Anticholinergic Load Is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. ADL Measurements
2.4. Outcome
2.5. Statistical Analysis
2.6. Institutional Review Board Statement
3. Results
3.1. Descriptive and Univariate Analyses
3.2. Multiple Linear Regression Analysis
3.3. The Ratio of Anticholinergic Prescriptions at Admission and Discharge
3.4. Subgroup Analysis of FOIS at Discharge
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martino, R.; Foley, N.; Bhogal, S.; Diamant, N.; Speechley, M. Dysphagia after stroke: Incidence, diagnosis, and pulmonary complications. Stroke 2005, 36, 2756–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barer, D.H. The natural history and functional consequences of dysphagia after hemispheric stroke. J. Neurol. Neurosurg. Psychiatry 1989, 52, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.C.; Martin, R.E.; Salter, K.L.; Teasell, R.W. A review of the relationship between dysphagia and malnutrition following stroke. J. Rehabil. Med. 2009, 41, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Takayama, M.; Nishioka, S.; Okamoto, T.; Urushihara, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H.; Hijioka, S.; Watanabe, M.; Sugawara, H.; et al. Multicenter survey of dysphagia and nutritional status of stroke patients in Kaifukuki (convalescent) rehabilitation wards. Jpn. J. Compr. Rehabil. Sci. 2018, 9, 11–21. [Google Scholar] [CrossRef]
- Miyai, I.; Sonoda, S.; Nagai, S.; Takayama, Y.; Inoue, Y.; Kakehi, A.; Kurihara, M.; Ishikawa, M. Results of new policies for inpatient rehabilitation coverage in Japan. Neurorehabil. Neural Repair 2011, 25, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Veldee, M.S.; Peth, L.D. Can protein-calorie malnutrition cause dysphagia? Dysphagia 1992, 7, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Hudson, H.M.; Daubert, C.R.; Mills, R.H. The interdependency of protein-energy malnutrition, aging, and dysphagia. Dysphagia 2000, 15, 31–38. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kuroda, R. Relationship between thinness and swallowing function in Japanese older adults: Implications for sarcopenic dysphagia. J. Am. Geriatr. Soc. 2012, 60, 1785–1786. [Google Scholar] [CrossRef]
- Fujishima, I.; Fujiu-Kurachi, M.; Arai, H.; Hyodo, M.; Kagaya, H.; Maeda, K.; Mori, T.; Nishioka, S.; Oshima, F.; Ogawa, S.; et al. Sarcopenia and dysphagia: Position paper by four professional organizations. Geriatr. Gerontol. Int. 2019, 19, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, R.W.; Gataric, G.; Swedlund, S.K.; Miller, J.R. Reducing the risk of adverse drug events in older adults. Am. Fam. Physician 2013, 87, 331–336. [Google Scholar]
- Kose, E.; Hirai, T.; Seki, T.; Yasuno, N. Anticholinergic load and nutritional status in older individuals. J. Nutr. Health Aging 2020, 24, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Andre, L.; Gallini, A.; Montastruc, F.; Coley, N.; Montastruc, J.L.; Vellas, B.; Andrieu, S.; Gardette, V.; MAPT/DSA study group. Anticholinergic exposure and cognitive decline in older adults: Effect of anticholinergic exposure definitions in a 3-year analysis of the multidomain Alzheimer preventive trial (MAPT) study. Br. J. Clin. Pharmacol. 2019, 85, 71–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999, 22, 273–280. [Google Scholar] [CrossRef]
- Rudolph, J.L.; Salow, M.J.; Angelini, M.C.; McGlinchey, R.E. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch. Intern. Med. 2008, 168, 508–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.H.; Wen, Y.W.; Chen, L.K.; Hsiao, F.Y. Effect of polypharmacy, potentially inappropriate medications and anticholinergic burden on clinical outcomes: A retrospective cohort study. CMAJ 2015, 187, E130–E137. [Google Scholar] [CrossRef] [Green Version]
- Kose, E.; Hirai, T.; Seki, T. Anticholinergic drugs use and risk of hip fracture in geriatric patients. Geriatr. Gerontol. Int. 2018, 18, 1340–1344. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T. Assessment of aspiration pneumonia using the anticholinergic risk scale. Geriatr. Gerontol. Int. 2018, 18, 1230–1235. [Google Scholar] [CrossRef]
- D'Alia, S.; Guarasci, F.; Bartucci, L.; Caloiero, R.; Guerrieri, M.L.; Soraci, L.; Colombo, D.; Crescibene, L.; Onder, G.; Volpato, S.; et al. Hand Grip Strength May Affect the Association Between Anticholinergic Burden and Mortality Among Older Patients Discharged from Hospital. Drugs Aging 2020, 37, 447–455. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.-P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric nutritional risk index: A new index for evaluating at-risk elderly medical patients. Am. J. Clin. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Ottenbacher, K.J.; Hsu, Y.; Granger, C.V.; Fiedler, R.C. The reliability of the functional independence measure: A quantitative review. Arch. Phys. Med. Rehabil. 1996, 77, 1226–1232. [Google Scholar] [CrossRef]
- Crary, M.A.; Mann, G.D.; Groher, M.E. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch. Phys. Med. Rehabil. 2005, 86, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Sargent, L.; Nalls, M.; Amella, E.J.; Mueller, M.; Lageman, S.K.; Bandinelli, S.; Colpo, M.; Slattum, P.W.; Singleton, A.; Ferrucci, F. Anticholinergic drug induced cognitive and physical impairment: Results from the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Rowan, M.T.; Edwards, S.; Noel-Storr, A.H.; McCleery, J.; Myint, P.K.; Soiza, R.; Stewart, C.; Loke, Y.K.; Quinn, T.J. Anticholinergic burden (prognostic factor) for prediction of dementia or cognitive decline in older adults with no known cognitive syndrome. Cochrane Database Syst. Rev. 2021, 5, CD013540. [Google Scholar] [CrossRef]
- Kose, E.; Hirai, T.; Seki, T.; Hidaka, S.; Hamamoto, T. Anticholinergic load negatively correlates with recovery of cognitive activities of daily living for geriatric patients after stroke in the convalescent stage. J. Clin. Pharm. Ther. 2018, 43, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Kose, E.; Hirai, T.; Seki, T. Psychotropic drug use and cognitive rehabilitation practice for elderly patients. Int. J. Clin. Pharm. 2018, 40, 1292–1299. [Google Scholar] [CrossRef]
- Nagamine, T. Serum substance P levels in patients with chronic schizophrenia treated with typical or atypical antipsychotics. Neuropsychiatr. Dis. Treat. 2008, 4, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Kose, E.; Uno, K.; Hayashi, H. Evaluation of the Expression Profile of Extrapyramidal Symptoms Due to Antipsychotics by Data Mining of Japanese Adverse Drug Event Report (JADER) Database. Yakugaku Zasshi 2017, 137, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, A.; Yoshimura, Y.; Wakabayashi, H.; Kose, E.; Nagano, F.; Bise, T.; Kido, Y.; Shimazu, S.; Shiraishi, A. Deprescribing leads to improved energy intake among hospitalized older sarcopenic adults with polypharmacy after stroke. Nutrients 2022, 14, 443. [Google Scholar] [CrossRef]
Characteristic | All Patients (n = 542) | ARS (+) (n = 164) | ARS (−) (n = 378) | p Value |
---|---|---|---|---|
Age (y) | 79 (73–85) | 80.5 (74–86) | 79 (73–84) | 0.0049 † |
Gender n, (%) | 0.2600 § | |||
Male | 201 (37.1) | 55 (33.5) | 146 (38.6) | |
Female | 341 (62.9) | 109 (66.5) | 234 (61.4) | |
Length of Stay (d) | 65.5 (47–86) | 65 (46.3–83) | 67 (48–87) | 0.2419 † |
BW (kg) | 50.7 (44.4–59) | 49.6 (44.3–58) | 51.6 (44.5–59.4) | 0.3782 † |
BMI (kg/m2) | 21.9 (19.3–24.5) | 21.9 (19.1–24.4) | 22 (19.4–24.6) | 0.9243 † |
Primary diagnosis n, (%) | 0.4875 § | |||
Cerebral infraction | 345 (63.7) | 105 (64) | 240 (63.5) | |
Intracerebral hemorrhage | 148 (27.3) | 41 (25) | 107 (28.3) | |
Subarachnoid hemorrhage | 49 (9) | 18 (11) | 31 (8.2) | |
Comorbidities n, (%) | ||||
Cardiac disease | 162 (29.9) | 56 (34.2) | 106 (28.0) | 0.1539 § |
Diabetes mellitus | 137 (25.3) | 42 (25.6) | 95 (25.1) | 0.9065 § |
Hypertension | 333 (61.4) | 99 (60.4) | 234 (61.9) | 0.7353 § |
Alzheimer’s disease | 40 (7.4) | 17 (10.4) | 23 (6.1) | 0.0799 § |
Parkinson’s disease | 21 (3.9) | 18 (11) | 3 (0.8) | <0.0001 § |
No. of drugs prescribed | 3 (1–6) | 2 (0–4) | 3 (1–6) | <0.0001 † |
FIM score (points) | ||||
FIM–T | 78 (57–97) | 65 (46–91.8) | 80 (64–99) | <0.0001 † |
FIM–M | 53.5 (39–67) | 46.5 (28.3–65) | 57 (42–67) | 0.0002 † |
FIM–C | 25 (18–31) | 22 (14–29) | 25 (19–31) | 0.0003 † |
FOIS score (points) | 6 (5–7) | 6 (5–7) | 6 (5–7) | 0.0592 † |
Clinical laboratory data | ||||
GNRI | 96.4 (83.7–104.5) | 93.9 (85.7–103.5) | 97.2 (80.9–104.8) | 0.7721 † |
CRP (mg/dL) | 0.2 (0.1–1.7) | 0.4 (0.1–2.6) | 0.2 (0.1–1.1) | 0.0067 † |
Characteristic | All Patients (n = 542) | ARS (+) (n = 164) | ARS (−) (n = 378) | p Value |
---|---|---|---|---|
FOIS score at discharge | 6 (5–7) | 5.5 (4–7) | 6 (5–7) | <0.0001 † |
Change in FOIS score | 0 (−1–1) | 0 (−2–1) | 0 (−1–1) | 0.0070 † |
Variable | β | SE | 95% CI of β | VIF | p Value | |
---|---|---|---|---|---|---|
Age | −0.008 | 0.010 | −0.029 | 0.014 | 1.261 | 0.3972 |
Gender (Male) | −0.065 | 0.072 | −0.207 | 0.077 | 1.091 | 0.3699 |
BMI | 0.052 | 0.024 | 0.004 | 0.100 | 2.195 | 0.0356 |
Alzheimer’s disease | −0.067 | 0.128 | −0.319 | 0.185 | 1.074 | 0.6001 |
Parkinson’s disease | 0.121 | 0.180 | −0.232 | 0.475 | 1.078 | 0.5013 |
Cerebral infarction | 0.072 | 0.104 | −0.132 | 0.276 | 1.048 | 0.4868 |
Intracerebral hemorrhage | 0.139 | 0.118 | −0.093 | 0.372 | 1.021 | 0.2402 |
Subarachnoid hemorrhage | Reference | |||||
Change in the ARS score | −0.118 | 0.049 | −0.214 | −0.022 | 1.093 | 0.0164 |
No. of drugs prescribed | −0.007 | 0.022 | −0.043 | 0.043 | 1.060 | 0.9973 |
FIM–T score | 0.018 | 0.003 | 0.012 | 0.024 | 1.239 | <0.0001 |
CRP | 0.003 | 0.018 | −0.033 | 0.040 | 1.133 | 0.8764 |
GNRI | −0.005 | 0.008 | −0.020 | 0.012 | 2.453 | 0.5793 |
Constant | 4.258 | 1.133 | 2.031 | 6.485 | 0.0002 |
Variable | FOIS Score at Discharge | p Value |
---|---|---|
Gender | ||
Male | 6 (4–7) | 0.3335 † |
Female | 6 (5–7) | |
Stroke subtype | ||
Cerebral infarction | 6 (5–7) | 0.2929 § |
Intracerebral hemorrhage | 6 (5–7) | |
Subarachnoid hemorrhage | 6 (4–7) | |
Change in the ARS score | ||
−1 point or more decrease a | 7 (6–7) | 0.0002 § |
0 point b | 6 (5–7) | |
1 point increase c | 6 (4–7) | |
2 points or more increase d | 5 (4–6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kose, E.; Hirai, T.; Seki, T.; Okudaira, M.; Yasuno, N. Anticholinergic Load Is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke. Nutrients 2022, 14, 2121. https://doi.org/10.3390/nu14102121
Kose E, Hirai T, Seki T, Okudaira M, Yasuno N. Anticholinergic Load Is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke. Nutrients. 2022; 14(10):2121. https://doi.org/10.3390/nu14102121
Chicago/Turabian StyleKose, Eiji, Toshiyuki Hirai, Toshiichi Seki, Michiyo Okudaira, and Nobuhiro Yasuno. 2022. "Anticholinergic Load Is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke" Nutrients 14, no. 10: 2121. https://doi.org/10.3390/nu14102121
APA StyleKose, E., Hirai, T., Seki, T., Okudaira, M., & Yasuno, N. (2022). Anticholinergic Load Is Associated with Swallowing Dysfunction in Convalescent Older Patients after a Stroke. Nutrients, 14(10), 2121. https://doi.org/10.3390/nu14102121