Does Route of Full Feeding Affect Outcome among Ventilated Critically Ill COVID-19 Patients: A Prospective Observational Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design
2.3. Feeding Practices
2.4. Outcome
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APACHE | Acute Physiology And Chronic Health Evaluation |
BMI | Body mass index |
ICU | Intensive care unit |
LOS | Length of stay |
NST | Nutrition Support Team |
Nutric Score | Nutrition Risk in the Critically Il |
PEEP | Positive end expiratory pressure |
RR | Relative risk |
References
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Dittrich, S.; et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst. Rev. 2020, 7, Cd013665. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Krznaric, Z.; Nitzan, D.; Pirlich, M.; Singer, P. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin. Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Whittle, J.; Molinger, J.; MacLeod, D.; Haines, K.; Wischmeyer, P.E. Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients with COVID-19. Crit. Care 2020, 24, 581. [Google Scholar] [CrossRef]
- Karayiannis, D.; Maragkouti, A.; Mikropoulos, T.; Sarri, A.; Kanavou, A.; Katsagoni, C.; Jahaj, E.; Kotanidou, A.; Mastora, Z. Neuromuscular blockade administration is associated with altered energy expenditure in critically ill intubated patients with COVID-19. Clin. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; McClave, S.A.; Taylor, B.E.; Patel, J.; Omer, E.; Martindale, R.G. Barriers to nutrition therapy in the critically ill patient with COVID-19. J. Parenter. Enteral Nutr. 2021. [Google Scholar] [CrossRef]
- Vekaria, B.; Overton, C.; Wiśniowski, A.; Ahmad, S.; Aparicio-Castro, A.; Curran-Sebastian, J.; Eddleston, J.; Hanley, N.A.; House, T.; Kim, J.; et al. Hospital length of stay for COVID-19 patients: Data-driven methods for forward planning. BMC Infect. Dis. 2021, 21, 700. [Google Scholar] [CrossRef]
- Achamrah, N.; Delsoglio, M.; De Waele, E.; Berger, M.M.; Pichard, C. Indirect calorimetry: The 6 main issues. Clin. Nutr. 2021, 40, 4–14. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Sweetman, E.A.; Finfer, S.R.; Cooper, D.J.; Heighes, P.T.; Davies, A.R.; O’Leary, M.; Solano, T.; Peake, S. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: A randomized controlled trial. JAMA 2013, 309, 2130–2138. [Google Scholar] [CrossRef] [Green Version]
- Martindale, R.; Patel, J.J.; Taylor, B.; Arabi, Y.M.; Warren, M.; McClave, S.A. Nutrition Therapy in Critically Ill Patients With Coronavirus Disease 2019. J. Parenter. Enteral Nutr. 2020, 44, 1174–1184. [Google Scholar] [CrossRef] [PubMed]
- Chapple, L.S.; Fetterplace, K.; Asrani, V.; Burrell, A.; Cheng, A.C.; Collins, P.; Doola, R.; Ferrie, S.; Marshall, A.P.; Ridley, E.J. Nutrition management for critically and acutely unwell hospitalised patients with coronavirus disease 2019 (COVID-19) in Australia and New Zealand. Aust. Crit. Care 2020, 33, 399–406. [Google Scholar] [CrossRef]
- Preiser, J.C.; van Zanten, A.R.; Berger, M.M.; Biolo, G.; Casaer, M.P.; Doig, G.S.; Griffiths, R.D.; Heyland, D.K.; Hiesmayr, M.; Iapichino, G.; et al. Metabolic and nutritional support of critically ill patients: Consensus and controversies. Crit. Care 2015, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Reignier, J.; Boisramé-Helms, J.; Brisard, L.; Lascarrou, J.B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Jeejeebhoy, K.N. Enteral nutrition versus parenteral nutrition--the risks and benefits. Nat. Clin. Pract. Gastroenterol. Hepatol. 2007, 4, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Chapple, L.S.; Tatucu-Babet, O.A.; Lambell, K.J.; Fetterplace, K.; Ridley, E.J. Nutrition guidelines for critically ill adults admitted with COVID-19: Is there consensus? Clin. Nutr. ESPEN 2021, 44, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.R.; Schofield-Robinson, O.J.; Alderson, P.; Smith, A.F. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst. Rev. 2018, 6, Cd012276. [Google Scholar] [CrossRef]
- Hill, A.; Elke, G.; Weimann, A. Nutrition in the Intensive Care Unit-A Narrative Review. Nutrients 2021, 13, 2851. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.E.; Parrott, F.; Harrison, D.A.; Bear, D.E.; Segaran, E.; Beale, R.; Bellingan, G.; Leonard, R.; Mythen, M.G.; Rowan, K.M. Trial of the route of early nutritional support in critically ill adults. N. Engl. J. Med. 2014, 371, 1673–1684. [Google Scholar] [CrossRef]
- Rives-Lange, C.; Zimmer, A.; Merazka, A.; Carette, C.; Martins-Bexinga, A.; Hauw-Berlemont, C.; Guerot, E.; Jannot, A.S.; Diehl, J.L.; Czernichow, S.; et al. Evolution of the nutritional status of COVID-19 critically-ill patients: A prospective observational study from ICU admission to three months after ICU discharge. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Lakenman, P.L.M.; van der Hoven, B.; Schuijs, J.M.; Eveleens, R.D.; van Bommel, J.; Olieman, J.F.; Joosten, K.F.M. Energy expenditure and feeding practices and tolerance during the acute and late phase of critically ill COVID-19 patients. Clin. Nutr. ESPEN 2021, 43, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Alves, T.; Guimarães, R.S.; Souza, S.F.; Brandão, N.A.; Daltro, C.; Conceição-Machado, M.E.P.; Oliveira, L.P.M.; Cunha, C.M. Influence of nutritional assistance on mortality by COVID-19 in critically ill patients. Clin. Nutr. ESPEN 2021, 44, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Ke, L.; Doig, G.S.; Ye, B.; Jiang, Z.; Liu, Z.; Guo, F.; Yin, J.; Yu, W.; Sun, J.; et al. Nutritional practice in critically ill COVID-19 patients: A multicenter ambidirectional cohort study in Wuhan and Jingzhou. Asia Pac. J. Clin. Nutr. 2021, 30, 15–21. [Google Scholar] [CrossRef]
- Liu, R.; Paz, M.; Siraj, L.; Boyd, T.; Salamone, S.; Lite, T.V.; Leung, K.M.; Chirinos, J.D.; Shang, H.H.; Townsend, M.J.; et al. Feeding intolerance in critically ill patients with COVID-19. Clin. Nutr. 2021. [CrossRef]
- Osuna-Padilla, I.; Rodríguez-Moguel, N.C.; Aguilar-Vargas, A.; Rodríguez-Llamazares, S. Safety and tolerance of enteral nutrition in COVID-19 critically ill patients, a retrospective study. Clin. Nutr. ESPEN 2021, 43, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Miguélez, M.; Velasco, C.; Camblor, M.; Cedeño, J.; Serrano, C.; Bretón, I.; Arhip, L.; Motilla, M.; Carrascal, M.L.; Morales, A.; et al. Nutritional management and clinical outcome of critically ill patients with COVID-19: A retrospective study in a tertiary hospital. Clin. Nutr. 2021. [Google Scholar] [CrossRef]
- Nakamura, K.; Liu, K.; Katsukawa, H.; Nydahl, P.; Ely, E.W.; Kudchadkar, S.R.; Inoue, S.; Lefor, A.K.; Nishida, O. Nutrition therapy in the intensive care unit during the COVID-19 pandemic: Findings from the ISIIC point prevalence study. Clin. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Hong, J.; Na, E.M.; Doo, S.; Jung, Y.T. Early supplemental parenteral nutrition is associated with reduced mortality in critically ill surgical patients with high nutritional risk. Clin. Nutr. 2021, 40, 5678–5683. [Google Scholar] [CrossRef] [PubMed]
- Hise, M.E.; Halterman, K.; Gajewski, B.J.; Parkhurst, M.; Moncure, M.; Brown, J.C. Feeding practices of severely ill intensive care unit patients: An evaluation of energy sources and clinical outcomes. J. Am. Diet. Assoc. 2007, 107, 458–465. [Google Scholar] [CrossRef]
- Stahel, P.F.; Flierl, M.A.; Moore, E.E. “Metabolic staging” after major trauma—A guide for clinical decision making? Scand J. Trauma Resusc. Emerg. Med. 2010, 18, 34. [Google Scholar] [CrossRef] [Green Version]
- Herbert, G.; Perry, R.; Andersen, H.K.; Atkinson, C.; Penfold, C.; Lewis, S.J.; Ness, A.R.; Thomas, S. Early enteral nutrition within 24 hours of lower gastrointestinal surgery versus later commencement for length of hospital stay and postoperative complications. Cochrane Database Syst. Rev. 2018, 10, Cd004080. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.; Hoffman, L. Enteral Nutrition in the Mechanically Ventilated Patient. Nutr. Clin. Pract. 2019, 34, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Altintas, N.D.; Aydin, K.; Türkoğlu, M.A.; Abbasoğlu, O.; Topeli, A. Effect of enteral versus parenteral nutrition on outcome of medical patients requiring mechanical ventilation. Nutr. Clin. Pract. 2011, 26, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Reid, C. Frequency of under- and overfeeding in mechanically ventilated ICU patients: Causes and possible consequences. J. Hum. Nutr. Diet. 2006, 19, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K. Parenteral Nutrition-Associated Liver Disease. Clin. Liver Dis. 2020, 15, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Żalikowska-Gardocka, M.; Przybyłkowski, A. Review of parenteral nutrition-associated liver disease. Clin. Exp. Hepatol. 2020, 6, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kumpf, V.J.; Gervasio, J. Complications of parenteral nutrition. In The ASPEN Adult Nutrition Support Core Curriculum, 3rd ed.; Mueller, C.M., Ed.; American Society of Parenteral and Enteral Nutrition: Silver Spring, MD, USA, 2017; pp. 352–355. [Google Scholar]
Characteristics | Parenteral Nutrition Group n = 45 (27.7%) | Enteral Nutrition Group n = 117 (72.3%) | p-Value |
---|---|---|---|
Age (year) | 62.7 ± 10.7 | 63.2 ± 11.9 | 0.181 |
Sex, male (n) % | 21 (46.6) | 62 (52.9) | 0.093 |
Active Smoker (n)% | 9 (20.0) | 21 (17.8) | 0.233 |
Comorbidities, (n) % | 0.112 | ||
Hypertension | 23(51.1) | 62 (52.9) | |
Diabetes | 21 (46.6) | 52 (44.4) | |
COPD | 7 (15.5) | 16 (13.6) | |
Chronic Renal Failure | 2 (4.4) | 3 (2.5) | |
Nutritional data | |||
BMI on admission, (kg/m2), (n) % | 0.233 | ||
Normal (18.5–24.9) | 16 (36.2) | 45 (38.5) | |
Overweight (25–29.9) | 12 (26.6) | 31 (26.4) | |
Obese (≥30) | 14 (31.1) | 41 (35.0) | |
NUTRIC Score on admission, (n) % | 0.046 * | ||
Low risk (0–4 points) | 21 (46.7) | 15 (59.7) | |
High risk (5–9 points) | 24 (53.3) | 57 (40.3) | |
Fluid balance (mL/day) | 1250 ± 215 | 1015 ± 188 | |
Coverage of energy need during 7–14th day of ICU stay (n) % | 89.1 | 86.5 | 0.076 |
Protein delivered during ICU (g/kg ideal body weight/day) | 1.09 ± 0.61 | 1.17 ± 0.68 | 0.122 |
Time from ICU admission to start nutrition (IQR)—h | 17.8 (13.4–27.2) | 22.3 (15.2–31.2) | 0.041 * |
Calories administered—kcal/kg of body weight/day | 27.8 ± 7.8 | 26.3 ± 6.9 | 0.098 |
Clinical Data | |||
APACHE II score on admission | 18.3 ± 6.8 | 17.1 ± 6.2 | 0.249 |
Use of prone positioning, n (%) | 26 (58.4) | 67 (57.2) | 0.135 |
PaO2/FiO2 ratio (mmHg) | 126 (92-170) | 128 (96–171) | 0.338 |
Serum albumin g/L | 3.16 ± 0.80 | 3.05 ± 0.96 | 0.224 |
Vasopressor therapy, n (%) | 33 (73.3) | 83 (70.9) | 0.336 |
Side effects, n (%) | 0.039 * | ||
Electrolyte disturbances | 2 (4.4) | 1 (0.8%) | |
Vomiting | 10 (22.1) | 37 (31.6%) | |
Diarrhea | 13 (29.2) | 43 (36.7%) | |
Hypoglycemia | - | - | |
Other (cholestasis, pneumothorax) | 1 (1.2) | - |
Outcome | Parenteral Nutrition Group (n = 45) | Enteral Nutrition Group (n = 117) | Relative Risk (95% CI) # | p-Value |
---|---|---|---|---|
Primary | ||||
Death within 30 days, n (%) | 15 (33.3) | 38 (32.4) | 0.97 (0.88–1.06) | 0.120 |
Secondary | ||||
Death, n (%) | ||||
In-hospital mortality, | 14 (31.1%) | 36(30.7%) | 0.98 (0.86–1.10) | 0.132 |
ICU mortality, | 17 (37.9%) | 43 (36.7%) | 0.96 (0.85–1.08) | 0.124 |
60-day mortality | 16 (35.5%) | 41 (35%) | 0.97 (0.82–1.10) | 0.233 |
Hospital length of stay (days) | 35 (7–59) | 30 (8–52) | 0.92 (0.86–0.98) | 0.039 * |
ICU length of stay (days) | 23 (6–51) | 21 (7–49) | 0.98 (0.90–1.06) | 0.078 |
Ventilator days (30-day study period only) | 21 (6–28) | 17 (6–24) | 0.94 (0.89–0.99) | 0.043 * |
Days on RRT (30-day study period only) | 17 (5–28) | 18 (6–29) | 0.98 (0.89–1.07) | 0.180 |
Kidney failure requiring RRT | 13 (28.8%) | 34 (29.1%) | 0.95 (0.81–1.09) | 0.337 |
Tracheostomy, n (%) | 11 (24.4%) | 29 (24.7%) | 0.96 (0.83–1.09) | 0.197 |
ICU acquired Infections, n (%) | 7 (15.5%) | 20 (17.1%) | 0.89(0.72–1.06) | 0.221 |
Septic shock, n (%) | 30 (66.6%) | 75 (64.1%) | 0.94 (0.86–1.02) | 0.063 |
Elevated liver enzymes | 13 (28.8%) | 17 (14.5%) | 0.91 (0.85–0.97) | 0.022 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karayiannis, D.; Kakavas, S.; Sarri, A.; Giannopoulou, V.; Liakopoulou, C.; Jahaj, E.; Kanavou, A.; Pitsolis, T.; Malachias, S.; Adamos, G.; et al. Does Route of Full Feeding Affect Outcome among Ventilated Critically Ill COVID-19 Patients: A Prospective Observational Study. Nutrients 2022, 14, 153. https://doi.org/10.3390/nu14010153
Karayiannis D, Kakavas S, Sarri A, Giannopoulou V, Liakopoulou C, Jahaj E, Kanavou A, Pitsolis T, Malachias S, Adamos G, et al. Does Route of Full Feeding Affect Outcome among Ventilated Critically Ill COVID-19 Patients: A Prospective Observational Study. Nutrients. 2022; 14(1):153. https://doi.org/10.3390/nu14010153
Chicago/Turabian StyleKarayiannis, Dimitrios, Sotirios Kakavas, Aikaterini Sarri, Vassiliki Giannopoulou, Christina Liakopoulou, Edison Jahaj, Aggeliki Kanavou, Thodoris Pitsolis, Sotirios Malachias, George Adamos, and et al. 2022. "Does Route of Full Feeding Affect Outcome among Ventilated Critically Ill COVID-19 Patients: A Prospective Observational Study" Nutrients 14, no. 1: 153. https://doi.org/10.3390/nu14010153
APA StyleKarayiannis, D., Kakavas, S., Sarri, A., Giannopoulou, V., Liakopoulou, C., Jahaj, E., Kanavou, A., Pitsolis, T., Malachias, S., Adamos, G., Mantelou, A., Almperti, A., Morogianni, K., Kampouropoulou, O., Kotanidou, A., & Mastora, Z. (2022). Does Route of Full Feeding Affect Outcome among Ventilated Critically Ill COVID-19 Patients: A Prospective Observational Study. Nutrients, 14(1), 153. https://doi.org/10.3390/nu14010153