200 mg/day |
Reference | Subjects and Number | Supplementation | Time | Outcome | Results |
---|---|---|---|---|---|
Dunstan JA, et al. J Allergy Clin Immunol. 2003 [75] | 40 atopic pregnant women | Fish oil group: 4 (1-g) fish oil capsules per day comprising a total of 3.7 g of ω-3 PUFAs with 56.0% as DHA and 27.7% as EPA. Control group: 4 (1-g) capsules of olive oil per day (containing 66.6% n-9 oleic acid and <1% ω-3 PUFAs) | From 20 weeks gestation until delivery | Neonatal PUFAs levels and immunologic response to allergens at birth and clinical evaluation at 12 months of age as a secondary outcome | All neonatal cytokine responses to all allergens tended to be lower in the fish oil group; infants in the fish oil group were three times less likely to be sensitized to egg allergen at 1 year of age |
Furuhjelm C, et al. Acta Paediatr. 2009 [68] | 145 pregnant women, affected by allergy themselves or having a husband or previous child with allergies | Daily supplementation with either 1.6 g EPA and 1.1 g DHA or placebo | From the 25(th) gestational week to average 3–4 months of breastfeeding | The incidence of allergic disease in the first year of infants’ life | Reduction of the FA risk and IgE-associated eczema during the first year of life |
Manley BJ, et al. Pediatrics. 2011 [76] | 657 breastfed preterm infants (<33 weeks’ gestation) | Mothers taking either tuna oil (high-DHA diet, ∼1% total fatty acids) or soy oil (standard-DHA, ∼0.3% total fatty acids) capsules | From 2–4 days of postnatal age until 40 weeks postmenstrual age | Incidence of bronchopulmonary dysplasia and parental reporting of atopic conditions over the first 18 months of life | No effect on the incidence of parental reported FA |
Furuhjelm C, et al. PediatrAllergyImmunol. 2011 [77] | 145 pregnant women, affected by allergy themselves or having a husband or previous child with allergies | Daily supplementation with either 1.6 g EPA and 1.1 g DHA or placebo | From the 25(th) gestational week to average 3–4 months of breastfeeding | IgE-associated diseases last up to 2 years of age and assess the relationship between plasma proportions of ω-3 PUFAs and the frequency and severity of infant allergic disease | Decrease in cumulative incidence of IgE-associated disease; high proportions of DHA and EPA in maternal and infant plasma phospholipids were associated with less IgE-associated disease and a reduced severity of the allergic phenotype |
Palmer DJ, et al. BMJ. 2012 [69] | 706 pregnant women with a fetus at high risk of allergic disease | Fish oil capsules (providing 900 mg of ω-3 PUFAs daily) or matched vegetable oil capsules without ω-3 PUFAs (control group) | From 21 weeks gestation until delivery | IgE associated allergic disease (eczema or FA with sensitisation) at 1 year of age | No reduction in the overall incidence of IgE associated allergies; lower atopic eczema and egg sensitisation |
D’Vaz N, et al. Pediatrics. 2012 [78] | 420 infants at high atopic risk | Daily supplement of fish oil containing 280 mg DHA and 110 mg EPA or a control (olive oil) | From birth to age 6 months | Occurrence of allergic outcomes including sensitization, eczema, asthma, or FA | No effects in the prevention of childhood allergic disease |
Best KP, et al. World Allergy Organ J. 2018 [79] | 706 pregnant women with a fetus at high risk of allergic disease | Fish oil capsules (providing 900 mg of ω-3 PUFAs daily) or matched vegetable oil capsules without ω-3 PUFAs (control group) | From 21 weeks gestation until delivery | IgE associated allergic disease (eczema or FA with sensitisation) at 3 and 6 years of age | No significant effects on IgE-mediated allergic disease symptoms or sensitization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sartorio, M.U.A.; Pendezza, E.; Coppola, S.; Paparo, L.; D’Auria, E.; Zuccotti, G.V.; Berni Canani, R. Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients 2022, 14, 152. https://doi.org/10.3390/nu14010152
Sartorio MUA, Pendezza E, Coppola S, Paparo L, D’Auria E, Zuccotti GV, Berni Canani R. Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients. 2022; 14(1):152. https://doi.org/10.3390/nu14010152
Chicago/Turabian StyleSartorio, Marco Ugo Andrea, Erica Pendezza, Serena Coppola, Lorella Paparo, Enza D’Auria, Gian Vincenzo Zuccotti, and Roberto Berni Canani. 2022. "Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy" Nutrients 14, no. 1: 152. https://doi.org/10.3390/nu14010152
APA StyleSartorio, M. U. A., Pendezza, E., Coppola, S., Paparo, L., D’Auria, E., Zuccotti, G. V., & Berni Canani, R. (2022). Potential Role of Omega-3 Polyunsaturated Fatty Acids in Pediatric Food Allergy. Nutrients, 14(1), 152. https://doi.org/10.3390/nu14010152